Research article

Common fixed points of fuzzy set-valued contractive mappings on metric spaces with a directed graph

  • Received: 07 September 2021 Accepted: 01 November 2021 Published: 10 November 2021
  • MSC : 47H10, 54H25

  • We introduce a new class of generalized graphic fuzzy $ F $- contractive mappings on metric spaces and establish the existence of common fuzzy coincidence and fixed point results for such contractions. It is significant to note that we do not use any form of continuity of mappings to prove these results. Some examples are provided to verify our proven results. Various developments in the existing literature are generalized and extended by our results. It is aimed that the initiated concepts in this work will encourage new research aspects in fixed point theory and related hybrid models in the literature of fuzzy mathematics.

    Citation: Muhammad Rafique, Talat Nazir, Mujahid Abbas. Common fixed points of fuzzy set-valued contractive mappings on metric spaces with a directed graph[J]. AIMS Mathematics, 2022, 7(2): 2195-2219. doi: 10.3934/math.2022125

    Related Papers:

  • We introduce a new class of generalized graphic fuzzy $ F $- contractive mappings on metric spaces and establish the existence of common fuzzy coincidence and fixed point results for such contractions. It is significant to note that we do not use any form of continuity of mappings to prove these results. Some examples are provided to verify our proven results. Various developments in the existing literature are generalized and extended by our results. It is aimed that the initiated concepts in this work will encourage new research aspects in fixed point theory and related hybrid models in the literature of fuzzy mathematics.



