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Abstract: We give a characterization for the integers n ≥ 1 such that the Fibonomial coefficient
(

pn
n

)
F

is divisible by p for any prime p , 2, 5. Then we use it to calculate asymptotic formulas for the number
of positive integers n ≤ x such that p |

(
pn
n

)
F
. This completes the study on this problem for all primes

p.
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1. Introduction

The Fibonacci sequence (Fn)n≥1 is given by the recurrence relation Fn = Fn−1 + Fn−2 for n ≥ 3 with
the initial values F1 = F2 = 1. For each m ≥ 1 and 1 ≤ k ≤ m, the Fibonomial coefficient

(
m
k

)
F

is
defined by (

m
k

)
F

=
F1F2F3 · · · Fm

(F1F2F3 · · · Fk)(F1F2F3 · · · Fm−k)
=

Fm−k+1Fm−k+2 · · · Fm

F1F2F3 · · · Fk
.

As usual, if m = k, then the empty product F1F2 · · · Fm−k is defined to be 1, and similar to the binomial
coefficients, we let

(
m
k

)
F

= 1 if k = 0 and
(

m
k

)
F

= 0 if k > m. Then it is well known that
(

m
k

)
F

is always
an integer for every m ≥ 1 and k ≥ 0.

There has been some interest in the study of certain generalizations of binomial coefficients such
as the Fibonomial or Lucasnomial coefficients. For instance, Marques and Trojovský [9] determined
the integers n ≥ 1 such that

(
3n
n

)
F

is divisible by 3. Then Ballot [1] largely extended Marques and

aNapp is his nickname his parents gave him and he would like to use it as a middle name too. His first and last names read like
Pa-kin-gorn Poon-pa-yap. He is the same person as Phakhinkon Phunphayap, one of the authors of the articles [13, 14].
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Trojovský’s results by characterizing all integers n ≥ 1 such that
(

pn
n

)
U

is divisible by p for any
nondegenerate fundamental Lucas sequence U and p = 2, 3 and for p = 5, 7 in the case U = F.
Ballot [1] also proved that E3(x) = O(log x) and E7(x) = O

(
(log x)3

)
. Here and throughout this article,

Ep(x) denotes the number of positive integers n less than or equal to x such that
(

pn
n

)
F

is not divisible
by p. In other words,

Ep(x) =
∑

1≤n≤x
p-(pn

n )F

1.

In particular, we [13, 14] have recently provided an explicit formula for the p-adic valuation of certain
Fibonomial coefficients, and have used it in the investigation of the integers n ≥ 1 such that

(
pan
n

)
F

is
divisible by p for any prime p ≡ ±2 (mod 5) and any integer a ≥ 1, and also for primes p ≡ ±1
(mod 5) and a = 1 in terms of the sum of digit function.

In this article, we give characterizations for the integers n ≥ 1 such that
(

pn
n

)
F

is divisible by p for
any prime p , 2, 5 in terms of the digital representation of n. Then we use it in the calculation for
asymptotic formulas of Ep(x) for all primes p. This extends many results in the literature which focus
only on small primes p ≤ 7.

We organize this article as follows. In Section 2, we recall some definitions and useful results. In
Section 3, we prove our main theorems and give some examples. For more information on Fibonacci
numbers, Fibonomial coefficients, and generalizations, we refer the reader to some recent articles
by Ballot [2–4], Chu and Kiliç [5], Kiliç and Akkus [7], Kiliç and Prodinger [8], Onphaeng and
Pongsriiam [10–12], and Pongsriiam [15, 16].

2. Preliminaries and lemmas

Throughout this article, unless stated otherwise, x is a positive real number, p is a prime,
a, b, k,m, n, q, r are integers, m, n ≥ 1, q ≥ 2, bxc is the largest integer less than or equal to x, {x}
is the fractional part of x given by {x} = x− bxc, a mod m is the least nonnegative residue of a modulo
m, and log x is the natural logarithm of x. The p-adic valuation of n, denoted by νp(n), is the exponent
of p in the prime factorization of n. In addition, the order (or the rank) of appearance of n in the
Fibonacci sequence, denoted by z(n), is the smallest positive integer m such that n | Fm. Furthermore,
we define sq(n) to be the sum of digits of n when n is written in base q, that is, if

n = (akak−1 . . . a0)q = akqk + ak−1qk−1 + · · · + a0 where 0 ≤ ai < q for every i,

then sq(n) = ak + ak−1 + · · · + a0. Next, we recall some well known and useful results for the reader’s
convenience.

Lemma 1. The following statements hold.

(i) n | Fm if and only if z(n) | m.
(ii) z(p) | p + 1 if and only if p ≡ ±2 (mod 5).

(iii) z(p) | p − 1 if and only if p ≡ ±1 (mod 5).
(iv) If p , 5, then gcd(z(p), p) = 1.

Proof. These are well known. See, for example, in [13, Lemma 1] for more details. �
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We will deal with a lot of calculations involving the floor function. So it is useful to recall the
following results, which will be applied throughout this article without further reference.

Lemma 2. For k ∈ Z and x ∈ R, the following statements hold.

(i) bk + xc = k + bxc,
(ii) {k + x} = {x},

(iii) bxc + b−xc =

−1, if x < Z;

0, if x ∈ Z,
(iv) 0 ≤ {x} < 1 and {x} = 0 if and only if x ∈ Z,

(v) bx + yc =

bxc + byc, if {x} + {y} < 1;

bxc + byc + 1, if {x} + {y} ≥ 1,

(vi)
⌊
bxc
k

⌋
=

⌊
x
k

⌋
for k ≥ 1.

Proof. These are well known and can be proved easily. For more details, see in [6, Chapter 3]. We also
refer the reader to [11] for a nice application of these properties. �

The next three lemmas are important tools for obtaining the characterizations of the integers n such
that

(
pn
n

)
F

is divisible by p.

Lemma 3. [14, Corollary 13] Suppose that p , 2, 5 and a, n are positive integers. If n ≡ 0 (mod z(p)),
then p |

(
pan
n

)
F
.

Lemma 4. [14, Corollary 14] Let p , 2, 5, p ≡ ±2 (mod 5), a, n ∈ N, r = pan mod z(p), s =

n mod z(p), A =
⌊

n(pa−1)
pνp(n)z(p)

⌋
, and n . 0 (mod z(p)). Then the following statements hold.

(i) Assume that a is odd and p - n. If r < s, then p |
(

pan
n

)
F
. If r ≥ s, then p |

(
pan
n

)
F

if and only if
sp(A) ≥ a+1

2 (p − 1).
(ii) Assume that a is odd and p | n. If r , s, then p |

(
pan
n

)
F
. If r = s, then p |

(
pan
n

)
F

if and only if
sp(A) ≥ a+1

2 (p − 1).

Lemma 5. [14, Corollary 15] Let p , 2, 5, p ≡ ±1 (mod 5), and A =
n(p−1)

pνp(n)z(p)
. Then p |

(
pn
n

)
F

if and
only if sp(A) ≥ p − 1.

Lemma 6. Let k ≥ 0, q ≥ 2, 1 ≤ a ≤ q − 1, and 0 ≤ b ≤ q − 1. Then

sq(a(q − 1)qk + bqk) ≥ b.

Proof. When b = 0, the result is obvious. So we assume that b ≥ 1. If a = 1, then we write
a(q − 1)qk + bqk = qk+1 + (b − 1)qk. If a ≥ 2 and b ≤ a − 1, then we write a(q − 1)qk + bqk =

(a − 1)qk+1 + (q − a + b)qk. If a ≥ 2 and b ≥ a, then we write a(q − 1)qk + bqk = aqk+1 + (b − a)qk. In
each case, sq(a(q − 1)qk + bqk) is equal to, respectively, 1 + b − 1 = b, a − 1 + q − a + b = q + b − 1,
and a + b − a = b. In any case, it is at least b. �

Lemma 7. Let p ≥ 3, p ≡ ±2 (mod 5), 0 ≤ a ≤ p−1
2 , and 1 ≤ k ≤ z(p)

2 . Then az(p) + k ≡ 0 (mod p) if
and only if a =

p−1
2 , z(p) is even, and k =

z(p)
2 . In particular, if a < p−1

2 , then az(p) + k . 0 (mod p).
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Proof. From the assumption, we have

0 < az(p) + k ≤
(

p − 1
2

)
z(p) +

z(p)
2

=
pz(p)

2
.

Suppose that az(p) + k ≡ 0 (mod p). Then az(p) + k = np for some 1 ≤ n ≤ z(p)
2 . Since p ≡ ±2

(mod 5), we obtain by Lemma 1 that p ≡ −1 (mod z(p)). Then k ≡ az(p) + k ≡ np ≡ −n (mod z(p)).
So there exists m ∈ N such that k = mz(p) − n. Therefore

z(p)
2
≥ k = mz(p) − n ≥ z(p) −

z(p)
2

=
z(p)

2
.

This implies that k =
z(p)

2 , z(p) is even, m = 1, and n =
z(p)

2 . Since az(p) + k = np, we also obtain
a =

p−1
2 . The converse can be verified easily. This completes the proof. �

We introduce the following notation for convenience.

Definition 8. Let q and i be integers such that q ≥ 2 and 0 ≤ i ≤ q − 1. We define

H(q, i) = {(amam−1 · · · a0)q | m ∈ N ∪ {0}, ak ≤ ak−1 for all 1 ≤ k ≤ m, and a0 = i}.

In other words, H(q, i) is the set of nonnegative integers n such that the q-adic representation of n is
increasing (from the left to the right), and the last digit (the rightmost digit) is equal to i.

For example, if q = 10 and i = 3, then 111122233 and 11111333 are in H(10, 3) but 213 and 1234
are not in H(10, 3).

Definition 9. For positive integers k and q, we define

t(q, k) =

⌊
k(q − 1)

z(q)

⌋
.

The next lemma is usually called stars and bars problem. Recall that if a set A has exactly n distinct
elements, then the number of all possible ways in choosing m elements from A with repetitions allowed
is

(
n+m−1

m

)
. We have the following lemma.

Lemma 10. Let k ≥ 1, q ≥ 2, and 1 ≤ t ≤ q − 1 be integers. Then

#{(akak−1 · · · a1)q ∈

t⋃
i=1

H(q, i) | ak , 0} =

(
k + t − 1

k

)
.

Proof. This is stars and bars problem. The set A is {1, 2, 3, . . . , t}. We would like to choose k elements
from A with repetitions allowed. So the number of ways, as recalled above, is

(
t+k−1

k

)
, which proves this

lemma. �

Lemma 11. Let q ≥ 2 and 1 ≤ t ≤ q − 1 be integers. Then∑
0≤m<qr

m∈
⋃t

i=0 H(q,i)

1 =

(
r + t

r

)
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Consequently, ∑
0≤m<qr

m∈
⋃t

i=0 H(q,i)

1 =
rt

t!
+ O(rt−1),

where the implied constant depends at most on t.

Proof. The conditions 0 ≤ m < qr and m ∈
⋃t

i=0 H(q, i) mean that m = (arar−1 · · · a1)q and 0 ≤ ar ≤

ar−1 ≤ · · · ≤ a1 ≤ t. So this is also stars and bars problem. The set A is {0, 1, 2, . . . , t}. We would like to
choose r elements from A with repetitions allowed. Therefore the number of ways is

(
t+1+r−1

r

)
=

(
r+t
r

)
,

which proves the first part. Next,(
r + t

r

)
=

(r + t)(r + (t − 1)) · · · (r + 1)
t!

=
rt

t!
+ P(r),

where P(r) is a polynomial in r of degree t − 1 with the coefficients depending only on t. Therefore
P(r) = O

(
rt−1

)
and the implied constant depends at most on t. This completes the proof. �

3. Main results

In this section, we begin with a property of the sum of digit function. Then we use it in the study
of the divisibility p |

(
pn
n

)
F

in terms of the digital representation of n. After that, we determine an
asymptotic formula for Ep(x).

Theorem 12. Let m ≥ 0, q ≥ 2, and 1 ≤ k ≤ z(q) − 1. Then

sq ((q − 1)m + t(q, k)) < q − 1 if and only if m ∈
t(q,k)⋃
i=0

H(q, i).

Proof. Let H =
⋃t(q,k)

i=0 H(q, i) and t = t(q, k). Since k < z(q), we see that t < q − 1. If m = 0, then
m ∈ H(q, 0) ⊆ H and sq((q − 1)m + t) = sq(t) = t < q − 1, so we are done. From this point on, we
assume that m ≥ 1. To prove this theorem, we first show that

if m < H, then sq ((q − 1)m + t) ≥ q − 1. (3.1)

We prove (3.1) by induction on r where r is the number of digits in the q-adic expansion of m. For
r = 1, we let m = a, 1 ≤ a ≤ q − 1, a < H, and write

(q − 1)m + t = (a − 1)q + (q − a + t) .

Observe that i ∈ H(q, i) ⊆ H for each 0 ≤ i ≤ t. Since a < H, we see that a > t which implies
0 ≤ q − a + t ≤ q − 1. Therefore sq ((q − 1)m + t) = a − 1 + q − a + t ≥ q − 1. Next, let r ≥ 1 and
suppose that (3.1) holds for any m ∈ N such that the number of digits of m in its q-adic expansion is
less than or equal to r. Assume that m = (ar+1ar · · · a1)q, ar+1 , 0, 0 ≤ ai < q for all i, and m < H. Let
m1 = (arar−1 · · · a1)q.

Case 1. m1 ∈ H. If r = 1, let m2 = 0 and if r ≥ 2, we let m2 = (ar−1ar−2 · · · a1)q. Then we write
(q − 1)m + t as (q − 1)(ar+1qr + arqr−1 + m2) + t, which is equal to

(ar+1 − 1)qr+1 + (q − ar+1 + ar)qr − arqr−1 + (q − 1)m2 + t. (3.2)
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Since m1 ∈ H, ar ≤ ai ≤ t for all 1 ≤ i ≤ r. So we have

m2 ≤ t(1 + q + q2 + · · · + qr−2) = t
(
qr−1 − 1

q − 1

)
,

m2 ≥ ar(1 + q + q2 + · · · + qr−2) = ar

(
qr−1 − 1

q − 1

)
.

Therefore
(q − 1)m2 + t ≤ tqr−1 and (q − 1)m2 + t ≥ arqr−1 + (t − ar) ≥ arqr−1.

Thus
0 ≤ −arqr−1 + (q − 1)m2 + t ≤ (t − ar)qr−1 < qr. (3.3)

Since m < H and m1 ∈ H, ar+1 > ar. Thus 0 ≤ q − ar+1 + ar < q. From this and from (3.2) and (3.3),
we obtain that sq ((q − 1)m + t) is equal to

sq((ar+1 − 1)qr+1 + (q − ar+1 + ar)qr) + sq(−arqr−1 + (q − 1)m2 + t)
≥ sq((ar+1 − 1)qr+1 + (q − ar+1 + ar)qr)
= (ar+1 − 1) + (q − ar+1 + ar) = q − 1 + ar ≥ q − 1.

Case 2. m1 < H. Since (q− 1)m1 + t < (q− 1)qr + q− 1 < qr+1, we write (q− 1)m1 + t = (br+1br · · · b1)q

where br+1 may be zero. Since the number of digits in the q-adic representation of m1 is less than or
equal to r, we can apply the induction hypothesis on m1 to obtain

q − 1 ≤ sq((q − 1)m1 + t) = sq((br+1br · · · b1)q) =

r+1∑
i=1

bi. (3.4)

Next we write

(q − 1)m + t = (q − 1)(ar+1qr + m1) + t = (q − 1)ar+1qr + (br+1br · · · b1)q

= (q − 1)ar+1qr + br+1qr + (br · · · b1)q.

By the above equation, Lemma 6, and (3.4), we obtain sq ((q − 1)m + t) =

sq((q − 1)ar+1qr + br+1qr) + sq((brbr−1 · · · b1)q) ≥ br+1 +

r∑
i=1

bi ≥ q − 1.

This proves (3.1). To prove the converse, assume that m ∈ H and let a = m mod q be the least
nonnegative residue of m modulo q. Then a is the last digit of m in its q-adic expansion. Since m ≥ 1
and m ∈ H, we see that 1 ≤ a ≤ t and m ∈ H(q, a). So the possible digits in the q-adic representation
of m with nonzero leading digit are 1, 2, 3, . . . , a. Therefore we can write m as

na∑
i=0

aqi +

na+na−1∑
i=na+1

(a − 1)qi +

na+na−1+na−2∑
i=na+na−1+1

(a − 2)qi + · · · +

na+na−1+···+n1∑
i=na+···+n2+1

qi, (3.5)
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where n1, n2, . . . , na are nonnegative integers and the empty sum is defined to be zero. So, for instance,
if a− 1 does not appear as a digit in the q-adic representation of m, then we let na−1 = 0 and the second
sum in (3.5) is 0. For 0 ≤ i ≤ a − 1, let di =

(∑
i+1≤ j≤a n j

)
+ 1. By (3.5), m is equal to

na∑
j=0

aq j +

na−1−1∑
j=0

(a − 1)qda−1+ j +

na−2−1∑
j=0

(a − 2)qda−2+ j + · · · +

n1−1∑
j=0

qd1+ j

=

na∑
j=0

aq j +

a−1∑
i=1

ni−1∑
j=0

iqdi+ j

= a
na∑
j=0

q j +

 a−1∑
i=1

iqdi

ni−1∑
j=0

q j




= a
(
qda−1 − 1

q − 1

)
+

 a−1∑
i=1

iqdi

(
qni − 1
q − 1

)
=

1
q − 1

aqda−1 − a +

a−1∑
i=1

(
iqdi−1 − iqdi

)
=

1
q − 1

 a−1∑
i=0

qdi

 − a

 .
Then (q − 1)m + t =

∑a−1
i=0 qdi − a + t. Since di ≥ 1 for all i and 0 ≤ t − a < q − 1, we see that

sq ((q − 1)m + t) is equal to

sq

 a−1∑
i=0

qdi

 + sq (t − a) = a + t − a < q − 1.

This completes the proof. �

Recall that we [14] previously gave a characterization for the divisibility p |
(

pn
n

)
F

in terms of the
sum of digits function. We are now ready to characterize it in terms of a digital representation. We first
prove it for the prime p ≡ ±2 (mod 5) in the next theorem.

Theorem 13. Let p be an odd prime, p ≡ ±2 (mod 5), and n a positive integer. Then p |
(

pn
n

)
F

if and
only if n is not of the form

z(p)m + k where 1 ≤ k ≤
z(p)

2
and m ∈

t(p,k)⋃
i=0

H(p, i). (3.6)

Proof. We first assume that p -
(

pn
n

)
F
. To show that n can be written as in (3.6), let k = n mod z(p),

t = t(p, k), and H =
⋃t

i=0 H(p, i).
Case 1. p | n. We write n = pa` where a, ` ∈ N and p - `. By Lemma 3, we obtain n . 0 (mod z(p)).
Then by Lemma 4(ii), we have

pn ≡ n (mod z(p)) and sp =

(⌊
n(p − 1)
paz(p)

⌋)
= sp

(⌊
`(p − 1)

z(p)

⌋)
< p − 1.

AIMS Mathematics Volume 7, Issue 4, 5314–5327.
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By Lemma 1, we know that p ≡ −1 (mod z(p)), and so n ≡ pn ≡ −n (mod z(p)). Therefore z(p) | 2n
and z(p) - n. This implies

z(p) is even and n mod z(p) =
z(p)

2
= ` mod z(p).

Then k =
z(p)

2 , t =
p−1

2 , ` = z(p)m1 + k for some m1 ≥ 0, and
⌊
`(p−1)

z(p)

⌋
= (p − 1)m1 + t. Since

sp ((p − 1)m1 + t) < p − 1, we obtain by Theorem 12 that m1 ∈ H. In addition, we obtain that

n = `pa =

(
z(p)m1 +

z(p)
2

)
pa = z(p)m + k, where

m = m1 pa +
(pa − 1)k

z(p)
= m1 pa +

pa − 1
2

= m1 pa + t(pa−1 + pa−2 + · · · + 1).

Since m1 ∈ H, so is m. Hence n is of the form (3.6).
Case 2. p - n. This case is similar to Case 1. By Lemmas 3 and 4(i), we obtain

1 ≤ n mod z(p) ≤ pn mod z(p) and sp

(⌊
n(p − 1)

z(p)

⌋)
< p − 1.

Since p ≡ −1 (mod z(p)), pn ≡ −n (mod z(p)). Therefore n mod z(p) ≤ (−n) mod z(p) = z(p) −
(n mod z(p)). Then n mod z(p) ≤ z(p)

2 . Then

1 ≤ k ≤
z(p)

2
, n = z(p)m + k for some m ≥ 0, and

⌊
n(p − 1)

z(p)

⌋
= (p − 1)m + t.

Since sp

(⌊
n(p−1)

z(p)

⌋)
< p−1, we obtain by Theorem 12 that m ∈ H. Therefore n is of the form (3.6). This

proves the converse of this theorem.
For the other direction, assume that n is of the form (3.6). We still let t = t(p, k) and H =⋃t

i=0 H(p, i), and separate the consideration into two cases.
Case 3. k < z(p)

2 . Then 0 ≤ t ≤ p−3
2 . Let m = (arar−1 · · · a1)p be the p-adic expansion of m. Since m ∈ H

and 0 ≤ t ≤ p−3
2 , we see that 0 ≤ a1 ≤

p−3
2 . So we obtain by Lemma 7 that

n ≡ z(p)m + k ≡ a1z(p) + k . 0 (mod p). (3.7)

Applying the fact that p ≡ −1 (mod z(p)), n mod z(p) = k, and 1 ≤ k ≤ z(p)
2 , we obtain

np mod z(p) = (−n) mod z(p) = (−k) mod z(p) = z(p) − k ≥ k = n mod z(p). (3.8)

Since m ∈ H and
⌊

n(p−1)
z(p)

⌋
= (p − 1)m + t, we obtain by Theorem 12 that

sp

(⌊
n(p − 1)

z(p)

⌋)
< p − 1. (3.9)

By (3.7), (3.8), (3.9), and Lemma 4(i), we obtain p -
(

pn
n

)
F
.
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Case 4. k =
z(p)

2 . Similar to Case 1, we have

n mod z(p) =
z(p)

2
= np mod z(p) and sp

(⌊
n(p − 1)

z(p)

⌋)
< p − 1.

If p - n, then we obtain by Lemma 4(i) that p -
(

pn
n

)
F
. So suppose that p | n and let a = m mod p.

Since m ∈ H, we see that a ≤ t =
p−1

2 . In addition, az(p) + k ≡ mz(p) + k ≡ n ≡ 0 (mod p), so we

obtain by Lemma 7 that a =
p−1

2 . Since m ∈ H(p, a), there are r ≥ 0 and m2 ∈
⋃ p−3

2
i=0 H(p, i) such that

m = m2 pr+1 + a(pr + pr−1 + · · · + 1) = m2 pr+1 +
pr+1 − 1

2
.

So we have

n = z(p)
(
m2 pr+1 +

pr+1 − 1
2

)
+

z(p)
2

= (z(p)m2 + k)pr+1.

Since m2 ∈
⋃ p−3

2
i=0 H(p, i) ⊆ H, we obtain by Theorem 12 that

sp

(⌊
(z(p)m2 + k)(p − 1)

z(p)

⌋)
= sp((p − 1)m2 + t) < p − 1.

In addition, if m2 mod p = a2, then 0 ≤ a2 ≤
p−3

2 and we obtain by Lemma 7 that

z(p)m2 + k ≡ a2z(p) + k . 0 (mod p).

Since n = (z(p)m2 + k)pr+1 and z(p)m2 + k . 0 (mod p), we obtain r + 1 = νp(n). In addition,

np mod z(p) = n mod z(p) and sp

(⌊
n(p − 1)
pνp(n)z(p)

⌋)
< p − 1.

Therefore p -
(

pn
n

)
F
, by Lemma 4(ii). This completes the proof. �

By Theorem 13, we immediately obtain the following corollary.

Corollary 14. If p > 2, p ≡ ±2 (mod 5), and n mod z(p) > z(p)
2 , then p |

(
pn
n

)
F
.

If n mod z(p) < z(p)
2 , then we may still have p |

(
pn
n

)
F

as shown in the next corollary.

Corollary 15. Let p be an odd prime, p ≡ ±2 (mod 5), p | n, and n mod z(p) , z(p)
2 . Then p |

(
pn
n

)
F
.

Proof. Suppose for a contradiction that p -
(

pn
n

)
F
. Then we obtain by Theorem 13 that n = z(p)m + k,

1 ≤ k ≤ z(p)
2 , and m ∈ H where H =

⋃t(p,k)
i=0 H(p, i). Since n mod z(p) , z(p)

2 , k < z(p)
2 . This implies that

t(p, k) ≤ p−3
2 . Let m = (arar−1 · · · a1)p be the p-adic representation of m. Since m ∈ H and t(p, k) ≤ p−3

2 ,
we see that 0 ≤ a1 ≤

p−3
2 . By Lemma 7, we obtain a1z(p) + k . 0 (mod p). Therefore

n ≡ z(p)m + k ≡ a1z(p) + k . 0 (mod p),

which contradicts the assumption that p | n. Hence the proof is complete. �
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Next, we give a characterization for the divisibility p |
(

pn
n

)
F

when p ≡ ±1 (mod 5).

Theorem 16. Let p be an odd prime such that p ≡ ±1 (mod 5) and let n be a positive integer. Then
p |

(
pn
n

)
F

if and only if n is not of the form

z(p)m + k where 1 ≤ k ≤ z(p) − 1 and m ∈
t(p,k)⋃
i=0

H(p, i). (3.10)

Proof. Let A =
n(p−1)

pνp(n)z(p)
. Similar to the proof of Theorem 13, we first assume that p -

(
pn
n

)
F

and let
k = n mod z(p). Then n = z(p)m + k for some m ≥ 0, and by Lemma 3, k , 0. So 1 ≤ k ≤ z(p) − 1. If
remains to show that m ∈

⋃t(p,k)
i=0 H(p, i). Since p ≡ ±1 (mod 5), we obtain by Lemma 1 that z(p) | p−1.

This implies t(p, k) =
k(p−1)

z(p) . By Lemma 5, we have

p − 1 > sp(A) = sp

(
pνp(n)A

)
= sp

(
n(p − 1)

z(p)

)
= sp((p − 1)m + t(p, k)).

By Lemma 12, m ∈
⋃t(p,k)

i=0 H(p, i), as required. Next, if n is of the form (3.10), then we apply Theorem
12 to obtain

sp(A) = sp

(
pνp(n)A

)
= sp((p − 1)m + t(p, k)) < p − 1,

and then use Lemma 5 to conclude that p -
(

pn
n

)
F
. This completes the proof. �

Next we apply Theorems 13 and 16 to determine an asymptotic formula for Ep(x).

Theorem 17. Let p be an odd prime, p ≡ ±2 (mod 5), and t = t
(
p,

⌊
z(p)

2

⌋)
. Then uniformly for x ≥ 2,

Ep(x) =
(log x)t

t!(log p)t + O
(
(log x)t−1

)
,

and consequently, ∑
1≤n≤x
p|(pn

n )F

1 = x −
(log x)t

t!(log p)t + O
(
(log x)t−1

)
,

where the implied constants depend at most on p.

Proof. In this proof, the implied constants in each estimate depend at most on p. By Theorem 13, we
obtain

Ep(x) =
∑

1≤n≤x
p-(pn

n )F

1 =
∑

1≤k≤ z(p)
2

∑
1≤n≤x

n=z(p)m+k
m∈

⋃t(p,k)
i=0 H(p,i)

1 =
∑

1≤k≤ z(p)
2

∑
0≤m≤ x−k

z(p)

m∈
⋃t(p,k)

i=0 H(p,i)

1. (3.11)

For each 1 ≤ k ≤ z(p)
2 , let rk be the number of digits in the p-adic expansion of

⌊
x−k
z(p)

⌋
and let r = r⌊ z(p)

2

⌋.
Then

rk =

 log
⌊

x−k
z(p)

⌋
log p

 + 1 for all 1 ≤ k ≤
z(p)

2
.
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By (3.11) and Lemma 11,

Ep(x) ≤
∑

1≤k≤ z(p)
2

∑
0≤m<prk

m∈
⋃t(p,k)

i=0 H(p,i)

1 =
∑

1≤k≤ z(p)
2

 rt(p,k)
k

t(p, k)!
+ O

(
rt(p,k)−1

k

) .
In addition,

Ep(x) ≥
∑

1≤k≤ z(p)
2

∑
0≤m<prk−1

m∈
⋃t(p,k)

i=0 H(p,i)

1 =
∑

1≤k≤ z(p)
2

(
(rk − 1)t(p,k)

t(p, k)!
+ O

(
(rk − 1)t(p,k)−1

))

=
∑

1≤k≤ z(p)
2

 rt(p,k)
k

t(p, k)!
+ O

(
rt(p,k)−1

k

) .
Therefore

Ep(x) =
∑

1≤k≤ z(p)
2

 rt(p,k)
k

t(p, k)!
+ O

(
rt(p,k)−1

k

) . (3.12)

Recall that t = t
(
p,

⌊
z(p)

2

⌋)
. Since p ≡ ±2 (mod 5), we obtain by Lemma 1 that z(p) = p + 1 or

z(p) ≤ p+1
2 . If z(p) = p + 1, then z(p) is even and for 1 ≤ k ≤ z(p)

2 − 1,

t(p, k) ≤ t
(
p,

z(p)
2
− 1

)
=

⌊
p − 1

2
−

p − 1
z(p)

⌋
=

p − 1
2
− 1 = t − 1.

If z(p) ≤ p+1
2 , then for 1 ≤ k ≤ z(p)

2 − 1,

t(p, k) ≤ t
(
p,

⌊
z(p)

2

⌋
− 1

)
=

⌊
z(p)

2

⌋
(p − 1) − s

z(p)
+

⌊
s − (p − 1)

z(p)

⌋
≤

⌊
z(p)

2

⌋
(p − 1) − s

z(p)
+

⌊
(z(p) − 1) − (p − 1)

z(p)

⌋
≤ t − 1,

where s =
⌊

z(p)
2

⌋
(p − 1) mod z(p). In any case, t(p, k) ≤ t − 1 for 1 ≤ k ≤ z(p)

2 − 1. In addition,

rk =
log

⌊
x−k
z(p)

⌋
log p

+ O(1) =
log x
log p

+ O(1) for 1 ≤ k ≤
z(p)

2
.

Therefore rt(p,k)
k � rt−1 � (log x)t−1 for any 1 ≤ k ≤ z(p)

2 − 1. Therefore∑
1≤k≤ z(p)

2 −1

 rt(p,k)
k

t(p, k)!
+ O

(
rt(p,k)−1

k

) = O
(
(log x)t−1

)
.

Thus (3.12) implies that

Ep(x) =
(log x)t

t!(log p)t + O
(
(log x)t−1

)
.

