We give a characterization for the integers $ n \geq 1 $ such that the Fibonomial coefficient $ {pn \choose n}_F $ is divisible by $ p $ for any prime $ p \neq 2, 5 $. Then we use it to calculate asymptotic formulas for the number of positive integers $ n \leq x $ such that $ p \mid {pn \choose n}_F $. This completes the study on this problem for all primes $ p $.
Citation: Phakhinkon Napp Phunphayap, Prapanpong Pongsriiam. Divisibility of Fibonomial coefficients in terms of their digital representations and applications[J]. AIMS Mathematics, 2022, 7(4): 5314-5327. doi: 10.3934/math.2022296
We give a characterization for the integers $ n \geq 1 $ such that the Fibonomial coefficient $ {pn \choose n}_F $ is divisible by $ p $ for any prime $ p \neq 2, 5 $. Then we use it to calculate asymptotic formulas for the number of positive integers $ n \leq x $ such that $ p \mid {pn \choose n}_F $. This completes the study on this problem for all primes $ p $.
[1] | C. Ballot, Divisibility of Fibonomials and Lucasnomials via a general Kummer rule, Fibonacci Quart., 53 (2015), 194–205. |
[2] | C. Ballot, The congruence of Wolstenholme for generalized binomial coefficients related to Lucas sequences, J. Integer Seq., 18 (2015), Article 15.5.4. |
[3] | C. Ballot, Lucasnomial Fuss-Catalan numbers and related divisibility questions, J. Integer Seq., 21 (2018), Article 18.6.5. |
[4] | C. Ballot, Divisibility of the middle Lucasnomial coefficient, Fibonacci Quart., 55 (2017), 297–308. |
[5] | W. Chu, E. Kiliç, Quadratic sums of Gaussian $q$-binomial coefficients and Fibonomial coefficients, Ramanujan J., 51 (2020), 229–243. https://doi.org/10.1007/s11139-018-0023-x doi: 10.1007/s11139-018-0023-x |
[6] | R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics : A Foundation for Computer Science, Second Edition, Addison–Wesley, 1994 |
[7] | E. Kiliç, I. Akkus, On Fibonomial sums identities with special sign functions: analytically $q$-calculus approach, Math. Slovaca, 68 (2018), 501–512. https://doi.org/10.1515/ms-2017-0120 doi: 10.1515/ms-2017-0120 |
[8] | E. Kiliç, H. Prodinger, Closed form evaluation of sums containing squares of Fibonomial coefficients, Math. Slovaca, 66 (2016), 757–767. https://doi.org/10.3934/math.2020433 doi: 10.3934/math.2020433 |
[9] | D. Marques, P. Trojovský, On divisibility of Fibonomial coefficients by $3$, J. Integer Seq., 15 (2012), Article 12.6.4. |
[10] | K. Onphaeng, P. Pongsriiam, Jacobsthal and Jacobsthal-Lucas numbers and sums introduced by Jacobsthal and Tverberg, J. Integer Seq., 20 (2017), Article 17.3.6. |
[11] | K. Onphaeng, P. Pongsriiam, Exact divisibility by powers of the integers in the Lucas sequence of the first kind, AIMS Math., 5 (2020), 6739–6748. https://doi.org/10.3934/math.2020433 doi: 10.3934/math.2020433 |
[12] | K. Onphaeng, P. Pongsriiam, Exact divisibility by powers of the integers in the Lucas sequences of the first and second kinds, AIMS Math., 6 (2021), 11733–11748. https://doi.org/10.3934/math.2021682 doi: 10.3934/math.2021682 |
[13] | P. Phunphayap, P. Pongsriiam, Explicit formulas for the $p$-adic valuations of Fibonomial coefficients, J. Integer Seq., 21 (2018), Article 18.3.1. |
[14] | P. Phunphayap, P. Pongsriiam, Explicit formulas for the $p$-adic valuations of Fibonomial coefficients Ⅱ, AIMS Math., 6 (2020), 5685–5699. https://doi.org/10.3934/math.2020364 doi: 10.3934/math.2020364 |
[15] | P. Pongsriiam, Fibonacci and Lucas numbers which have exactly three prime factors and some unique properties of $F_18$ and $L_18$, Fibonacci Quart., 57 (2019), 130–144. |
[16] | P. Pongsriiam, The order of appearance of factorials in the Fibonacci sequence and certain Diophantine equations, Period. Math. Hungar., 79 (2019), 141–156. https://doi.org/10.1007/s10998-018-0268-6 doi: 10.1007/s10998-018-0268-6 |