    加载中


    [1] M. Abbas, M. R. Alfuraidan, A. R. Khan, T. Nazir, Fixed point results for set-contractions on metric spaces with a directed graph, Fixed Point Theory Appl., 2015 (2015), 14. doi: 10.1186/s13663-015-0263-z. doi: 10.1186/s13663-015-0263-z
    [2] M. Abbas, M. R. Alfuraidan, T. Nazir, Common fixed points of multivalued $F $-contractions on metric spaces with a directed graph, Carpathian J. Math., 32 (2016), 1–12.
    [3] M. Abbas, T. Nazir, Common fixed point of a power graphic contraction pair in partial metric spaces endowed with a graph, Fixed Point Theory Appl., 2013 (2013), 20. doi: 10.1186/1687-1812-2013-20. doi: 10.1186/1687-1812-2013-20
    [4] M. A. Ahmed, I. Beg, S. A. Khafagy, H. A. Nafadi, Fixed points for a sequence of $\mathcal{L}$-fuzzy mappings in non-Archimedean ordered modified intuitionistic fuzzy metric spaces, J. Nonlinear Sci. Appl., 14 (2021), 97–108. doi: 10.22436/jnsa.014.02.05. doi: 10.22436/jnsa.014.02.05
    [5] A. E. Al-Mazrooei, J. Ahmad, Fuzzy fixed point results of generalized almost F-contraction, J. Math. Comput. Sci., 18 (2018), 206–215. doi: org/10.22436/jmcs.018.02.08. doi: 10.22436/jmcs.018.02.08
    [6] A. E. Al-Mazrooei, J. Ahmad, Fixed point theorems for fuzzy mappings with applications, J. Intell. Fuzzy Syst., 36 (2019), 3903–3909. doi: 10.3233/JIFS-181687. doi: 10.3233/JIFS-181687
    [7] S. M. A. Aleomraninejad, Sh. Rezapoura, N. Shahzad, Some fixed point results on a metric space with a graph, Topol. Appl., 159 (2012), 659–663. doi: 10.1016/j.topol.2011.10.013. doi: 10.1016/j.topol.2011.10.013
    [8] M. R. Alfuraidan, M. A. Khamsi, Caristi fixed point theorem in metric spaces with a graph, Abstr. Appl. Anal., 2014 (2014), 303484. doi: 10.1155/2014/303484. doi: 10.1155/2014/303484
    [9] K. T. Atanassov, Intuitionistic fuzzy sets, In: Intuitionistic fuzzy sets, Physica, Heidelberg, 1999, 1–137. doi: 10.1007/978-3-7908-1870-3-1.
    [10] A. Azam, M. Arshad, P. Vetro, On a pair of fuzzy $\varphi$-contractive mappings, Math. Comput. Model., 52 (2010), 207–214. doi: 10.1016/j.mcm.2010.02.010. doi: 10.1016/j.mcm.2010.02.010
    [11] A. Azam, I. Beg, Common fixed points of fuzzy maps, Math. Comput. Model., 49 (2009), 1331–1336. doi:10.1016/j.mcm.2008.11.011. doi: 10.1016/j.mcm.2008.11.011
    [12] A. Azam, M. Arshad, I. Beg, Fixed points of fuzzy contractive and fuzzy locally contractive maps, Chaos Soliton. Fract., 42 (2009), 2836–2841. doi: 10.1016/j.chaos.2009.04.026. doi: 10.1016/j.chaos.2009.04.026
    [13] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
    [14] R. K. Bose, D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Set. Syst., 21 (1987), 53–58. doi: 10.1016/0165-0114(87)90152-7. doi: 10.1016/0165-0114(87)90152-7
    [15] F. Bojor, Fixed point of $\phi $-contraction in metric spaces endowed with a graph, An. Univ. Craiova Ser. Mat. Inform., 37 (2010), 85–92.
    [16] F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal. Theor., 75 (2012), 3895–3901. doi: 10.1016/j.na.2012.02.009. doi: 10.1016/j.na.2012.02.009
    [17] F. Bojor, On Jachymski's theorem, An. Univ. Craiova Ser. Mat. Inform., 40 (2013), 23–28.
    [18] C. I. Chifu, G. R. Petrusel, Generalized contractions in metric spaces endowed with a graph, Fixed Point Theory Appl., 2012 (2012), 161. doi: 10.1186/1687-1812-2012-161. doi: 10.1186/1687-1812-2012-161
    [19] L. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. doi: 10.2307/2040075. doi: 10.2307/2040075
    [20] J. A. Goguen, $L$-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145–174. doi: org/10.1016/0022-247X(67)90189-8. doi: 10.1016/0022-247X(67)90189-8
    [21] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. Theor., 71 (2009), 3403–3410. doi: 10.1016/j.na.2009.01.240. doi: 10.1016/j.na.2009.01.240
    [22] S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. doi: org/10.1016/0022-247X(81)90141-4. doi: 10.1016/0022-247X(81)90141-4
    [23] J. Jachymski, I. Jozwik, Nonlinear contractive conditions: a comparison and related problems, Banach Center Publ., 77 (2007), 123–146. doi: 10.4064/bc77-0-10. doi: 10.4064/bc77-0-10
    [24] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. doi: 10.1090/S0002-9939-07-09110-1. doi: 10.1090/S0002-9939-07-09110-1
    [25] D. Klim, D. Wardowski, Fixed points of dynamic processes of set-valued $F$-contractions and application to functional equations, Fixed Point Theory Appl., 2015 (2015), 22. doi. 10.1186/s13663-015-0272-y.
    [26] W. A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl., 277 (2003), 645–650. doi: 10.1016/S0022-247X(02)00612-1. doi: 10.1016/S0022-247X(02)00612-1
    [27] S. S. Mohammed, A. Azam, Fixed points of soft-set valued and fuzzy set-valued maps with applications, J. Intell. Fuzzy Syst., 37 (2019), 3865–3877. doi: 10.3233/JIFS-190126. doi: 10.3233/JIFS-190126
    [28] M. S. Shagari, On Bilateral fuzzy contractions, Funct. Anal. Approx. Comput., 12 (2020), 1–13.
    [29] S. S. Mohammed, On fuzzy soft set-valued maps with application, J. Niger. Soc. Phys. Sci., 2 (2020), 26–35. doi: 10.46481/jnsps.2020.48. doi: 10.46481/jnsps.2020.48
    [30] M. S. Shagari, A. Azam, Fixed Point theorems of fuzzy set-valued maps with applications, Probl. Anal. Issues Anal., 9 (2020), 68–86. doi: 10.15393/j3.art.2020.6750. doi: 10.15393/j3.art.2020.6750
    [31] S. B. Nadler Jr, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. doi: 10.2140/pjm.1969.30.475. doi: 10.2140/pjm.1969.30.475
    [32] D. Qiu, L. Shu, Supremum metric on the space of fuzzy sets and common fixed point theorems for fuzzy mappings, Inform. Sci., 178 (2008), 3595–3604. doi: 10.1016/j.ins.2008.05.018. doi: 10.1016/j.ins.2008.05.018
    [33] I. A. Rus, Generalized contractions and applications, Cluj-Napoca: Cluj University Press, 2001.
    [34] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435–1443. doi: 10.1090/S0002-9939-03-07220-4. doi: 10.1090/S0002-9939-03-07220-4
    [35] J. J. Nieto, R. R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. doi: 10.1007/s11083-005-9018-5. doi: 10.1007/s11083-005-9018-5
    [36] G. Gwozdz-Lukawska, J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl., 356 (2009), 453–463. doi: 10.1016/j.jmaa.2009.03.023 doi: 10.1016/j.jmaa.2009.03.023
    [37] D. Wardowski, Fixed points of new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. doi: 10.1186/1687-1812-2012-94. doi: 10.1186/1687-1812-2012-94
    [38] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. doi: 10.1016/S0019-9958(65)90241-X. doi: 10.1016/S0019-9958(65)90241-X
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1544) PDF downloads(60) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog