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Abstract: For a Jordan curve Γ in the complex plane, its constant distance boundary Γλ is an inflated
version of Γ. A flatness condition, (1/2, r0)-chordal property, guarantees that Γλ is a Jordan curve when
λ is not too large. We prove that Γλ converges to Γ, as λ approaching to 0, in the sense of Hausdorff
distance if Γ has the (1/2, r0)-chordal property.
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1. Introduction

Let Γ ⊂ C be a closed Jordan curve and let Ω be the bounded component of C \ Γ. For any λ > 0,
the set

Γλ := {z ∈ Ω : dist(z,Γ) = λ}.

is called the constant distance boundary of Γ. Meanwhile, let

Ωλ := {z ∈ Ω : dist(z,Γ) > λ}.

Here dist(z,Γ) := inf{|z − ζ | : ζ ∈ Γ}. In [2], Brown showed that for all but countable number of λ,
every component of Γλ is a single point, or a simple arc, or a simple closed curve. It was also proved
that Γλ is a 1-manifold for almost all λ in [3]. Blokh, Misiurewiczch and Oversteegen generalised
Brown’s result in [1], they provided that for all but countably many λ > 0 each component of Γλ is
either a point or a simple closed curve. If Γ is smooth or having positive reach, Γλ is called the offset
of Γ in [6]. For λ within a positive reach, most nice properties are fulfilled by the Γλ. For instance, Γλ
shares the class of differentiability of the Γ, since there is no ambiguity about the nearest point on Γ in
such region. And points of Γλ project onto Γ along the normal to Γ through such point.
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In Figure 1, we display three examples to show the relationship between ∂Ωλ and Γλ. In the left
two graphs, Γ is the outside polygon. The interior “curve” of (A) is Γλ, which is not a real curve. The
interior curve of (B) is ∂Ωλ. In graph (C), the outer curve is Γ and the interior two curves make up ∂Ωλ.
So, in general Ωλ is not necessarily to be connected and its boundary ∂Ωλ may not be equal with Γλ.
However, it is not hard to see that ∂Ωλ ⊂ Γλ. We would like to ask that what is the sufficient condition
for Γλ to be a Jordan curve and what is the sufficient condition for ∂Ωλ = Γλ? These questions are
studied in [7]. If Γλ is a Jordan curve when λ is small enough, we find that, with a flatness condition,
Γλ is approaching to Γ in the sense of Hausdorff distance as λ goes to 0. This means that Γλ is similar
to Γ when λ is small enough. Thus we may expect Γλ inherits the geometric properties of Γ. This
approximation property of Γλ could be applied in the theory of integration. In another paper we are
preparing for, we show that

∫
Γλ

f →
∫

Γ
f with some geometric restriction on Γ.

Figure 1. In (A) and (B) λ =
xy
2 . In (C) λ > zw

2 .

Given two points x, y ∈ Γ, denotes Γ(x, y) by the subarc of Γ containing and connecting x and y
which has a smaller diameter, or, to be either subarc when both have the same diameter. Let `x,y be the
infinite line through x and y, let

ζΓ(x, y) =
1
|x − y|

sup{dist(z, `x,y) : z ∈ Γ(x, y)}.

Following definition can be introduced.

Definition 1.1. [7] A Jordan curve Γ is said to have the (ζ, r0)-chordal property for a certain ζ > 0
and r0 > 0, if

sup{ζΓ(x, y) : x, y ∈ Γ and |x − y| ≤ r0} ≤ ζ.

Also, denote

ζΓ = lim
r→0

sup{ζΓ(x, y) : x, y ∈ Γ and |x − y| ≤ r}.

These quantities are used to measure the local deviation of the subarcs from their chords. It is not
hard to see that Γ is smooth if and only if ζΓ = 0. Therefore all smooth curves have the (ζ, r0)-chordal
property. Moreover, if a piecewise smooth Jordan curve only has corner points then it has the (ζ, r0)-
chordal property. However if a piecewise smooth Jordan curve has a cusp point then it does not have
the (ζ, r0)-chordal property.
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Theorem 1.1. [7] Let Γ be a Jordan curve in R2. If Γ has the (1/2, r0)-chordal property for some
r0 > 0, then Γ has the level Jordan curve property i.e., there exists λ0 > 0 such that Γλ is a Jordan
curve for each λ < λ0.

This theorem provides us a method to verify whether Γλ is a Jordan curve. As we have seen in
Figure 1, even through Γ is a simple Jordan curve, Γλ varies greatly. Based on this theorem, the authors
of [7] also studied the quasi-circle property of Γλ. However, we are interested in the limit behaviour of
Γλ as λ approaching to 0. The (ζ, r0)-chordal property of Jordan curves is an essential condition in the
proof of the main theorem, we show that Γλ converges to Γ if Γ has the (1/2, r0)-chordal property.

The other parts of the paper will be organized as follows: In Section 2, we investigate some basic
properties of constant distance boundary of Jordan curves. We prove that if Γ and Γλ are Jordan curves
then there exist at least three points of Γ which have distance λ from Γλ. Also, we find out the relation
between Γλ+µ and (Γµ)λ. This relation will be used in the proof of our main theorem. Section 3 is
devoted to prove our main result, Theorem 3.1. The definition and some basic properties of Hausdorff
distance, dH(·, ·), are introduced firstly. We show that under the (1/2, r0)-chordal property of Γ, the
upper and lower bounds of dH(Γ,Γλ) are obtained. Consequently, the main theorem can be obtained.

2. Constant distance boundary

In this section, we investigate several fundamental properties according to the (ζ, r0)-chordal
property of Jordan curve Γ. In this paper, we always assume that λ > 0 and that Γλ is non-empty. First
we introduce a notation which will be used frequently through the paper. For each x ∈ Γ, define

Γx
λ := {y ∈ Γλ : |x − y| = λ}.

And for any y ∈ Γλ, define

Γy := {x ∈ Γ : |x − y| = λ}.

In [5], the so called λ-parallel set of Γ is introduced. The definition is the following,

Ω
p
λ := {z ∈ Ω : dist(z,Γ) < λ}.

Recall that we already have the set

Ωλ = {z ∈ Ω : dist(z,Γ) > λ}.

We have seen in Figure 1 that ∂Ωλ is a proper subset of Γλ and Theorem 1.1 states that if Γ has
the (1/2, r0)-chordal property for some r0 > 0 then ∂Ωλ = Γλ whenever λ is small enough. However,
the identical of Γλ and ∂Ω

p
λ can be obtained directly without the (1/2, r0)-chordal property.

Proposition 2.1. Γλ = ∂Ω
p
λ.

Proof. According to the continuity of the distance function, the relation of ∂Ω
p
λ ⊂ Γλ is obvious.

Let z ∈ Γλ. Then there exists x ∈ Γz. Consider an arbitrary point y on the segment (x, z). We know
that dist(y,Γ) ≤ |x−y| < λ. Thus y ∈ Ω

p
λ. Since the point z is the limit of points along the segment [x, z],

we know that z ∈ Ω
p
λ. Therefore we have Γλ ⊂ ∂Ω

p
λ.
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In the above proof, [x, z] stands for the line segment connecting points x and z, while (x, z) is
[x, z] \ {x, z}.

Proposition 2.2. Let x, y ∈ Γλ be different points and let x′ ∈ Γx and y′ ∈ Γy. If the two segments [x, x′]
and [y, y′] intersect at p, i.e., [x, x′] ∩ [y, y′] = {p} then x′ = y′ = p.

Proof. If x′ , y′ then {p} = (x, x′) ∩ (y, y′). We have

|x − p| + |p − x′| = λ and |y − p| + |p − y′| = λ.

Since

|x − p| + |p − y′| ≥ |x − y′| ≥ λ.

It follows that

|x − p| ≥ |y − p|.

Then

|x′ − y| ≤ |x′ − p| + |p − y| ≤ λ.

Because of |x′ − y| ≥ λ, we know that |x′ − y| = |x′ − p| + |p − y| = λ. This means that the points y,
p and x′ are collinear, i.e., p ∈ (y, x′). However p ∈ (y, y′), this is impossible unless x′ = y′. Therefore,
we must have x′ = y′ = p.

This proposition tells us that two such segments [x, x′] and [y, y′] could only intersect at the end
points.

Proposition 2.3. Let x ∈ Γ and y ∈ Γx
λ. If z ∈ (x, y) such that |x− z| = µ for some 0 < µ < λ then z ∈ Γx

µ.

Proof. Since y ∈ Γx
λ and |x − z| = µ, we have |y − z| = λ − µ and dist(z,Γ) ≤ |x − z| = µ. Suppose that

dist(z,Γ) < µ, there exists t ∈ Γ such that |z−t| = dist(z,Γ) < µ. Then |y−t| ≤ |y−z|+|z−t| < λ−µ+µ = λ.
It follows that dist(y,Γ) < λ. This contradicts to the fact that y ∈ Γx

λ ⊂ Γλ. Thus dist(z,Γ) = µ and then
z ∈ Γx

µ.

In the proofs of the above three propositions, the set Γ is not necessarily to be a Jordan curve. So
these properties are correct for any compact subset of C. In the following context, we assume that Γ

is a Jordan curve. The Lemma 4.2 of [7] states that if Γλ is a Jordan curve and if there exist distinct
x, y ∈ Γz

λ for some z ∈ Γ, then the subarc Γλ(x, y) is a circular arc of the circle centred at z and with
radius λ, which denoted by γ(z, λ).

Lemma 2.1. If Γ and Γλ are Jordan curves then there exist at least three points of Γ which all have
distance λ from Γλ.

Proof. Suppose that there is no point on Γ has distance λ from Γλ. It means that for any p ∈ Γ the
distance dist(p,Γλ) , λ. It is clear that dist(p,Γλ) < λ is incorrect. Thus dist(p,Γλ) > λ for all p ∈ Γ.
It follows that for a fixed point q ∈ Γλ we know that |p − q| > λ for all p ∈ Γ. Therefore dist(q,Γ) > λ.
This contradicts the fact that q ∈ Γλ.
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Suppose that there is only one point x ∈ Γ which has distance λ from Γλ. Therefore dist(x,Γλ) = λ

and dist(p,Γλ) > λ for any p ∈ Γ when p , x. Thus for arbitrary q ∈ Γλ, we have |q − p| > λ when
p , x. It implies that |q− x| = λ. Then Γλ ⊂ Γx

λ. So Γλ is a circular arc of the circle with center at x and
with radius λ, i.e., Γλ ⊂ γ(x, λ). Because Γλ is a Jordan curve, we must have Γλ = γ(x, λ). Therefore Γ

is the union of {x} and a certain subset of circle γ(x, 2λ). In other words, Γ is separated by Γλ into two
parts. This contradicts the fact that Γ is a Jordan curve.

Suppose that there are only two points x, y ∈ Γ which have distance λ from Γλ. It means that
dist(x,Γλ) = λ = dist(y,Γλ) and dist(p,Γλ) > λ for any p ∈ Γ when p , x, y. Similar to the one point
case, we know that Γλ ⊂ Γx

λ ∪ Γ
y
λ. Since Γλ is a Jordan curve, there are three situations we should

consider.
(i) If |x− y| = 2λ then Γλ lies in the two tangential circles γ(x, λ) and γ(y, λ). Because Γλ is a Jordan

curve, it could only contained in one circle. Then x and y are separated by this circle which contradicts
that fact that Γ is a Jordan curve.

(ii) If |x − y| < 2λ then Γλ is the curve looks like number eight which enclose x and y at the inside
area. While Γ \ {x, y} is in the outside area otherwise Γ = {x, y}. The both situations contradict the fact
that Γ is a Jordan curve.

(iii) If |x − y| > 2λ then Γλ lies in one of the disjoint two circles γ(x, λ) and γ(y, λ). Therefore x and
y are not connected which contradicts that fact that Γ is a Jordan curve.

By the above analysis we finished the proof.

The constant distance boundary Γλ of Γ will be a Jordan curve under specific conditions (see
Theorem 1.1). Thus we can consider the constant distance boundary of Γλ, denoted by (Γλ)µ if which
is non-empty. Naturally we will investigate the relationship between (Γλ)µ and Γλ+µ.

Lemma 2.2. Let λ0 > 0. Suppose that Γλ is a Jordan curve for each λ < λ0. Then for 0 < µ < λ < λ0

we have

Γλ ⊂ (Γµ)λ−µ.

Proof. Since 0 < µ < λ < λ0, it follows from Proposition 2.1 that Ω
p
µ ⊂ Ω

p
λ. For any y ∈ Γλ, there

is x ∈ Γ such that |x − y| = λ. This means that y ∈ Γx
λ. Let z be a point of segment [x, y] such that

|x − z| = µ. By Proposition 2.3, we conclude that z ∈ Γx
µ, i.e., z ∈ Γµ.

Now we have dist(y,Γµ) ≤ |y−z| = λ−µ. If the equality holds then y ∈ (Γµ)λ−µ. If dist(y,Γµ) < |y−z|
then there exists z′ ∈ Γµ such that dist(y,Γµ) = |y − z′| < |y − z| = λ − µ. Because of z′ ∈ Γµ, there must
exists x′ ∈ Γ such that |z′ − x′| = µ. Therefore dist(y,Γ) ≤ |y − x′| ≤ |y − z′| + |z′ − x′| < λ − µ + µ = λ

which contradicts to the fact of y ∈ Γλ. Therefore we must have dist(y,Γµ) = |y − z| = λ − µ which
means y ∈ (Γµ)λ−µ. It follows that Γλ ⊂ (Γµ)λ−µ.

In Lemma 2.2 even though we assume that the sets Γλ and Γµ are Jordan curves, but Γµ does not
necessarily satisfy the (1/2, r0)-chordal property, thus the set (Γµ)λ−µ probably is not a Jordan curve
(see Theorem 1.1).

Corollary 2.1. Let Γ be a Jordan curve and has level Jordan curve property for some λ0 > 0. If Γµ
has (1/2, r0)-chordal property for a µ < λ0, then Γλ = (Γµ)λ−µ when 0 < µ < λ < λ0 and λ − µ < δ for
some δ > 0.
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11316

Proof. By the assumption of level Jordan curve property of Γ, we know that Γλ and Γµ are Jordan
curves if 0 < µ < λ < λ0. Because of Lemma 2.2 we have

Γλ ⊂ (Γµ)λ−µ.

By Theorem 1.1 and by the assumption of Γµ has (1/2, r0)-chordal property, we know that the curve
Γµ has level Jordan curve property for some δ > 0. Thus its constant distance boundary (Γµ)λ−µ is a
Jordan curve when λ−µ < δ. Then both Γλ and (Γµ)λ−µ are Jordan curves, it implies that Γλ = (Γµ)λ−µ.

Remark. In Corollary 2.1, the (1/2, r0)-chordal property of Γµ is crucial, because it is a necessary
condition for the set (Γµ)λ−µ to be a Jordan curve, i.e., the curve Γµ has level Jordan curve property. So
far, we only know that if Γµ has (1/2, r0)-chordal property then (Γµ)λ−µ is a Jordan curve when λ−µ < δ
for some δ > 0.

3. Limit behaviour of Γλ

In this section, we study the limit behaviour of Γλ as λ tends to 0. All the limits are considered in
the sense of Hausdorff distance. For the convenience of readers, we briefly introduce the concept and
some elementary properties of Hausdorff distance, which can be found in [4].

Definition 3.1. Let X and Y be two non-empty subsets of C. The Hausdorff distance of X and Y,
denoted by dH(X,Y), is defined by

dH(X,Y) := max{sup
x∈X

inf
y∈Y
|x − y|, sup

y∈Y
inf
x∈X
|x − y|}.

Denote by

d(X,Y) := sup
x∈X

dist(x,Y) and d(Y, X) := sup
y∈Y

dist(y, X)

the distance from X to Y and Y to X respectively. We could rewrite

dH(X,Y) = max{d(X,Y), d(Y, X)}. (3.1)

Note that d(X,Y) , d(Y, X) usually happens.
For non-empty subsets X and Y of C, we know that

d(X,Y) = 0⇔ ∀x ∈ X, dist(x,Y) = 0⇔ ∀x ∈ X, x ∈ Y ⇔ X ⊂ Y .

Here Y is the closure of Y in C. We summarize these equivalence relations in the following proposition.

Proposition 3.1. Let X and Y be two non-empty subsets of C. Then d(X,Y) = 0 if and only if X ⊂ Y.
Furthermore, dH(X,Y) = 0 if and only if X = Y.

The triangle inequality is true not only for dH but also for d. That is for any compact subsets A, B
and C of C we have

d(A, B) ≤ d(A,C) + d(C, B). (3.2)
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We left the proof of (3.2) for interested readers as an exercise.
Denote by Π the set of compact subsets of C. Federer shows in [4] that (Π, dH) is a complete metric

space. According to our consideration, Γ is a Jordan curve, so it is compact. By the definition of
constant distance boundary, Γλ is compact as well. Thus we have Γ,Γλ ∈ Π. Observe that Γ0 = Γ, so
we want to know whether the limit of Γλ, in (Π, dH), is Γ or not as λ approaching to zero. The first
proposition we obtained is the following.

