Research article Special Issues

SL$ _n(\mathbb{Z}) $-normalizer of a principal congruence subgroup

  • Received: 29 September 2021 Revised: 10 December 2021 Accepted: 22 December 2021 Published: 06 January 2022
  • MSC : 20H05

  • Let SL$ _n(\mathbb{Q}) $ be the set of matrices of order $ n $ over the rational numbers with determinant equal to 1. We study in this paper a subset $ \Lambda $ of SL$ _n(\mathbb{Q}) $, where a matrix $ B $ belongs to $ \Lambda $ if and only if the conjugate subgroup $ B\Gamma_q(n)B^{-1} $ of principal congruence subgroup $ \Gamma_q(n) $ of lever $ q $ is contained in modular group SL$ _n(\mathbb{Z}) $. The notion of least common denominator (LCD for convenience) of a rational matrix plays a key role in determining whether B belongs to $ \Lambda $. We show that LCD can be described by the prime decomposition of $ q $. Generally $ \Lambda $ is not a group, and not even a subsemigroup of SL$ _n(\mathbb{Q}) $. Nevertheless, for the case $ n = 2 $, we present two families of subgroups that are maximal in $ \Lambda $ in this paper.

    Citation: Guangren Sun, Zhengjun Zhao. SL$ _n(\mathbb{Z}) $-normalizer of a principal congruence subgroup[J]. AIMS Mathematics, 2022, 7(4): 5305-5313. doi: 10.3934/math.2022295

    Related Papers:

  • Let SL$ _n(\mathbb{Q}) $ be the set of matrices of order $ n $ over the rational numbers with determinant equal to 1. We study in this paper a subset $ \Lambda $ of SL$ _n(\mathbb{Q}) $, where a matrix $ B $ belongs to $ \Lambda $ if and only if the conjugate subgroup $ B\Gamma_q(n)B^{-1} $ of principal congruence subgroup $ \Gamma_q(n) $ of lever $ q $ is contained in modular group SL$ _n(\mathbb{Z}) $. The notion of least common denominator (LCD for convenience) of a rational matrix plays a key role in determining whether B belongs to $ \Lambda $. We show that LCD can be described by the prime decomposition of $ q $. Generally $ \Lambda $ is not a group, and not even a subsemigroup of SL$ _n(\mathbb{Q}) $. Nevertheless, for the case $ n = 2 $, we present two families of subgroups that are maximal in $ \Lambda $ in this paper.



    加载中


    [1] W. A. Adkins, S. H. Weintraub, Algebra: An approach via module theory, Springer-Verlag, New York, Grad. Texts in Math., 136, 1992. https://dx.doi.org/10.1007/978-1-4612-0923-2
    [2] C. Conway, S. Norton, Monstrous moonshine, Bull. London Math. Soc., 11 (1979), 308–339. https://dx.doi.org/10.1112/blms/11.3.308
    [3] F. Diamond, J. Shurman, A first course in modular forms, Springer-Verlag, New York, Grad. Texts in Math., 228, 2005. https://dx.doi.org/10.1007/978-0-387-27226-9
    [4] J. E. Humphreys, Arithmetic groups, Springer-Verlag, Berlin, Lecture Notes in Mathematics.789, 1980. https://dx.doi.org/10.1007/BFb0094567
    [5] J. Lehner, M. Newman, Weierstrass points on $\Gamma_0(N)$, Ann. Math., 79 (1964), 360–368. https://dx.doi.org/10.2307/1970550 doi: 10.2307/1970550
    [6] M. Newman, Integral matrices, Academic Press, New York and London, 1972. https://dx.doi.org/10.2307/2005847
    [7] M. S. Raghunathan, The congruence subgroup problem, Proc. Indian Acad. Sci. (Math. Sci.,), 114 (2004), 299–308. https://dx.doi.org/10.1007/BF02829437 doi: 10.1007/BF02829437
    [8] J. J. Rotman, Advanced modern algebra, revised 2nd printing, Prentice Hall, 2003. http://dx.doi.org/10.1090/gsm/114
    [9] H. J. S. Smith, On systems of linear indeterminate equations and congruences, Philos. Trans., 151 (1861), 293–326. https://dx.doi.org/10.1080/03081081003709819 doi: 10.1080/03081081003709819
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1530) PDF downloads(57) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog