Let {Sn} be the Apéry-like sequence given by Sn=∑nk=0(nk)(2kk)(2n−2kn−k). We show that for any odd prime p, ∑p−1n=1nSn8n≡(1−(−1)p−12)p2 ( mod p3). Let {Qn} be the Apéry-like sequence given by Qn=∑nk=0(nk)(−8)n−k∑kr=0(kr)3. We establish many congruences concerning Qn. For an odd prime p, we also deduce congruences for ∑p−1k=0(2kk)3164k ( mod p3), ∑p−1k=0(2kk)3164k(k+1)2 ( mod p2) and ∑p−1k=0(2kk)3164k(2k−1) ( mod p), and pose lots of conjectures on congruences involving binomial coefficients and Apéry-like numbers.
Citation: Zhi-Hong Sun. Supercongruences involving Apéry-like numbers and binomial coefficients[J]. AIMS Mathematics, 2022, 7(2): 2729-2781. doi: 10.3934/math.2022153
[1] | Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang . Fixed point theorems for b-generalized contractive mappings with weak continuity conditions. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728 |
[2] | Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817 |
[3] | Xun Ge, Songlin Yang . Some fixed point results on generalized metric spaces. AIMS Mathematics, 2021, 6(2): 1769-1780. doi: 10.3934/math.2021106 |
[4] | Wasfi Shatanawi, Taqi A. M. Shatnawi . Some fixed point results based on contractions of new types for extended b-metric spaces. AIMS Mathematics, 2023, 8(5): 10929-10946. doi: 10.3934/math.2023554 |
[5] | Abdolsattar Gholidahneh, Shaban Sedghi, Ozgur Ege, Zoran D. Mitrovic, Manuel de la Sen . The Meir-Keeler type contractions in extended modular b-metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1781-1799. doi: 10.3934/math.2021107 |
[6] | Saif Ur Rehman, Iqra Shamas, Shamoona Jabeen, Hassen Aydi, Manuel De La Sen . A novel approach of multi-valued contraction results on cone metric spaces with an application. AIMS Mathematics, 2023, 8(5): 12540-12558. doi: 10.3934/math.2023630 |
[7] | Budi Nurwahyu, Naimah Aris, Firman . Some results in function weighted b-metric spaces. AIMS Mathematics, 2023, 8(4): 8274-8293. doi: 10.3934/math.2023417 |
[8] | Khalil Javed, Muhammad Naeem, Fahim Ud Din, Muhammad Rashid Aziz, Thabet Abdeljawad . Existence of fixed point results in orthogonal extended b-metric spaces with application. AIMS Mathematics, 2022, 7(4): 6282-6293. doi: 10.3934/math.2022349 |
[9] | Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335 |
[10] | Muhammad Riaz, Umar Ishtiaq, Choonkil Park, Khaleel Ahmad, Fahim Uddin . Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application. AIMS Mathematics, 2022, 7(8): 14756-14784. doi: 10.3934/math.2022811 |
Let {Sn} be the Apéry-like sequence given by Sn=∑nk=0(nk)(2kk)(2n−2kn−k). We show that for any odd prime p, ∑p−1n=1nSn8n≡(1−(−1)p−12)p2 ( mod p3). Let {Qn} be the Apéry-like sequence given by Qn=∑nk=0(nk)(−8)n−k∑kr=0(kr)3. We establish many congruences concerning Qn. For an odd prime p, we also deduce congruences for ∑p−1k=0(2kk)3164k ( mod p3), ∑p−1k=0(2kk)3164k(k+1)2 ( mod p2) and ∑p−1k=0(2kk)3164k(2k−1) ( mod p), and pose lots of conjectures on congruences involving binomial coefficients and Apéry-like numbers.
The Banach Contraction Principle [7] for ordered metric spaces was given by Ran and Reuring [39]. Subsequently, Nieto and Rodriguez-Lopez [34], Ó Regan and Petrusel [40] and Agarwal et al. [1] extended this work. Popa [36] introduced an implicit relation and proved a fixed-point theorem for the self-mappings on the complete metric spaces. Altun and Simsek [2] presented a generalization of the results in [1,34,36,39] by using implicit relation in ordered metric space as follow:
Theorem 1.1. [2] Let (X,d,⪯) be a partially ordered metric space. Suppose S:X→X is a non-decreasing mapping such that for all x,y∈X with x⪯y
T(d(Sx,Sy),d(x,y),d(x,Sx),d(y,Sy),d(x,Sy),d(y,Sx))≤0, | (1.1) |
where T:[0,∞)6→(−∞,∞). Also suppose that either S is continuous or (X,d,⪯) is regular, if there exists an element x0∈X with x0⪯S(x0), then S admits a fixed point.
We can obtain several contractive conditions from (1.1), for example, defining T:[0,∞)6→(−∞,∞) by
T(x1,x2,x3,x4,x5,x6)=x1−ψ(max{x2,x3,x4,12(x5+x6)}), |
we have the main result presented in [1]. Similarly, if we choose
T(x1,x2,x3,x4,x5,x6)=x1−kx2;k∈[0,1) |
in (1.1), we have the main result presented in [39]. Thus, different definitions of T:[0,∞)6→(−∞,∞) produce different contractive conditions. Moreover, the investigation of fixed points of implicit contractions was done by Popa [37,38], Beg et al. [8,9], Berinde et al. [11,12] and Sedghi [43].
The graphical metric spaces [20], partial metric spaces [31], dualistic partial metric spaces [32], b-metric spaces, multivalued contractions [27,33], α−ψ-contractions [42], F-contractions [25], (ψ,ϕ)-contractions [35] are extensively being used in metric fixed point theory. Motivated by the above discoveries, Huang and Zhang [16] presented the idea of cone metric by replacing the set of positive real numbers with ordered Banach space, and utilized this idea to universalize Banach contraction principle. Huang and Zhang [16] worked with the concept of normal cone, however, Rezapour et al. [41] neglected normality of the cone and improved the various theorems presented by Huang. The idea of cone b-metric space [17] was directly influenced by b-metric space [14]. Huang and Xu [18] applied the cone b-metric axioms to prove some fixed point theorems. For detail readings about cone metric, b-metric and cone b-metric, we suggest [3,13,14,21-23,26,29].
We observe that the implicit relation defined in Popa [37,38], can be generalized to vector spaces. So, in this research paper, motivated by Beg et al. [8,9], Berinde et al. [11,12] and Sedghi [43], we define an ordered implicit relation in a cone b-metric space and contribute a fixed point problem. We answer the proposed problem subject to monotone mappings satisfying an implicit contraction. We solve an homotopy problem and show existence of solution to a Urysohn Integral Equation as applications of the obtained fixed point theorem. The obtained fixed point theorems are independent of the observations presented by Ercan [15]. These observations apply on linear contractions and in this paper, we considered nonlinear contractions (implicit relation involving the contraction mappings). So, the obtained results are real generalizations and could not be followed from known ones in literature.
In this section, we recall cone, cone metric space and some related properties. Let E represent the real Banach space.
Definition 2.1. [19] The set ℵ⊆E is called a cone if and only if the following axioms hold:
(1) ℵ is closed, non empty and ℵ≠{0E};
(2) αv+βw∈ℵ, for all v,w∈ℵ and α,β∈R such that α,β≥0;
(3) ℵ∩(−ℵ)={0E}.
The partial order ⪯ with respect to ℵ is defined as follows:
v⪯w⇔w−v∈ℵforallv,w∈E. |
v≺w serves as v⪯w but v≠w, and v≪w represents that w−v∈ℵ∘(interior of ℵ).
Definition 2.2. [19] The cone ℵ⊆E is normal if for all v,w∈ℵ, there exists S>0 such that,
0E⪯v⪯wimplies‖v‖≤S‖w‖. |
Let ℜ be a partial order in any ordinary set X and ⪯ be a partial order in cone ℵ⊆E. If X⊆E then ℜ and ⪯ would be considered as identical.
Definition 2.3. [19] Let X≠ϕ be a set, and the mapping dc:X×X↦E satisfies the following axioms:
(dc1) dc(x,y)⪰0E, for all x,y∈X and dc(x,y)=0E if and only if x=y;
(dc2) dc(x,y)=dc(y,x);
(dc3) dc(x,ξ)⪯dc(x,y)+dc(y,ξ), for all x,y,ξ∈X.
Then dc is known as a cone metric on X, and (X,dc) is called a cone metric space.
Example 2.4. [6] Let X=R, E=R2, and ℵ={(x,y)∈E:x,y≥0}⊂R2. Define the mapping dc:X×X→E by
dc(x,y)=(∣x−y∣,α∣x−y∣), |
where α≥0 is to be taken as a constant. Then dc defines a cone metric on X.
Proposition 2.5. [6] Suppose that (X,dc) is a cone metric space, with cone ℵ. Then for w,ζ,ξ∈E, we have
(1) If w⪯βw and β∈[0,1), then w=0E.
(2) If 0E⪯w≪ζ for each 0E≪ζ, then w=0E.
(3) If w⪯ζ and ζ≪ξ, then w≪ξ.
Definition 2.6. [19] Let X be a non-empty set and x,y,υ∈X. The mapping c:X×X↦E satisfying the following axioms:
(cb1) 0E⪯c(x,y) and c(x,y)=0E if and only if x=y;
(cb2) c(x,y)=c(y,x);
(cb3) c(x,υ)⪯s[c(x,ξ)+c(ξ,υ)] for s≥1,
is known as a b-cone metric on X, and (X,c) is called a cone b-metric space.
Example 2.7. [6] Let E=R2, ℵ={(x,y)∈E:x,y≥0}⊂R2, X={1,2,3,4}. Define the mapping c:X×X→E by
c(x,y)={(|x−y|−1,|x−y|−1)ifx≠y0Eifx=y, |
and the partial order on E by
v⪯wifandonlyifv−w∈ℵforallv,w∈E. |
Then (X,c) is a cone b-metric space for s=65. We note that c(1,2)≻c(1,4)+c(4,2), this shows that c is not a cone metric.
Remark 2.8. Every cone metric space is a cone b-metric space, but converse is not true in general as seen in Example 2.7.
Definition 2.9. [10] Let E be a real Banach space and (X,c) be a cone b-metric space. Then for every ϵ∈E with 0E≪ϵ, we have the following information.
(1) A sequence {xn} is said to be a Cauchy sequence, if there exists a natural number K∈N so that c(xn,xm)≪ϵ for all n,m≥K.
(2) A sequence {xn} is said to be a convergent sequence (converging to x∈X), if there exists K∈N so that c(xn,x)≪ϵ for all n≥K.
(3) A cone b-metric space (X,c) is complete if each Cauchy sequence converges in X.
Let (E,‖.‖) be a real Banach space and B(E,E) be a space of all bounded linear operators S:E→E such that ‖S‖1<1 and ‖.‖1 is taken as usual norm in B(E,E).
Following the implicit relations presented in [4,5,8,9,11,12], we define a new ordered implicit relation as follows:
Definition 3.1. Let (E,‖.‖) be a real Banach space. The relation L:E6→E is said to be an ordered implicit relation, if it is continuous on E6 and satisfies the following axioms:
(L1) v1⪯υ1, v5⪯υ5 and v6⪯υ6
implies L(υ1,v2,v3,v4,υ5,υ6)⪯L(v1,v2,v3,v4,v5,v6);
(L2) if L(v1,v2,v2,v1,α[v1+v2],0E)⪯0E
or,
if L(v1,v2,v1,v2,0E,α[v1+v2])⪯0E, then there exists S∈B(E,E) such that v1⪯S(v2) (for all v1,v2∈E) and α≥1;
(L3) L(αv,0E,0E,v,αv,0E)≻0E whenever ‖v‖>0 and α≥1.
Let G={L:E6→E|LsatisfiesconditionsL1,L2,L3}.
Example 3.2. Let ⪯ be a partial order with respect to cone ℵ as defined in Section 2 and (E,‖.‖), be a real Banach space. For vi∈E(i=1to6), α>2 and γ>1, we define the relation L:E6→E by
L(v1,v2,v3,v4,v5,v6)=αv1−{v5+γv6}. |
Then L∈G. Indeed
(L1): Let v1⪯γ2, v5⪯γ5 and v6⪯γ6, then γ5−v5∈ℵ and γ6−v6∈ℵ, we show that L(v1,v2,v3,v4,v5,v6)−L(γ1,v2,v3,v4,γ5,γ6)∈ℵ. Consider,
L(v1,v2,v3,v4,v5,v6)−L(γ1,v2,v3,v4,γ5,γ6)=αγ1−{v5+γv6}−αγ1+{γ5+γγ6}=γ5−v5+γ(γ6−v6)∈ℵ. |
Thus, L(γ1,v2,v3,v4,γ5,γ6)⪯L(v1,v2,v3,v4,v5,v6).
(L2): Let v1,v2,v3∈E be such that 0E⪯v1,0E⪯v2. If L(v1,v2,v2,v1,s[v1+v2],0E)⪯0E then, we have −αv1+s{v1+v2}∈ℵ.
So,sv2−(α−s)v1∈ℵ.implies | (3.1) |
v2−(α−s)sv1∈ℵ. | (3.2) |
If v1=0E, then v2∈ℵ (by (3.1)). Thus, there exists T:E→E defined by T(v2)=ηv2 (where η=s) such that ∥T∥=s>1 (not possible). Now if v1≠0E, then, (3.2) implies v2⪯s(α−s)v1. So for α2>s≥1, there exists T:E→E defined by T(v2)=ηv2 (η=s(α−s) is a scalar) such that v1⪯T(v2), for α>2.
(L3): Let v∈E be such that ‖v‖>0 and consider, 0E⪯L(sv,0E,0E,v,sv,0E) then (αs−1)v∈ℵ, which hold whenever ‖v‖>0.
Example 3.3. Let L1,L2,L3:E6→E be defined by
(i) L1(v1,v2,v3,v4,v5,v6)=αv1−v2;α<1.
(ii) L2(v1,v2,v3,v4,v5,v6)=v3−α{v3+v4}−(1−α)βv5;α<12,β∈R.
(iii) L3(v1,v2,v3,v4,v5,v6)=v1+v5−α{v2+v4};α>12.
Then Li defines an ordered implicit relation for each i=1,2,3.
In the next section, we employ this implicit relation in association with a few other conditions to construct an iterative sequence and hence to answer the following fixed-point problem:
"find p∈(X,c) such that f(p)=p" where T∈B(E,E), I:E→E an identity operator, L∈G and f:X→X satisfies (3.3), for all comparable x,y∈Xands≥1.
(I−T)(c(x,f(x)))⪯sc(x,y)implies |
L(c(f(x),f(y)),c(x,y),c(x,f(x)),c(y,f(y)),c(x,f(y)),c(y,f(x)))⪯0E. | (3.3) |
The following assertion is essential in the sequel.
Remark 3.4. If S∈B(E,E), then Neumann series I+S+S2+⋯+Sn+⋯ converges whenever ‖S‖1<1 and diverge if ‖S‖1>1. Also for ‖S‖1<1 there exists μ>0 so that ‖S‖1<μ<1 and ‖Sn‖1≤μn<1.
Popa[36] applied implicit type contractive conditions on a self-mapping to establish some fixed point results. Altun and Simsek [2] extended the research work in [36] to partially ordered metric spaces. Nazam et al. [30] have further generalized the results given in [2] by using the concept of the cone metric space [19]. In this section, we shall address the proposed fixed-point problem that generalizes the results in [2,30,36]. For that purpose, we have the following theorem.
Theorem 4.1. Let (X,c) be a complete cone b-metric space with ℵ⊂E as a cone and f:X→X. If T∈B(E,E), I:E→E is an identity operator and L∈G such that, for all comparable elements x,y∈X and s≥1, we have
(I−T)(c(x,f(x)))⪯sc(x,y)implies |
L(c(f(x),f(y)),c(x,y),c(x,f(x)),c(y,f(y)),c(x,f(y)),c(y,f(x)))⪯0E. | (4.1) |
If,
(1) There exists x0∈X, so that x0ℜf(x0);
(2) For all x,y∈X, xℜy implies f(x)ℜf(y);
(3) The sequence {xn} satisfies xn−1ℜxn and xn→p, then xnℜp for all n∈N.
Then, there exists a point p∈X such that p=f(p).
Proof. Suppose that x0∈X be an arbitrary point such that x0ℜf(x0). We construct a sequence {xn} by f(xn−1)=xn taking x0 as an initial guess. Since, x0ℜx1, by assumption (2) we have x1ℜx2, x2ℜx3 ⋯ xn−1ℜxn. Since, x0ℜx1, by (4.1) we have
(I−T)(c(x0,f(x0)))=(I−T)(c(x0,x1))⪯sc(x0,x1)implies |
L(c(f(x0),f(x1)),c(x0,x1),c(x0,f(x0)),c(x1,f(x1)),c(x0,f(x1)),0E)⪯0E, |
that is,
L(c(x1,x2),c(x0,x1),c(x0,x1),c(x1,x2),c(x0,x2),0E)⪯0E. | (4.2) |
By triangle property of the cone b-metric, we have
c(x0,x2)⪯s[c(x0,x1)+c(x1,x2)]. |
Rewriting (4.2) and using condition (L1), we get:
L(c(x1,x2),c(x0,x1),c(x0,x1),c(x1,x2),s[c(x0,x1)+c(x1,x2)],0E)⪯0E. |
By using (L2), there exists K∈B(E,E) with ‖K‖1<1 such that
c(x1,x2)⪯K(c(x0,x1)). |
Again since, x1ℜx2, by (4.1) we obtain
(I−T)(c(x1,f(x1)))=(I−T)(c(x1,x2))⪯sc(x1,x2)implies |
L(c(f(x1),f(x2)),c(x1,x2),c(x1,f(x1)),c(x2,f(x2)),c(x1,f(x2)),c(x2,f(x1)))⪯0E, |
that is,
L(c(x2,x3),c(x1,x2),c(x1,x2),c(x2,x3),c(x1,x3),0E)⪯0E. |
By (cb3), we have
c(x1,x3)⪯s[c(x1,x2)+c(x2,x3)] |
using (L1) we get
L(c(x2,x3),c(x1,x2),c(x1,x2),c(x2,x3),s[c(x1,x2)+c(x2,x3)],0E)⪯0E. |
By (L2) there exists K∈B(E,E) with ‖K‖1<1 such that
c(x2,x3)⪯K(c(x1,x2))⪯K2(c(x0,x1)). |
Now keeping in view the above pattern and with the relation xnℜxn+1 n≥1, we can construct a sequence {xn} so that xn+1=f(xn) and
(I−T)(c(xn−1,f(xn−1)))=(I−T)(c(xn−1,xn))⪯sc(xn−1,xn) |
implies
c(xn,xn+1)⪯K(c(xn−1,xn))⪯K2(c(xn−2,xn−1))⪯⋯⪯Kn(c(x0,x1)). |
For ℏ,n∈N and s≥1, consider
c(xn+ℏ,xn)⪯s[c(xn+ℏ,xn+ℏ−1)+c(xn+ℏ−1,xn)]⪯sc(xn+ℏ,xn+ℏ−1+s2[c(xn+ℏ−1,xn+ℏ−2)+c(xn+ℏ−2,xn)]⪯sc(xn+ℏ,xn+ℏ−1)+s2c(xn+ℏ−1,xn+ℏ−2)+......+s(ℏ−1)c(xn+1,xn)⪯sKn+ℏ−1(c(x0,x1))+s2Kn+ℏ−2(c(x0,x1))+......+s(ℏ−1)Kn(c(x0,x1))=sKn+ℏ((sK−1)ℏ−1−1)s−K(c(x0,x1))+s(ℏ−1)Kn(c(x0,x1))⪯sℏKn+1s−K(c(x0,x1))+s(ℏ−1)Kn(c(x0,x1)). |
Since ‖K‖1<1, so, Kn→0E as n→∞ (Remark 3.4). Hence, limn→∞c(xn,xm)=0E, this shows that {xn} is a Cauchy sequence in X. Since, (X,c) is a complete cone b-metric space, so there exists p∈X so that xn→p for large n, alternately, for a given 0≪ϵ, there is a natural number N2 so that
c(xn,p)≪ϵforalln≥N2. |
Now since xn−1ℜxn and xn→p, by the assumption (3), we have xnℜp for all n∈N. We claim that,
(I−T)(c(xn,f(xn)))⪯sc(xn,p). |
Suppose on the contrary that
(I−T)(c(xn,f(xn)))≻sc(xn,p)and |
(I−T)(c(xn+1,f(xn+1)))≻sc(xn+1,p)forn∈N. |
By (cb3) and (4.1), we get
c(xn,f(xn))⪯s[c(xn,p)+c(p,xn+1)]≺s[1s(I−T)(c(xn,f(xn)))+1s(I−T)c(xn+1,f(xn+1)))]≺[(I−T)(c(xn,f(xn)))+(I−T)T(c(xn,f(xn)))]≺(I−T)(I+T)(c(xn,f(xn)))≺(I−T2)(c(xn,f(xn))). |
Thus,
T2(c(xn,f(xn)))≺0E, |
which leads to a contradiction. So, for each n≥1 and s≥1, we get
(I−T)(c(xn,f(xn)))⪯sc(xn,p), |
thus, by (4.1), we have
L(c(f(xn),f(p)),c(xn,p),c(xn,f(xn)),c(p,f(p)),c(xn,f(p)),c(p,f(xn)))⪯0E. | (4.3) |
We need to show that ‖c(p,f(p))‖=0. If ‖c(p,f(p))‖>0, then we have the following information.
c(f(xn),f(p))⪯s[c(f(xn),p)+c(p,f(p))]limn→∞c(f(xn),f(p))⪯slimn→∞[c(xn+1,p)+c(p,f(p))]=sc(p,f(p)),and |
c(xn,f(p))⪯s[c(xn,p)+c(p,f(p))]limn→∞c(xn,f(p))⪯slimn→∞[c(xn,p)+c(p,f(p))]limn→∞c(xn,f(p))⪯sc(p,f(p)). |
In view of the condition (L1) and (4.3), we have
L(s(c(p,f(p))),0E,0E,c(p,f(p)),s(c(p,f(p))),0E)⪯0E. |
This contradicts the condition (L3). Thus, ‖c(p,f(p))‖=0. So, c(p,f(p))=0E, and hence p=f(p).
Remark 4.2. If the operator L:E6→E is defined by
L(x1,x2,x3,x4,x5,x6)=x1−ψ(max{x2,x3,x4,12(x5+x6)}),forallxi∈E |
where, ψ:E→E is a non-decreasing operator satisfying limn→∞ψn(v)=0E. Then Theorem (4.1), generalizes the corresponding result in [1]. If we define L:E6→E by
L(x1,x2,x3,x4,x5,x6)=x1−kx2;k∈[0,1) |
in Theorem (4.1), we obtain a generalization of the corresponding result in [39]. Thus, different definitions of L:E6→E produce different ordered contractive conditions. Moreover, Theorem (4.1) generalizes the results in Popa [37,38], Beg et al. [8,9], Berinde et al. [11,12].
The following theorem is for decreasing self-mappings.
Theorem 4.3. Let (X,c) be a complete cone b-metric space with ℵ⊂E as a cone and f:X→X. Let T∈B(E,E), I:E→E be an identity operator, L∈G so that, for all comparable elements x,y∈X and s≥1
(I−T)(c(x,f(x)))⪯sc(x,y)implies |
L(c(f(x),f(y)),c(x,y),c(x,f(x)),c(y,f(y)),c(x,f(y)),c(k,f(x)))⪯0E. | (4.4) |
If,
(1) There exists x0∈X, so that f(x0)ℜx0;
(2) For all x,y∈X, xℜy implies f(y)ℜf(x);
(3) The sequence {xn} satisfies xn−1ℜxn and xn→x∗, then xnℜx∗ for all n∈N.
Then, there exists a point x∗∈X such that x∗=f(x∗).
Proof. Let x0∈X be arbitrary satisfying assumption (1). We define a sequence {xn} by xn=f(xn−1) for all n. As x1=f(x0)ℜx0 and by condition (2) x1=f(x0)ℜf(x1)=x2 and repeated implementation of hypothesis (2) leads to have xnℜxn−1. Since, x=x1ℜx0, by (4.4), we get
(I−T)(c(f(x0),x0)=(I−T)(c(x1,x0))⪯sc(x1,x0)implies |
L(c(f(x1),f(x0)),c(x1,x0),c(x1,f(x1)),c(x0,f(x0)),c(x1,f(x0)),c(x0,f(x1)))⪯0E |
⇒L(c(x1,x2),c(x0,x1),c(x1,x2),c(x0,x1),0,c(x0,x2))⪯0E. |
By (cb3), we have
c(x0,x2)⪯s[c(x0,x1)+c(x1,x2)] |
and then using L1, we obtain
L(c(x1,x2),c(x0,x1),c(x1,x2),c(x0,x1),0E,s[c(x0,x1)+c(x1,x2)]⪯0E. |
By (L2), there exists K∈B(E,E) with ‖K‖1<1 such that
c(x1,x2)⪯K(c(x0,x1)). |
Again since, x=x1ℜx2, by (4.4)
(I−T)(c(x1,f(x1))=(I−T)(c(x1,x2))⪯sc(x1,x2)implies |
L(c(f(x1),f(x2)),c(x1,x2),c(x1,f(x1)),c(x2,f(x2)),c(x1,f(x2)),c(x2,f(x1)))⪯0E |
⇒L(c(x2,x3),c(x1,x2),c(x1,x2),c(x2,x3),c(x1,x3),0E)⪯0E. |
By (cb3), (L1) and (L2), we get
c(x2,x3)⪯T(c(x1,x2))⪯T2(c(x0,x1)). |
By following same steps, we can construct a sequence {xn} such that
c(xn,xn+1)⪯K(c(xn−1,xn))⪯K2(c(xn−2,xn−1))⪯⋯⪯Kn(c(x0,x1)). |
Hence copying the arguments for the proof of Theorem 4.1, we get x∗=f(x∗).
The following theorem encapsulate the statements of Theorem 4.1 and Theorem 4.3.
Theorem 4.4. Let (X,c) be a complete cone b-metric space with ℵ⊂E as a cone and f:X→X be monotone mapping. Let T∈B(E,E), I:E→E be an identity operator. If there exists L∈G so that, for all comparable x,y∈X and s≥1
(I−T)(c(x,f(x)))⪯sc(x,y)implies |
L(c(f(x),f(y)),c(x,y),c(x,f(x)),c(y,f(y)),c(x,f(y)),c(k,f(x)))⪯0E, | (4.5) |
and,
(1) There exists x0∈X, so that x0ℜf(x0) or f(x0)ℜx0,
(2) The sequence {xn} satisfies xn−1ℜxn and xn→a∗, then xnℜa∗ for all n∈N.
Then, there exists a point a∗∈X such that a∗=f(a∗).
Proof. Proof is obvious.
Remark 4.5. We can get a unique fixed point in Theorem 4.1, Theorem 4.3 and Theorem 4.4 by taking an additional condition, "for each pair x,y∈X, we have either an upper bound or lower bound." (2). The cone is assumed as non-normal.
We illustrate above theorems with the help of the following examples.
Example 5.1. Let E=C1R[0,1], and ‖ζ‖=‖ζ‖∞+‖ζˊ. For each K \geq 1 , take \zeta = x and y = x^{2K} . By definition \|\zeta\| = 1 and \|y\| = 2k+1 . Clearly \zeta \preceq y , and K\|\zeta\|\ \leq\|y\| . Hence \aleph is a non-normal cone. Define the operator T:\mathcal{E}\rightarrow \mathcal{E} by
(T\zeta)(t) = \frac{1}{2}\int_{0}^{t} \zeta(s) ds. \;{\rm{ Thus, \;T \; is\; linear\; and\;bounded \;as \;shown\; below.}} |
(T(a\zeta+by))(t) = \frac{1}{2}\int_{0}^{t} (a\zeta+by)(s)ds = \frac{a}{2}\int_{0}^{t} \zeta(s) ds+\frac{b}{2}\int_{0}^{t} y(s) ds, {\rm{ and}} |
\left\|T^{n}\zeta\right\|\leq \frac{\|\zeta\|^{n+1}}{2{(n+1)}!} \;{\rm{ for }}\; {\rm{ each }}\; n\geq 1. |
So
\|(T^{n}\zeta)\|_{\infty}\leq \frac{1}{2(n+1)!} . |
\|(T^{n}\zeta)'\|_{\infty}\leq \frac{\|\zeta\|^{n}}{2{(n)!}}\leq \frac{1}{2{(n)!}} \;{\rm{ for }}\; n\geq 1 . |
\|(T^{n}\zeta)\| = \|(T^{n}\zeta)\|_{\infty}+\|(T^{n}\zeta)'\|_{\infty}\leq \frac{1}{2{(n+1)}!}+\frac{1}{2{(n)!}} \;{\rm{ for }}\; n\geq 1 |
\|(T^{n}\zeta)\| = 0 \;{\rm{ when }}\; n\geq n_{1} \;{\rm{ for }}\; n_{1} \in N. |
Hence T\in B(\mathcal{E}, \mathcal{E}) . Let X = \{1, 2, 3\} and f: X \rightarrow X defined by f(1) = f(2) = 1 and f(3) = 2 , then f is increasing with respect to usual order. Define the mapping c by
c(x_{1},x_{2}) = \left\{\begin{array}{ll} {\bf 0} &{\rm{ if }}x_{1} = x_{2}\\ \frac{\zeta}{3} &{\rm{ if }} x_{1},x_{2} \in \{1,2\}; \zeta\in \mathcal{E} \\ \frac{\zeta}{8} &{\rm{ otherwise}}.\end{array}\right. |
\frac{\zeta}{3} = c(1,2)\succ c(1,3)+c(3,2) = \frac{\zeta}{8}+\frac{\zeta}{8}, |
since triangular inequality does not hold, so c is not a cone metric space, but one can check that c is a cone b -metric space for s = \frac{4}{3} . Now, for x = 1 and y = 2 (x\leq y) , we have
c(x,y) = \frac{\zeta}{3} = c(y,f(x)) = c(y,f(y)) |
c(x,f(x)) = {\bf 0_{\mathcal{E}}} = c(f(x),f(y)) = c(x,f(y)). |
For x = 2 and y = 3
c(x,y) = \frac{\zeta}{8}, \,\,\, c(x,f(x)) = \frac{\zeta}{3} = c(f(x),f(y)) |
c(x,f(y)) = {\bf 0_{\mathcal{E}}}, \,\,\, c(y,f(x) = \frac{\zeta}{8} = c(y,f(y)). |
For \alpha > 2 and \gamma > \frac{16}{3} , define
\begin{eqnarray*} \mathcal{L}\left(\begin{array}{ll}c(f(x),f(y)),c(x,y),c(x,f(x)),c(y,f(y)),&\\ c(x,f(y)),c(y,f(x))\end{array}\right) = \alpha c(f(x),f(y))-[ c(x,f(y))+\gamma c(y,f(x)]. \end{eqnarray*} |
Clearly
(I-T)c(x,f(x))\preceq sc(x,y) \;{\rm{ implies}} |
\alpha c(f(x),f(y)) \preceq c(x,f(y))+\gamma c(y,f(x). |
Thus, by Theorem 4.1, f has a fixed point which is given by f(1) = 1 .
Remark 5.2. Since, c is not a cone metric, this shows that Theorem 4.1 does not hold in a cone metric space. The Example 5.1 also endorses the choice of cone b -metric space for this paper.
In the following, we have some consequences of the main results given above.
Corollary 5.3. Let (X, c) be a complete cone b -metric space with \aleph\subset\mathcal{E} as a cone and f:X\rightarrow X . If T\in B(\mathcal{E}, \mathcal{E}) , I:\mathcal{E}\rightarrow \mathcal{E} an identity operator and there exist \mathcal{L}\in \mathcal{G} so that, for all comparable elements x, y \in X and s\geq 1
(I-T)(c(x,f(x)))\preceq sc(x,y) \;implies |
\begin{equation} c(f(x),f(y))\preceq T(c(x,y)), \end{equation} | (5.1) |
and,
(1) x\in X so that x_{0}\Re f(x_{0}) or f(x_{0})\Re x_{0} ;
(2) For all x, y\in X , x\Re y implies f(x)\Re f(y) or f(y)\Re f(x) ;
(3) The sequence \{x_n\} satisfies x_{n-1}\Re x_{n} and x_{n}\rightarrow b^* , then x_{n}\Re b^* for all n\in \mathbb{N} .
Then, there exists a point b^* \in X such that b^* = f(b^*) .
Proof. Define \mathcal{L} as in Example 3.3 (i), and the operator T:\mathcal{E}\rightarrow \mathcal{E} by T(v) = \alpha v for all v\in \mathcal{E} and 0\leq \alpha < 1 , then T\in B(\mathcal{E}, \mathcal{E} and application of Theorem 4.4 provide the proof.
Corollary 5.4. Let (X, c) be a complete cone b -metric space with \aleph\subset \mathcal{E} as a cone and f:X\rightarrow X . If T\in B(\mathcal{E}, \mathcal{E}) , I:\mathcal{E}\rightarrow \mathcal{E} an identity operator and there exist \mathcal{L}\in \mathcal{G} so that, for any comparable x, y \in X and s\geq 1
(I-T)(c(x,f(x)))\preceq sc(x,y) \;implies |
\begin{equation} c(f(x),f(y))\preceq \frac{1}{s}T(c(x,y)), \end{equation} | (5.2) |
and,
(1) x\in X so that x_{0}\Re f(x_{0}) or f(x_{0})\Re x_{0} ;
(2) For all x, y\in X , x\Re y implies f(x)\Re f(y) or f(y)\Re f(x) ;
(3) The sequence \{x_n\} satisfies x_{n-1}\Re x_{n} and x_{n}\rightarrow r^* , then x_{n}\Re r^* for all n\in \mathbb{N} .
Then, there exists a point r^* \in X such that r^* = f(r^*) .
Proof. Define the operator T:\mathcal{E}\rightarrow \mathcal{E} by T(v) = v for all v\in \mathcal{E} and following the proof of Corollary 5.3, we receive the result.
The following examples illustrates Corollary 5.3 and Corollary 5.4.
Example 5.5. Let \mathcal{E} = (\mathbb{R}, \| \cdot\|) be a real Banach space. Define \aleph = \{x \in \mathbb{R}: x\geq 0\} , then, it is a cone in \mathcal{E} . Let X = \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}\} , define f:X\rightarrow X so that, f(\frac{2}{3}) = f(\frac{3}{4}) = \frac{4}{5} and f(\frac{1}{2}) = f(\frac{4}{5}) = \frac{1}{2} , then f is deceasing with respect to usual order. Let T\in B(\mathcal{E}, \mathcal{E}) be defined by T(x) = \frac{x}{2} . Define the mapping c by
c(x_{1},x_{2}) = \left\{\begin{array}{ll} 0.3 &{\rm{ if }}\;(x_{1},x_{2}) = \left(\frac{1}{2},\frac{2}{3}\right)\\ 0.1 &{\rm{ if }}\; (x_{1},x_{2}) = \left(\frac{1}{2},\frac{4}{5}\right)\\ 0.01 &{\rm{ if }} \;(x_{1},x_{2}) = \left(\frac{1}{2},\frac{3}{4}\right)\\ 0.8 &{\rm{ if }}\; (x_{1},x_{2}) = \left(\frac{3}{4},\frac{4}{5}\right), (x_{1},x_{2}) = \left(\frac{2}{3},\frac{3}{4}\right) \;{\rm{ or }}\; (x_{1},x_{2}) = \left(\frac{2}{3},\frac{4}{5}\right)\\ \mid x_{1}-x_{2} \mid &{\rm{ otherwise}}.\end{array}\right. |
Observe that:
0.8 = c\left(\frac{2}{3},\frac{3}{4}\right)\geq c\left(\frac{2}{3},\frac{1}{2}\right)+c\left(\frac{1}{2},\frac{3}{4}\right) = 0.3+0.01 = 0.31 |
0.8 = c\left(\frac{3}{4},\frac{4}{5}\right)\geq c\left(\frac{3}{4},\frac{1}{2}\right)+c\left(\frac{1}{2},\frac{4}{5}\right) = 0.01+0.1 = 0.11. |
So (cb3) holds for s = 10 , and c is a cone b -metric, but not a cone metric, as (dc3) does not hold. Consider x = \frac{1}{2} and y = \frac{2}{3} . Then
c\left(f(x),f(y)\right) = c\left(x,f(y)\right) = 0.1, \,\,\, c(x,f(x)) = 0 |
c(x,y) = c\left(y,f(x)\right) = 0.3, \,\,\, c(y,f(y)) = 0.8 |
(I-T)c(x,f(x)) = 0. |
Now take x = \frac{2}{3} and y = \frac{3}{4} . Then
c(f(x),f(y)) = 0, \,\,\, c(x,y) = c(x,f(x)) = 0.8 |
(I-T)c(x,f(x)) = 0.4, \,\,\, sc(x,f(x)) = 10(0.8) = 8. |
For x = \frac{3}{4} and y = \frac{4}{5} . Then
c(f(x),f(y)) = 0.1, \,\,\, c(x,y) = c(x,f(x)) = 0.8 |
(I-T)c(x,f(x)) = 0.4, \,\,\, sc(x,f(x)) = 10(0.8) = 8. |
Thus, for all x, y\in X such that x\leq y , we have
(I-T)(c(x,f(x)))\preceq sc(x,y) \;{\rm{ implies }} \;c(f(x),f(y))\preceq T(c(x,y)). |
Hence, Corollary 5.3 holds for all comparable x, y \in X . Notice that \frac{1}{2} is a fixed point of f .
Remark 5.6. Since, c is not a cone metric, this shows that Corollary 5.3 does not hold in a cone metric space. The Example 5.5 also endorses the choice of cone b -metric space for this paper.
Example 5.7. Consider \mathcal{E} = (\mathbb{R}, \| \cdot\|) be a real Banach space. Define \aleph = \{x \in \mathbb{R}: x\geq 0\} , then, it is a cone in \mathcal{E} . Take X = \{0, 1, 2\} , and f:X\rightarrow X , f(0) = f(2) = 0 , f(1) = 2 . Define the mapping c by
c(x_{1},x_{2}) = \left\{\begin{array}{ll} 0 &{\rm{ if }}\;x_{1} = x_{2}\\ 3 &{\rm{ if }}\; x_{1},x_{2} \in \{1,2\}\\ 10 &{\rm{ if }} \;x_{1},x_{2} \in \{0,1\}\\ 0.5 &{\rm{ otherwise }}.\end{array}\right. |
Notice that:
10 = c\left(0,1\right)\geq c\left(0,2\right)+c\left(2,1\right) = 0.5+3 = 3.5. |
For s = 3 , c is a cone b -metric space, but not cone metric space, as (dc3) does not hold. Define T(x) = \frac{x}{2} Consider x = 0 , y = 1 . Then
c(x,y) = 10, \,\,\,c(f(x),f(y)) = 0.5, \,\,\, c(x,f(x)) = 0 |
Tc(x,y) = \frac{10}{2} = 5, \,\,\,\frac{T}{s}c(x,y) = \frac{5}{3} = 1.6667. |
Take x = 1 , y = 2 . Then
c(x,y) = 3, \,\,\,c(f(x),f(y)) = 0.5, \,\,\, c(x,f(x)) = 3 |
Tc(x,y) = \frac{3}{2} = 1.5, \,\,\,\frac{T}{s}c(x,y) = \frac{1.5}{3} = 0.5 |
\begin{eqnarray*} (I-T)c(x,f(x))& = &0.25. \end{eqnarray*} |
Clearly for all x, y \in X ,
(I-T)c(x,f(x)) \preceq sc(x,y) |
implies
c(f(x),f(y)) \preceq \frac{1}{s}T(c(x,y)). |
So for all values of x, y \in X , the Corollary 5.4 holds. Here 0 is a fixed point of f .
This section consists of a homotopy theorem as an application of Corollary 5.4.
Theorem 6.1. Let (\mathcal{E}, \left\|.\right\|) be a real Banach space with \aleph \subset \mathcal{E} taken as a cone and (X, c) be a complete cone b -metric space with open set U\subset X . Suppose that T\in B(\mathcal{E}, \mathcal{E}) such that \left\|T\right\|_{1} < 1 with T(\aleph)\subset \aleph . If the mapping h:\overline{U}\times [0, 1]\rightarrow X admits conditions of Corollary 5.4 in the first variable and
(1) x \neq h(x, \theta) for each x\in \partial U ( \partial U represents the boundary of U in X );
(2) There exists M\geq 0 so that
\left\|c(h(x,\mu_{1}),h(x,\mu_{2}))\right\|\leq M|\mu_{1}-\mu_{2}| |
for some x\in \overline{U} and \mu_{1}, \mu_{2} \in [0, 1] ;
(3) For any x\in U there is y \in X such that \left\|c(x, y)\right\|\leq r , then x\Re y , here r represents radius of U .
Then, whenever h(\cdot, 0) possesses a fixed point in U , h(\cdot, 1) also possesses a fixed point in U .
Proof. Let
\mathcal{B} = \{t \in [0,1]\,| \,\,x = h(x,t) ;\; {\rm{ for}}\; x\in U \}. |
Define the partial order \preceq in \mathcal{E} by u\preceq v \Leftrightarrow \left\|u\right\|\leq \left\|v\right\| for all u, v\in \mathcal{E} . Clearly 0\in \mathcal{B} , since h(., 0) possesses a fixed point in U . So \mathcal{B} \neq \phi , In consideration of c(x, h(x, \theta)) = c(x, y) , (I-T)(c(x, h(x, \theta)))\preceq sc(x, y) for all x\Re y and s \geq 1 , by Corollary 5.4, we get
c(h(x,\theta),h(y,\theta))\preceq \frac{1}{s}T( c(x,y)). |
Firstly, we prove that \mathcal{B} is closed in [0, 1] . For this, let \{\theta_{n}\}^{\infty}_{n = 1}\subseteq \mathcal{B} with \theta_{n}\rightarrow \theta\in [0, 1] as n\rightarrow \infty . It is necessary to prove that \theta\in \mathcal{B} . Since, \theta_{n}\in \mathcal{B} for n\in \mathbb{N} , there exists x_{n}\in U with x_{n} = h(x_{n}, \theta_{n}) . Since, h(\cdot, \theta) is monotone, so, for n, m\in \mathbb{N} , we have x_{m}\Re x_{n} . Since for s \geq 1
(I-T)(c(x_{n},h(x_{m},\theta_m))) = (I-T)(c(x_{n},x_{m}))\preceq sc(x_{n},x_{m}), |
we have
c(h(x_{n},\theta_{m}),h(x_{m},\theta_{m}))\preceq \frac{1}{s}T(c(x_{n}x_{m})), |
and
\begin{eqnarray*} c(x_{n},x_{m})& = &c(h(x_{n},\theta_{n}),h(x_{m},\theta_{m}))\\ &\preceq& s[c(h(x_{n},\theta_{n}),h(x_{n},\theta_{m}))+c(h(x_{n},\theta_{m}),h(x_{m},\theta_{m}))]\\ \left\|c(x_{n},x_{m})\right\|&\leq & sM|\theta_{n}-\theta_{m}|+\frac{s}{s}\left\|T(c(x_{n},x_{m}))\right\|\\ \left\|c(x_{n},x_{m})\right\|&\leq &\frac{sM}{1-\left\|T\right\|}[|\theta_{n}-\theta_{m}|]. \end{eqnarray*} |
As \{{\theta_{n}}\}^{\infty}_{n = 1} is a Cauchy sequence in [0, 1] , we have
\lim\limits_{n,m\rightarrow \infty}c(x_{n},x_{m}) = {\bf 0_{\mathcal{E}}}. |
So \{{x_{n}}\} is a Cauchy sequence in X . As X is a complete cone b -metric space, so we have x\in \overline{U} such that \lim_{n\rightarrow \infty}c(x_{n}, x)\ll \epsilon . Hence x_{n}\Re x for all n\in \mathbb{N} . By triangle property, we have
\begin{eqnarray*} c(x,h(x,\theta)) &\preceq& s[c(x,x_{n})+ c(x_{n},h(x,\theta))]\\ &\preceq& sc(x,x_{n})+s^{2}[c(x_{n},h(x_{n},\theta))+ c(h(x_{n},\theta),h(x,\theta))]\\ &\preceq& sc(x,x_{n})+s^{2}[c(h(x_{n},\theta_{n}),h(x_{n},\theta))+ c(h(x_{n},\theta),h(x,\theta))]\\ \left\|c(x,h(x,\theta))\right\|&\leq & \left\|sc(x,x_{n})\right\|+s^{2}M|\theta_{n}-\theta|+\frac{s^{2}}{s}\left\|T(c(x_{n},x))\right\|. \end{eqnarray*} |
Thus, c(x, h(x, \theta)) = {\bf 0} as n\rightarrow \infty . So \theta\in \mathcal{B} , hence \mathcal{B} is closed in [0, 1] . Now we show that \mathcal{B} is open in [0, 1] . Let \theta_{1}\in \mathcal{B} , so, there exists x_{1}\in U such that h(\theta_{1}, x_{1}) = x_{1} . As U is open, we have r > 0 so that \mathcal{B}(x_{1}, r)\subseteq U . Consider
l = \left\|c(x_{1},\partial U)\right\| = \inf\{\left\|c(x_1,\xi)\right\|: \xi\in \partial U\}. |
Then r = l > 0 . Given \epsilon > 0 such that \omega < \frac{(1-\left\|T\right\|)l}{sM} for s \geq 1 . Let \theta \in (\theta_{1}-\omega, \theta_{1}+\omega) . Then
x\in \overline {\mathcal{B}(x_{1},r)} = \{x\in X :\left\|c(x,x_{1})\right\|\leq r\},\; {\rm{ so\; that }} \;x \Re x_{1}. |
Consider
\begin{eqnarray*} c(h(x,\theta),x_{1})& = &c(h(x,\theta),h(x_{1},\theta_{1})\\ &\preceq& s[c(h(x,\theta),h(x,\theta_{1})+c(h(x,\theta_{1}),h(x_{1},\theta_{1})]\\ \left\|c(h(x,\theta),x_{1})\right\|&\leq & sM|\theta_{1}-\theta|+\frac{s}{s}\left\|T(c(x_{1},x))\right\|\\ &\leq & sM\omega +\left\|T\right\|l = sM\omega +\left\|T\right\|l < l. \end{eqnarray*} |
Thus, for each \theta\in (\theta_{1}-\omega, \theta_{1}+\omega) , h(\cdot, \theta): \overline{\mathcal{B}(x, r)}\rightarrow \overline{\mathcal{B}(x, r)} has a fixed point in \overline {U} by applying Corollary 5.4. Hence \theta\in \mathcal{B} for any \theta\in (\theta_{1}-\omega, \theta_{1}+\omega) and so \mathcal{B} is open in [0, 1] . Thus, \mathcal{B} is open as well as closed in [0, 1] and by connectedness, \mathcal{B} = [0, 1] . Hence h(\cdot, 1) has a fixed point in U .
In this section, we use the homotopy to describe the process of aging of human body. The aging process is considered by choosing suitable values for the time parameters t of the homotopy a(t, x) . The values of the parameters t and x in the function a(t, x) are adjusted to control the process of the aging. For example, if t\in [0, 1] , and there is a homotopy a(t, x) from f(x) to g(x) such that a(0, x) = f(x) and a(1, x) = g(x) then the body is only one year old. Thus, if t\in [l, n] , where n > l , and there is a continuous function a(t, x) called homotopy from one function from f(x) to w(x) satisfying the condition a(l, x) = f(x) and a(n, x) = w(x) , then the body is described as being n years old. It is observed that for the interval t\in [l, n] , the supremum a(n, x) = y(x) is the actual age of the body. Topologically the infant is equal to the adult since the infant continuously grows into the adult. The study found an algebraic way of relating homotopy to the process of aging of human body. The compact connected human body with boundary is assumed to be topologically equivalent to a cylinder X = S\times I , where S is a circle and I = [0, \alpha] . The initial state of the body X = S\times I is the topological shape of the infant. The aging process, called homotopy, is the family of continuous functions a(t, x) on the interval I = [0, \alpha] . It is an increasing sequence of the function a(t, x) of the body X . The homotopy relates the topological shape of the infant to the topological shape of the adult. For the human body X , let x\in X and t\in I define the growth of the body and the age of the body respectively. Since the final age of the human body is not known let t = \infty represent the final age of the body such that t\in [\theta, \infty] denotes the age interval of the body from t = \theta to t = \infty . The time t = \infty is the age threshold value of the human body. The aging process for all t\in [0, \infty] is the family or the sequence of the functions a(t, x) such that a(0, x) = f(x) and a(\infty, x) = y(x) .
Theorem 7.1. Let X = S\times I be a cylinder. Let a(t, x) be a homotopy related to the process of aging of human body. Then, whenever a(0, x) possesses a fixed point in X , Then, a(\infty, x) also possesses a fixed point in X .
Proof. Since, the human body is compact connected and bounded, so, human body is topologically equivalent to a cylinder X = S\times I . It is known that continuous reshaping of a cylinder possesses many invariant points. Thus, whenever a(0, x) possesses a fixed point in X , Then, a(\infty, x) possesses a fixed point in X .
In this section, we will apply Theorem 4.1 for the existence of the unique solution to UIE:
\begin{equation} \ell(\hbar) = f(\hbar)+\int \limits_{IR}K_{1}(\hbar,s,\ell(s))ds. \end{equation} | (8.1) |
This integral equation encapsulates both Volterra Integral Equation (VIE) and Fredholm Integral Equation (FIE), depending upon the region of integration (IR). If IR = (a, x) where a is fixed, then UIE is VIE and for IR = (a, b) where a, b are fixed, UIE is FIE. In the literature, one can find many approaches to find a unique solution to UIE (see [24,28,44] and references therein). We are interested to use a fixed-point technique for this purpose. The fixed-point technique is simple and elegant to show the existence of a unique solution to further mathematical models.