The rest is now obvious. So the proof is completes. �
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Theorem 18. Let p be an odd prime, p ≡ ±1 (mod 5), and t = t (p, z(p) − 1). Then uniformly for
x ≥ 2,

Ep(x) =
(log x)t

t!(log p)t + O
(
(log x)t−1

)
,

and consequently, ∑
1≤n≤x
p|(pn

n )F

1 = x −
(log x)t

t!(log p)t + O
(
(log x)t−1

)
,

where the implied constants depend at most on p.

Proof. The proof is similar to that of Theorem 17, so we omit some details, and the implied constants
in the following estimates depend at most on p. We obtain by Theorem 16 that

Ep(x) =
∑

1≤k≤z(p)−1

∑
1≤n≤x

n=z(p)m+k
m∈

⋃t(p,k)
i=0 H(p,i)

1 =
∑

1≤k≤z(p)−1

∑
0≤m≤ x−k

z(p)

m∈
⋃t(p,k)

i=0 H(p,i)

1. (3.13)

For each 1 ≤ k ≤ z(p) − 1, let rk be the number of digits in the p-adic expansion of
⌊

x−k
z(p)

⌋
and let

r = rz(p)−1. Then rk =
⌊
logp

⌊
x−k
z(p)

⌋⌋
+ 1 for all 1 ≤ k ≤ z(p) − 1. Similar to the proof of Theorem 17, we

apply Lemma 11 to obtain

Ep(x) =
∑

1≤k≤z(p)−1

 rt(p,k)
k

t(p, k)!
+ O

(
rt(p,k)−1

k

) . (3.14)

Recall that

t = t (p, z(p) − 1) =

⌊
(z(p) − 1)(p − 1)

z(p)

⌋
= p − 1 +

⌊
−

p − 1
z(p)

⌋
.

Since p ≡ ±1 (mod 5), we obtain by Lemma 1 that z(p) = p − 1 or z(p) ≤ p−1
2 . If z(p) = p − 1, then

for 1 ≤ k ≤ z(p) − 2, we have

t(p, k) ≤ t (p, z(p) − 2) =

⌊
(z(p) − 2)(p − 1)

z(p)

⌋
= p − 3 = t − 1.

If z(p) ≤ p−1
2 , then we obtain by Lemma 2(v) that for 1 ≤ k ≤ z(p) − 2,

t(p, k) ≤ t (p, z(p) − 2) = p − 1 +

⌊
−

2(p − 1)
z(p)

⌋
≤ p − 1 +

⌊
−

p − 1
z(p)

⌋
+

⌊
−

p − 1
z(p)

⌋
+ 1

≤ t − 1.

In any case, t(p, k) ≤ t − 1 for all 1 ≤ k ≤ z(p) − 2. In addition,

rk = logp

(⌊
x − k
z(p)

⌋)
+ O(1) = logp x + O(1) for 1 ≤ k ≤ z(p) − 1.

Therefore rt(p,k)
k � rt−1 � (log x)t−1 for any 1 ≤ k ≤ z(p) − 2. From (3.14) and this observation, we

obtain the desired results. �
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We give an example to show an application of our results. Also see [1,9,14] for the characterization
of the divisibility p |

(
pn
n

)
F

when p = 2, 3, 5, 7.

Example 19. Let n ∈ N. Then 11 -
(

11n
n

)
F

if and only if

n = 10m + k where 1 ≤ k ≤ 9 and m ∈
k⋃

i=0

H(11, i).

In addition, 13 -
(

13n
n

)
F

if and only if

n = 7m + k where 1 ≤ k ≤ 3 m ∈
2k−1⋃
i=0

H(13, i).

Furthermore,

E11(x) =
(log x)9

9!(log 11)9 + O
(
(log x)8

)
and E13(x) =

(log x)5

5!(log 13)5 + O
(
(log x)4

)
.

Proof. We have z(11) = 10, z(13) = 7, t(11, k) = k for 1 ≤ k ≤ 9, t(13, k) = 2k − 1 for 1 ≤ k ≤ 3.
Applying Theorems 13, 16, 17, and 18, we immediately obtain the desired results. �

4. Conclusions and a future project

We give characterizations for the integers n ≥ 1 such that
(

pn
n

)
F

is divisible by p for any prime
p , 2, 5 in terms of the digital representation of n. We also obtain asymptotic formulas of Ep(x) for
all primes p, extending many results in the literature which focus only on small primes p ≤ 7. For a
future project, we may be able to extend the results to

(
pn
n

)
U

for any nondegenerate fundamental Lucas
sequences U and any prime p.
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