Proposition 3.2. If there exists L ∈ Π such that limλ→0 Γλ = L then L ⊂ Γ.

Proof. If limλ→0 Γλ = L then limλ→0 dH(Γλ, L) = 0. It follows that limλ→0 d(L,Γλ) = 0. We know that
d(Γλ,Γ) = λ, since

d(Γλ,Γ) = sup
x∈Γλ

dist(x,Γ) = λ.

It follows from (3.2) that d(L,Γ) ≤ d(L,Γλ) + d(Γλ,Γ). Letting λ tends to 0 implies that d(L,Γ) = 0,
thus L ⊂ Γ. By the compactness of Γ, we have that L ⊂ Γ = Γ.

Proposition 3.2 states that if the limit of Γλ exists in Π then it must be a subset of Γ. But we still
cannot confirm whether this limit is a proper subset of Γ or equal to Γ. While if Γ has the (1/2, r0)-
chordal property, we obtain the following result.

Lemma 3.1. Suppose that Γ has (1/2, r0)-chordal property and that λ ≤ r0/2. Then λ ≤ dH(Γλ,Γ) ≤
(2
√

5 + 1)λ.

Proof. Because that Γ has the (1/2, r0)-chordal property, we may assume that Γλ in consideration is a
Jordan curve. Recall that d(Γλ,Γ) = λ. By (3.1), we already have

dH(Γλ,Γ) = max{d(Γλ,Γ), d(Γ,Γλ)} ≥ λ.

Because of d(Γ,Γλ) ≥ λ we assume that d(Γ,Γλ) > λ, otherwise dH(Γλ,Γ) = λ.
Now suppose that there exists a w ∈ Γ such that dist(w,Γλ) > λ. By Lemma 2.1 there are at least

three points of Γ which have distance λ from Γλ. So we can choose a subarc Γ(x, y) of Γ such that
w ∈ Γ(x, y) and d(p,Γλ) ≥ λ for all p ∈ Γ(x, y), especially, the equality holds only when p ∈ {x, y}. The
reason is that if there is a z ∈ Γ(x, y) \ {x, y} such that d(z,Γλ) = λ then one of the two subarcs Γ(x, z)
or Γ(z, y) contains w. Thus only need to replace Γ(x, y) by this subarc. By the compactness of Γλ, there
exist x′ ∈ Γx

λ and y′ ∈ Γ
y
λ.

(i) Consider the case when x′ = y′ = q. It is not hard to know that |x − y| ≤ |x − q|+ |y− q| = 2λ and
thus |x − y| ≤ r0. By the (1/2, r0)-chordal property of Γ, we obtain that dist(p, `x,y) ≤ 1/2|x − y| ≤ λ for
every p ∈ Γ(x, y). The straight line `x,y separates the complex plane into two parts, which denoted by
CR and CL.

Firstly, we assume that Γ ∩ CR and Γ ∩ CL are non-empty. Let p0 ∈ C
R ∩ Γ(x, y) such that

dist(p0, `x,y) = max{dist(p, `x,y) : p ∈ CR ∩ Γ(x, y)}.

Similarly, let p1 ∈ C
L ∩ Γ(x, y) such that

dist(p1, `x,y) = max{dist(p, `x,y) : p ∈ CL ∩ Γ(x, y)}.
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Construct straight lines `p0 and `p1 pass through p0 and p1 respectively and parallel to `x,y. Thus the
arc Γ(x, y) is bounded in the strip region between `p0 and `p1 which has width at most 2λ. It is needed
to explain that Γ(x, y) may only at one side of the line `x,y. Thus p0 or p1 may does not exist. However,
Γ(x, y) can not be a straight line otherwise x′ and y′ must be different. Therefore, at least, one of p0 or
p1 must exists. Then the mentioned strip region now is between `p1 and `x,y if p0 does not exist, while
the strip region is between `p0 and `x,y if p1 does not exist. In these cases, the width of the strip region
is at most λ.

Construct straight lines `x and `y pass through x and y respectively and perpendicular to `x,y. Choose
x′ and x′′ on `x ∩ Γ(x, y) such that

|x′ − x′′| = max{|s − t| : s, t ∈ `x ∩ Γ(x, y)}.