Let IR be a set of finite measure and \mathcal{L}^{2}_{{\rm{IR}}} = \left\{\ell\, | \int_{{\rm{IR}}}|\ell(s)|^{2}ds < \infty\right\} . Define the norm \left\|.\right\|:\mathcal{L}^{2}_{{\rm{IR}}}\rightarrow [0, \infty) by
\begin{equation*} \left \Vert \ell\right \Vert _{2} = \sqrt{\int_{{\rm{IR}}}|\ell(s)|^{2}ds} ,\;{\rm{ for\; all }}\; \ell,\jmath\in \mathcal{L}^{2}_{{\rm{IR}}}. \end{equation*} |
An equivalent norm can be defined as follows:
\begin{equation*} \left \Vert \ell\right \Vert _{2,\nu} = \sqrt{\sup\{e^{-\nu\int_{{\rm{IR}}}\alpha(s)ds}\int_{{\rm{IR}}}|\ell(s)|^{2}ds\}} ,\;{\rm{ for\; all }}\; \ell\in \mathcal{L}^{2}_{{\rm{IR}}}, \nu > 1. \end{equation*} |
Then \mathcal{E} = (\mathcal{L}^{2}_{{\rm{IR}}}, \left \Vert.\right \Vert _{2, \nu}) is a Banach space. Let \mathcal{A} = \{\ell\in \mathcal{L}^{2}_{{\rm{IR}}}: \ell(s) > 0 {\rm{ for almost every s}}\} be a cone in \mathcal{E} . The cone b -metric c_{\nu} associated to norm \left \Vert.\right \Vert _{2, \nu} is given by c_{\nu}(\ell, \jmath) = \ell\left \Vert\ell-\jmath\right \Vert^{2} _{2, \nu} for all \ell, \, \jmath\in \mathcal{A} . Define a partial order \preceq on \mathcal{E} by
a \preceq \upsilon \;{\rm{ if \;and \;only\; if }}\;a(s)\upsilon(s)\geq \upsilon(s), \;{\rm{ for\; all }} \;a, \upsilon\in \mathcal{E}. |
Then (\mathcal{E}, \preceq, c_{\nu}) is a complete cone b -metric space. Let
(A1) The kernel K_{1}:{\rm{IR}}\times {\rm{IR}}\times \mathbb{R}\rightarrow \mathbb{R} satisfies Carathéodory conditions and
\left|K_{1}(\hbar,s,\ell(s))\right|\leq w(\hbar,s)+e(\hbar,s)\left|\ell(s)\right|;\, w,e\in \mathcal{L}^{2}({\rm{IR}}\times {\rm{IR}}), e(\hbar,s) > 0 . |
A2) The function f:{\rm{IR}}\rightarrow [1, \infty) is continuous and bounded on {\rm{IR}} .
(A3) There exists a positive constant C such that
\sup\limits_{\hbar\in {\rm{IR}}}\int \limits_{IR}\left|K_{1}(\hbar,s)\right|ds \leq C. |
(A4) For any \ell_0\in \mathcal{L}^{2}_{{\rm{IR}}} , there is \ell_1 = R(\ell_0) such that \ell_1 \preceq \ell_0 or \ell_0\preceq \ell_1 .
(A4') The sequence \{\ell_n\} satisfies \ell_{n-1}\preceq \ell_{n} and \ell_{n}\rightarrow p , then \ell_{n}\preceq p for all n\in \mathbb{N} .
(A5) There exists a non-negative and measurable function q:{\rm{IR}}\times {\rm{IR}}\rightarrow \mathbb{R} such that
\alpha(\hbar): = \int_{{\rm{IR}}}q^{2}(\hbar,s)\,ds\leq \frac{1}{\nu} |
and integrable over IR with
\begin{equation*} \left \vert K_{1}(\hbar,s,\ell(s))-K_{1}(\hbar,s,\jmath(s))\right \vert \leq q(\hbar,s)|\ell(s)-\jmath(s)| \end{equation*} |
for all \hbar, s\in {\rm{IR}} and \ell, \jmath\in \mathcal{E} with \ell\preceq\jmath .
Theorem 8.1. Suppose that the mappings f and K_1 mentioned above satisfy the conditions (A1)–(A5), then the UIE (8.1) has a unique solution.
Proof. Define the mapping R:\mathcal{E} \rightarrow \mathcal{E} , in accordance with the above-mentioned notations, by
\begin{equation*} \left(R\ell\right)\left(\hbar\right) = f(\hbar)+\int_{{\rm{IR}}}K_{1}(\hbar,s,\ell(s))ds. \end{equation*} |
The operator R is \preceq -preserving:
Let \ell, \jmath\in \mathcal{E} with \ell\preceq\jmath , then \ell(s)\jmath(s)\geq \jmath(s) . Since, for almost every \hbar\in IR,
\left(R\ell\right)\left(\hbar\right) = f(\hbar)+\int_{{\rm{IR}}}K_{1}(\hbar,s,\ell(s))ds\geq 1, |
this implies that \left(R\ell\right)\left(\hbar\right) \left(R\jmath\right)\left(\hbar\right)\geq \left(R\jmath\right)\left(\hbar\right) . Thus, \left(R\ell\right)\preceq \left(R\jmath\right) .
Self-operator:
The conditions (A1) and (A3) imply that R is continuous and compact mapping from \mathcal{A} to \mathcal{A} (see [24,Lemma 3]).
By (A4), for any \ell_0 \in \mathcal{A} there is \ell_1 = R(\ell_0) such that \ell_1\preceq \ell_0 or \ell_0\preceq \ell_1 and using the fact that R is \preceq -preserving, we have \ell_n = R^{n}(\ell_0)) with \ell_n\preceq\ell_{n+1} or \ell_{n+1}\preceq\ell_{n} for all n\geq 0 . We will check the contractive condition of Theorem 4.1 in the next lines. By (A5) and Holder inequality, we have
\begin{eqnarray*} \ell\left \vert (R\ell)(\hbar)-(R\jmath)(\hbar)\right \vert^{2} & = &\ell\left|\int \limits_{IR}K_{1}(\hbar,s,\ell(s))\,ds-\int \limits_{IR}K_{1}(\hbar,s,\jmath(s))\,ds\right|^{2} \\ &\preceq &\ell\left(\int \limits_{IR}\left|K_{1}(\hbar,s,\ell(s))-K_{1}(\hbar,s,\jmath(s))\right|\,ds\right)^{2} \\ &\preceq & \ell \left(\int \limits_{IR}q(\hbar,s)|\ell(s)-\jmath(s)|\,ds\right)^{2}\\ &\preceq &\ell\int \limits_{IR}q^{2}(\hbar,s)\,ds\cdot \int \limits_{IR}|\ell(s)-\jmath(s)|^{2}\,ds\\ & = & \ell\alpha(\hbar)\int \limits_{IR}|\ell(s)-\jmath(s)|^{2}\,ds. \end{eqnarray*} |
This implies, by integrating with respect to \hbar ,
\begin{eqnarray*} \ell\int \limits_{IR}\left \vert (R\ell)(\hbar)-(R\jmath)(\hbar)\right \vert^{2}\,d\hbar &\preceq& \ell\int \limits_{IR}\left(\alpha(\hbar)\int \limits_{IR}|\ell(s)-\jmath(s)|^{2}\,ds\right)\,d\hbar\\ & = &\ell\int \limits_{IR}\left(\alpha(\hbar)e^{\nu\int_{{\rm{IR}}}\alpha(s)ds}\cdot e^{-\nu\int_{{\rm{IR}}}\alpha(s)ds}\int \limits_{IR}|\ell(s)-\jmath(s)|^{2}\,ds\right)\,d\hbar\\ &\preceq&\ell\left\|\ell-\jmath\right\|^{2}_{2,\nu}\int \limits_{IR}\alpha(\hbar)e^{\nu\int_{{\rm{IR}}}\alpha(s)ds}\,d\hbar\\ &\preceq &\ell\frac{1}{\nu}\left\|\ell-\jmath\right\|^{2}_{2,\nu}e^{\nu\int_{{\rm{IR}}}\alpha(s)ds}. \end{eqnarray*} |
Thus, we have
\begin{equation*} \ell e^{-\nu\int_{{\rm{IR}}}\alpha(s)ds}\int \limits_{IR}\left \vert (R\ell)(\hbar)-(R\jmath)(\hbar)\right \vert^{2}\,d\hbar\preceq \ell \frac{1}{\nu}\left\|\ell-\jmath\right\|^{2}_{2,\nu}. \end{equation*} |
This implies that
\begin{equation*} \ell \left\|R\ell-R\jmath\right\|^{2}_{2,\nu}\preceq \ell\frac{1}{\nu}\left\|\ell-\jmath\right\|^{2}_{2,\nu}. \end{equation*} |
That is,
\begin{equation*} c_{\nu}(R\ell,R\jmath)\preceq \frac{1}{\nu}c_{\nu}(\ell,\jmath). \end{equation*} |
Thus, defining \mathcal{L}:{\mathcal{E}}^{6}\rightarrow \mathcal{E} by
\mathcal{L}(x_1,x_2,x_3,x_4,x_5,x_6) = x_1-kx_2; \,\,k\in[0,1), |
we have
\begin{equation*} \mathcal{L}\left(c(R\ell,R\jmath),c(\ell,\jmath),c(\ell,R\ell),c(\jmath,R\jmath), c(\ell,R\jmath),c(\jmath,R\ell)\right)\preceq {\bf 0_{\mathcal{E}}}. \end{equation*} |
Hence, by Theorem 4.1, the operator R has a unique fixed point. This means that the UIE (8.1) has a unique solution.
The ordered implicit relation in relation with implicit contraction is useful to obtain fixed point theorems that unify many corresponding fixed point theorems. These results can be applied to show the existence of the solutions to DE's and FDE's. The ordered implicit relation can be generalized to orthogonal implicit relation. The study of fixed point theorems is valid in cone metric spaces and hence in the cone b -metric spaces for the nonlinear contractions.
