Let SL$ _n(\mathbb{Q}) $ be the set of matrices of order $ n $ over the rational numbers with determinant equal to 1. We study in this paper a subset $ \Lambda $ of SL$ _n(\mathbb{Q}) $, where a matrix $ B $ belongs to $ \Lambda $ if and only if the conjugate subgroup $ B\Gamma_q(n)B^{-1} $ of principal congruence subgroup $ \Gamma_q(n) $ of lever $ q $ is contained in modular group SL$ _n(\mathbb{Z}) $. The notion of least common denominator (LCD for convenience) of a rational matrix plays a key role in determining whether B belongs to $ \Lambda $. We show that LCD can be described by the prime decomposition of $ q $. Generally $ \Lambda $ is not a group, and not even a subsemigroup of SL$ _n(\mathbb{Q}) $. Nevertheless, for the case $ n = 2 $, we present two families of subgroups that are maximal in $ \Lambda $ in this paper.
Citation: Guangren Sun, Zhengjun Zhao. SL$ _n(\mathbb{Z}) $-normalizer of a principal congruence subgroup[J]. AIMS Mathematics, 2022, 7(4): 5305-5313. doi: 10.3934/math.2022295
Let SL$ _n(\mathbb{Q}) $ be the set of matrices of order $ n $ over the rational numbers with determinant equal to 1. We study in this paper a subset $ \Lambda $ of SL$ _n(\mathbb{Q}) $, where a matrix $ B $ belongs to $ \Lambda $ if and only if the conjugate subgroup $ B\Gamma_q(n)B^{-1} $ of principal congruence subgroup $ \Gamma_q(n) $ of lever $ q $ is contained in modular group SL$ _n(\mathbb{Z}) $. The notion of least common denominator (LCD for convenience) of a rational matrix plays a key role in determining whether B belongs to $ \Lambda $. We show that LCD can be described by the prime decomposition of $ q $. Generally $ \Lambda $ is not a group, and not even a subsemigroup of SL$ _n(\mathbb{Q}) $. Nevertheless, for the case $ n = 2 $, we present two families of subgroups that are maximal in $ \Lambda $ in this paper.
[1] | W. A. Adkins, S. H. Weintraub, Algebra: An approach via module theory, Springer-Verlag, New York, Grad. Texts in Math., 136, 1992. https://dx.doi.org/10.1007/978-1-4612-0923-2 |
[2] | C. Conway, S. Norton, Monstrous moonshine, Bull. London Math. Soc., 11 (1979), 308–339. https://dx.doi.org/10.1112/blms/11.3.308 |
[3] | F. Diamond, J. Shurman, A first course in modular forms, Springer-Verlag, New York, Grad. Texts in Math., 228, 2005. https://dx.doi.org/10.1007/978-0-387-27226-9 |
[4] | J. E. Humphreys, Arithmetic groups, Springer-Verlag, Berlin, Lecture Notes in Mathematics.789, 1980. https://dx.doi.org/10.1007/BFb0094567 |
[5] | J. Lehner, M. Newman, Weierstrass points on $\Gamma_0(N)$, Ann. Math., 79 (1964), 360–368. https://dx.doi.org/10.2307/1970550 doi: 10.2307/1970550 |
[6] | M. Newman, Integral matrices, Academic Press, New York and London, 1972. https://dx.doi.org/10.2307/2005847 |
[7] | M. S. Raghunathan, The congruence subgroup problem, Proc. Indian Acad. Sci. (Math. Sci.,), 114 (2004), 299–308. https://dx.doi.org/10.1007/BF02829437 doi: 10.1007/BF02829437 |
[8] | J. J. Rotman, Advanced modern algebra, revised 2nd printing, Prentice Hall, 2003. http://dx.doi.org/10.1090/gsm/114 |
[9] | H. J. S. Smith, On systems of linear indeterminate equations and congruences, Philos. Trans., 151 (1861), 293–326. https://dx.doi.org/10.1080/03081081003709819 doi: 10.1080/03081081003709819 |