Because Γ(x, y) is bounded in the strip region with width at most 2λ, we must have |x′ − x′′| ≤ 2λ ≤
r0. Thus the (1/2, r0)-chordal property implies that the arc Γ(x′, x′′) is bounded in a strip region which
has width at most 2λ. By the similar argument for `y, we obtain that Γ(x, y) is bounded in a rectangular
with width 2λ and length 4λ. We denote this rectangular by ∆. Thus |w − x| ≤ diam ∆ = 2

√
5λ. Here

diam ∆ is the diameter of ∆. So |w − q| ≤ |w − x| + |x − q| ≤ 2
√

5λ + λ = (2
√

5 + 1)λ. This implies that
dist(w,Γλ) ≤ (2

√
5 + 1)λ.

(ii) Consider the case when x′ , y′. For every q ∈ Γλ(x′, y′) there exists p ∈ Γq.
If p ∈ Γ(x, y) the selection condition of Γ(x, y) implies that p ∈ {x, y}. We can see that if p = x

then replace x′ by q, also denoted by x′, and if p = y then replace y′ by q, also denoted by y′. Choose
another point q′ ∈ Γλ(x′, y′) and continuous the above process, finally we must have that x′ = y′. Then
repeat the proof of case (i), we also have dist(w,Γλ) ≤ (2

√
5 + 1)λ.

Suppose that p ∈ Γ(y, x). Here Γ(y, x) = Γ \ Γ(x, y). Because the segment [p, q] does not intersect
with Γλ(y′, x′). Then Γλ(y′, x′) is enclosed by the union of arcs L := Γ(x, y)∪ [y, y′]∪Γλ(x′, y′)∪ [x′, x].
It implies that for every q′ ∈ Γλ(y′, x′) there must exists p′ ∈ Γq′ such that p′ ∈ Γ(x, y). If this is not
the case then p′ ∈ Γ(y, x), and then [p′, q′] intersects L which is impossible. Repeat the analysis of the
case when p ∈ Γ(x, y) for p′ ∈ Γ(x, y), it follows that dist(w,Γλ) ≤ (2

√
5 + 1)λ.

In the above analysis, we have considered all the possible situations. As a conclusion, we obtain
that d(Γ,Γλ) ≤ (2

√
5 + 1)λ. Therefore we have the inequalities λ ≤ dH(Γλ,Γ) ≤ (2

√
5 + 1)λ.

In Lemma 3.1, the condition which Γ has (1/2, r0)-chordal property is crucial, because of
the (1/2, r0)-chordal property the curve Γ has level Jordan property and then the upper bound of
dH(Γλ,Γ) can be decided. However this condition is rigorous, we should consider the questions for
curves without this restriction in the future work.

Theorem 3.1. If Jordan curve Γ has (1/2, r0)-chordal property then limλ→0 Γλ = Γ in (Π, dH).

Proof. By Lemma 3.1, we immediately obtain that dH(Γλ,Γ) ≤ (2
√

5 + 1)λ when 2λ ≤ r0. It implies
that limλ→0 Γλ = Γ.

This theorem provides us a sufficient condition for Γ such that its constant distance boundaries
converging to itself. Now let λ take discrete values {1n }

∞
n=1, we have the following corollary.

Corollary 3.1. Let Γ be a Jordan curve and has level Jordan curve property for some λ0 > 0. If Γ 1
n

has (1/2, r0)-chordal property when 1/n < λ0. Then the limit limn→∞ Γ 1
n

exists.
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Proof. The Corollary 2.1 implies that Γ 1
n

= (Γ 1
m

) 1
n−

1
m

when 0 < 1
m < 1

n < λ0 and 1
n −

1
m < δ for some

δ > 0. By Lemma 3.1, it follows that

dH(Γ 1
m
, (Γ 1

m
) 1

n−
1
m

) ≤ (2
√

5 + 1)(
1
n
−

1
m

),

when 1
n −

1
m < r0/2. Therefore when 1

n −
1
m < min{δ, r0/2}, we obtain that

dH(Γ 1
m
,Γ 1

n
) = dH(Γ 1

m
, (Γ 1

m
) 1

n−
1
m

) ≤ (2
√

5 + 1)(
1
n
−

1
m

).

Therefore {Γ 1
n
} is a Cauchy sequence in (Π, dH), and then the limit limn→∞ Γ 1

n
exists.
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