The authors declare that they have no competing interests.
[1] | S. Ahlgren, Gaussian hypergeometric series and combinatorial congruences, In: Symbolic computation, number theory, special functions, physics and combinatorics, Dordrecht: Kluwer, 2001, 1–12. doi: 10.1007/978-1-4613-0257-5_1. |
[2] | G. Almkvist, W. Zudilin, Differential equations, mirror maps and zeta values, In: Mirror symmetry, AMS/IP Studies in Advanced Mathematics, Vol. 38, International Press & American Mathematical Society, 2007,481–515. |
[3] | B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi sums, New York: Wiley, 1998. |
[4] |
F. Beukers, Another congruence for the Apéry numbers, J. Number Theory, 25 (1987), 201–210. doi: 10.1016/0022-314X(87)90025-4. doi: 10.1016/0022-314X(87)90025-4
![]() |
[5] | H. W. Gould, Combinatorial identities: A standardized set of tables listing 500 binomial coefficient summations, Morgantown: West Virginia University, 1972. |
[6] |
V. J. W. Guo, W. Zudilin, A q-microscope for supercongruences, Adv. Math., 346 (2019), 329–358. doi: 10.1016/j.aim.2019.02.008. doi: 10.1016/j.aim.2019.02.008
![]() |
[7] | L. Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, In: Proceedings of the conference on p-adic analysis, Houthalen, 1987,189–195. |
[8] |
T. Ishikawa, Super congruence for the Apéry numbers, Nagoya Math. J., 118 (1990), 195–202. doi: 10.1017/S002776300000307X. doi: 10.1017/S002776300000307X
![]() |
[9] |
D. H. Lee, S. G. Hahn, Gauss sums and binomial coefficients, J. Number Theory, 92 (2002), 257–271. doi: 10.1006/jnth.2001.2688. doi: 10.1006/jnth.2001.2688
![]() |
[10] |
L. Long, R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math., 290 (2016), 773–808. doi: 10.1016/j.aim.2015.11.043. doi: 10.1016/j.aim.2015.11.043
![]() |
[11] |
F. Jarvis, H. A. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J., 22 (2010), 171–186. doi: 10.1007/s11139-009-9218-5
![]() |
[12] |
S. Mattarei, R. Tauraso, Congruences for central binomial sums and finite polylogarithms, J. Number Theory, 133 (2013), 131–157. doi: 10.1016/j.jnt.2012.05.036. doi: 10.1016/j.jnt.2012.05.036
![]() |
[13] |
E. Mortenson, Supercongruences for truncated _{n+1}F_n hypergeometric series with applications to certain weight three newforms, Proc. Amer. Math. Soc., 133 (2005), 321–330. doi: 10.1090/S0002-9939-04-07697-X. doi: 10.1090/S0002-9939-04-07697-X
![]() |
[14] | F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, In: Calabi-Yau varieties and mirror symmetry, Providence, RI: American Mathematical Society, 2003,223–231. |
[15] |
V. Strehl, Binomial identities-combinatorial and algorithmic aspects, Discrete Math., 136 (1994), 309–346. doi: 10.1016/0012-365X(94)00118-3. doi: 10.1016/0012-365X(94)00118-3
![]() |
[16] |
Z. H. Sun, Congruences concerning Legendre polynomials, Proc. Amer. Math. Soc., 139 (2011), 1915–1929. doi: 10.1090/S0002-9939-2010-10566-X. doi: 10.1090/S0002-9939-2010-10566-X
![]() |
[17] |
Z. H. Sun, Congruences concerning Legendre polynomials II, J. Number Theory, 133 (2013), 1950–1976. doi: 10.1016/j.jnt.2012.11.004. doi: 10.1016/j.jnt.2012.11.004
![]() |
[18] |
Z. H. Sun, Congruences involving \binom2kk^2 \binom3kk, J. Number Theory, 133 (2013), 1572–1595. doi: 10.1016/j.jnt.2012.10.001. doi: 10.1016/j.jnt.2012.10.001
![]() |
[19] |
Z. H. Sun, Legendre polynomials and supercongruences, Acta Arith., 159 (2013), 169–200. doi: 10.4064/aa159-2-6
![]() |
[20] |
Z. H. Sun, Generalized Legendre polynomials and related supercongruences, J. Number Theory, 143 (2014), 293–319. doi: 10.1016/j.jnt.2014.04.012. doi: 10.1016/j.jnt.2014.04.012
![]() |
[21] |
Z. H. Sun, Congruences for Domb and Almkvist-Zudilin numbers, Integr. Transf. Spec. F., 26 (2015), 642–659. doi: 10.1080/10652469.2015.1034122. doi: 10.1080/10652469.2015.1034122
![]() |
[22] |
Z. H. Sun, Identities and congruences for Catalan-Larcombe-French numbers, Int. J. Number Theory, 13 (2017), 835–851. doi: 10.1142/S1793042117500440. doi: 10.1142/S1793042117500440
![]() |
[23] |
Z. H. Sun, Congruences for sums involving Franel numbers, Int. J. Number Theory, 14 (2018), 123–142. doi: 10.1142/S1793042118500094. doi: 10.1142/S1793042118500094
![]() |
[24] |
Z. H. Sun, Super congruences for two Apéry-like sequences, J. Difference Equ. Appl., 24 (2018), 1685–1713. doi: 10.1080/10236198.2018.1515930. doi: 10.1080/10236198.2018.1515930
![]() |
[25] |
Z. H. Sun, Congruences involving binomial coefficients and Apéry-like numbers, Publ. Math. Debrecen, 96 (2020), 315–346. doi: 10.5486/PMD.2020.8577
![]() |
[26] |
Z. H. Sun, Supercongruences and binary quadratic forms, Acta Arith., 199 (2021), 1–32. doi: 10.4064/aa200308-27-9. doi: 10.4064/aa200308-27-9
![]() |
[27] |
Z. W. Sun, Super congruences and Euler numbers, Sci. China Math., 54 (2011), 2509–2535. doi: 10.1007/s11425-011-4302-x. doi: 10.1007/s11425-011-4302-x
![]() |
[28] |
Z. W. Sun, On sums involving products of three binomial coefficients, Acta Arith., 156 (2012), 123–141. doi: 10.4064/aa156-2-2
![]() |
[29] | Z. W. Sun, Conjectures and results on x^2 mod p^2 with 4p = x^2+dy^2, In: Number theory and related areas, Beijing-Boston: Higher Education Press & International Press, 2013,149–197. |
[30] |
Z. W. Sun, Congruences for Franel numbers, Adv. Appl. Math., 51 (2013), 524–535. doi: 10.1016/j.aam.2013.06.004. doi: 10.1016/j.aam.2013.06.004
![]() |
[31] | Z. W. Sun, New series for some special values of L-functions, Nanjing Univ. J. Math. Biquarterly, 32 (2015), 189–218. |
[32] |
Z. W. Sun, Congruences involving g_n(x) = \sum_{k = 0}^n \binom nk^2 \binom2kkx^k, Ramanujan J., 40 (2016), 511–533. doi: 10.1007/s11139-015-9727-3. doi: 10.1007/s11139-015-9727-3
![]() |
[33] |
Z. W. Sun, Two new kinds of numbers and related divisibility results, Colloq. Math., 154 (2018), 241–273. doi: 10.4064/cm7405-1-2018
![]() |
[34] | Z. W. Sun, List of Conjectural series for powers of \pi and other constants, In: Ramanujan's Identities, Harbin Institute of Technology Press, 2021,205–261. |
[35] | R. Tauraso, A supercongruence involving cubes of Catalan numbers, Integers, 20 (2020), #A44, 1–6. |
[36] | D. Zagier, Integral solutions of Apéry-like recurrence equations, In: Groups and symmetries: From Neolithic Scots to John McKay, CRM Proceedings and Lecture Notes, Vol. 47, Providence, RI: American Mathematical Society, 2009,349–366. |
1. | Abdullah Shoaib, Poom Kumam, Kanokwan Sitthithakerngkiet, Interpolative Hardy Roger's type contraction on a closed ball in ordered dislocated metric spaces and some results, 2022, 7, 2473-6988, 13821, 10.3934/math.2022762 | |
2. | Hadeel Z. Alzumi, Hakima Bouhadjera, Mohammed S. Abdo, Nawab Hussain, Unique Common Fixed Points for Expansive Maps, 2023, 2023, 0161-1712, 10.1155/2023/6689743 | |
3. | Hongyan Guan, Chen Lang, Yan Hao, Cristian Chifu, Sehgal-Guseman-Type Fixed Point Theorems in Rectangular b -Metric Spaces and Solvability of Nonlinear Integral Equation, 2023, 2023, 2314-8888, 1, 10.1155/2023/2877019 |