In this paper, a Gronwall inequality involving ψ-fractional integral operator is obtained as a generalization of [
Citation: Qi Wang, Shumin Zhu. On the generalized Gronwall inequalities involving ψ-fractional integral operator with applications[J]. AIMS Mathematics, 2022, 7(11): 20370-20380. doi: 10.3934/math.20221115
[1] | Jehad Alzabut, Yassine Adjabi, Weerawat Sudsutad, Mutti-Ur Rehman . New generalizations for Gronwall type inequalities involving a $ \psi $-fractional operator and their applications. AIMS Mathematics, 2021, 6(5): 5053-5077. doi: 10.3934/math.2021299 |
[2] | Dinghong Jiang, Chuanzhi Bai . On coupled Gronwall inequalities involving a $ \psi $-fractional integral operator with its applications. AIMS Mathematics, 2022, 7(5): 7728-7741. doi: 10.3934/math.2022434 |
[3] | Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a $ \psi $-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397 |
[4] | Weerawat Sudsutad, Chatthai Thaiprayoon, Aphirak Aphithana, Jutarat Kongson, Weerapan Sae-dan . Qualitative results and numerical approximations of the $ (k, \psi) $-Caputo proportional fractional differential equations and applications to blood alcohol levels model. AIMS Mathematics, 2024, 9(12): 34013-34041. doi: 10.3934/math.20241622 |
[5] | Qing Yang, Chuanzhi Bai, Dandan Yang . Finite-time stability of nonlinear stochastic $ \psi $-Hilfer fractional systems with time delay. AIMS Mathematics, 2022, 7(10): 18837-18852. doi: 10.3934/math.20221037 |
[6] | Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan . A generalized Gronwall inequality via $ \psi $-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system. AIMS Mathematics, 2024, 9(9): 24443-24479. doi: 10.3934/math.20241191 |
[7] | Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Fahd Jarad, Y. S. Hamed, Khadijah M. Abualnaja . Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function. AIMS Mathematics, 2021, 6(8): 8001-8029. doi: 10.3934/math.2021465 |
[8] | Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052 |
[9] | Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi . Existence theorems for $ \Psi $-fractional hybrid systems with periodic boundary conditions. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010 |
[10] | Jingfeng Wang, Chuanzhi Bai . Finite-time stability of $ q $-fractional damped difference systems with time delay. AIMS Mathematics, 2021, 6(11): 12011-12027. doi: 10.3934/math.2021696 |
In this paper, a Gronwall inequality involving ψ-fractional integral operator is obtained as a generalization of [
The fractional Gronwall inequalities are effective tools to study the qualitative and quantitative properties of solution for fractional differential and integral equations [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21] by giving the explicit bounds of solutions. Further detail on fractional Gronwall inequalities mainly involving the Riemann-Liouville fractional integrals [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], the Caputo fractional integrals [17], the Hadamard fractional integrals [18], the Katugampola fractional integrals [19,20], and the generalized proportional fractional integrals [21].
In [22], the authors produced the ψ-Hilfer fractional derivative as the Riemann-Liouville fractional derivative and the Caputo fractional derivative. In [23], considering the continuous dependence of the solution on the order and the initial condition of ψ-fractional differential equations, the authors presented the following theorem involving the ψ-fractional integral operator.
Theorem 1.1. [23] Let u,v be two integrable functions and g continuous with domain [a,b]. Let ψ∈C1([a,b]) be an increasing function such that ψ′(t)≠0,t∈[a,b]. Assume that (1) u and v are nonnegative; (2) g is nonnegative and nondecreasing. If
u(t)≤v(t)+g(t)∫taψ′(s)(ψ(t)−ψ(s))α−1u(s)ds. |
Then
u(t)≤v(t)+∫ta∞∑k=1(g(t)Γ(α))kΓ(αk)ψ′(s)(ψ(t)−ψ(s))kα−1v(s)ds, t∈[a,b]. |
More inequalities related to ψ-fractional integral operator, see [24,25,26] for details.
As the generalizations of the classical fractional calculus operators, the ψ-fractional operator (i.e. the fractional derivative and integral of a function f with respect to another function ψ) has wide applications and properties [27,28,29,30,31,32,33,34] according to the choice of the ψ-function, which makes the Riemann-Liouville, Hadamard, Katugampola, etc fractional integral operators and the properties of above operators can be unified and considered as a whole.
Motivated by [23], in order to release the limitation of the number of nonlinear terms, new generalized forms of Theorem 1.1 are presented in this article, which is effective in dealing with neutral fractional differential equations involving ψ-fractional integral operator.
The organization of this paper is: In Section 2, we give some preliminaries. In Section 3, main results are obtained. In Section 4, the applications of (1.1) are given. In Section 5, an example is given to illustrate our result. In Section 6, the paper is concluded.
We introduce some basic definitions and properties of the calculus theory, please see the details in [27,34].
Definition 2.1. [27,34] Let f be an integrable function defined on [a,b] and ψ∈C1([a,b]) be an increasing function with ψ′(t)≠0,t∈[a,b]. The left ψ-Riemann-Liouville fractional integral operator of order γ of a function f is defined by
(t0Iγψf)(t)=1Γ(γ)∫tt0(ψ(t)−ψ(s))γ−1ψ′(s)f(s)ds,γ>0. |
Definition 2.2. [27,34] Let γ∈(n−1,n),f∈Cn([a,b]) and ψ∈Cn([a,b]) be an increasing function with ψ′(t)≠0,t∈[a,b]. The left ψ-Caputo fractional derivative of order γ of a function f is defined by
(Ct0Dγψf)(t)=(t0In−γψf[n])(t)=1Γ(n−γ)∫tt0(ψ(t)−ψ(s))n−γ−1ψ′(s)f[n](s)ds, |
where n=[α]+1,f[n](s):=(1ψ′(t)ddt)nf(t) on [a,b].
Theorem 2.1. [35] Let X be a Banach space, F:X→X be a completely continuous operator. If the set E(F)={y∈X:y=lFy for some l∈[0,1]} is bounded, then F has at least a fixed point.
Theorem 3.1. Assume that x,a are integrable and nonnegative functions and bj,j=1,2,⋯,m are continuous integrable and nonnegative functions with t∈[a,b]. Let ψ∈C1([a,b]) be an increasing function with ψ′(t)≠0,t∈[a,b]. If
x(t)≤a(t)+m∑j=1bj(t)∫taψ′(s)(ψ(t)−ψ(s))αj−1x(s)ds, | (3.1) |
then
x(t)≤a(t)+∞∑k=1bk(t)m∑j1=1m∑j2=1⋯m∑jk=1Γ(αj1)Γ(αj2)×⋯×Γ(αjk)Γ(k∑ν=1αjν)∫taψ′(τ)(ψ(t)−ψ(τ))(k∑ν=1αjν−1)a(τ)dτ, | (3.2) |
provided that there exist a constant M>0 such that
limn→∞Mm∑j1=1m∑j2=1⋯m∑jn=1m∑jn+1=1Γ(αj1)Γ(αj2)⋯Γ(αjn)Γ(αjn+1)Γ(n+1∑ν=1αjν)m∑j1=1m∑j2=1⋯m∑jn=1Γ(αj1)Γ(αj2)⋯Γ(αjn)Γ(n∑ν=1αjν)=ρ∈[0,1), |
where αjn∈{α1,α2,⋯,αm},n∈N,b(t)=max{bj(t)}≤M,j=1,2,⋯,m.
Proof. Let
Ax(t)=m∑j=1bj(t)∫taψ′(s)(ψ(t)−ψ(s))αj−1x(s)ds. | (3.3) |
Then by (3.1), we get
x(t)≤a(t)+Ax(t). | (3.4) |
By the monotonicity of the operators A and (3.1) and mathematical induction, for t∈[a,b], we have
x(t)≤a(t)+Ax(t)≤a(t)+A(a(t)+Ax(t))=a(t)+Aa(t)+A2x(t)≤a(t)+Aa(t)+A2(a(t)+Ax(t))⋯≤n−1∑k=0Aka(t)+Anx(t), | (3.5) |
i.e.
x(t)≤n−1∑k=0Aka(t)+Anx(t), | (3.6) |
where A0a(t)=a(t).
For t∈[a,b], by mathematical induction, we will show that
Anx(t)≤bn(t)m∑j1=1m∑j2=1⋯m∑jn=1Γ(αj1)Γ(αj2)×⋯×Γ(αjn)Γ(n∑ν=1αjν)∫taψ′(τ)(ψ(t)−ψ(τ))(n∑ν=1αjν−1)x(τ)dτ, | (3.7) |
n∈N, and limn→∞Anx(t)=0.
For n=1, the conclusion in (3.7) holds naturally. Using the change of variables θ=ψ(s)−ψ(τ)ψ(t)−ψ(τ) and the Beta function Γ(αj)Γ(βj)Γ(αj+βj)=B(αj,βj), we have
A2x(t)=A(Ax(t))=m∑j1=1bj1(t)∫taψ′(s)(ψ(t)−ψ(s))αj1−1m∑j2=1bj2(s)∫saψ′(τ)(ψ(s)−ψ(τ))αj2−1x(τ)dτds≤m∑j1=1bj1(t)m∑j2=1bj2(t)∫taψ′(s)(ψ(t)−ψ(s))αj1−1∫saψ′(τ)(ψ(s)−ψ(τ))αj2−1x(τ)dτds=m∑j1=1bj1(t)m∑j2=1bj2(t)∫taψ′(τ)x(τ)∫tτψ′(s)(ψ(t)−ψ(s))αj1−1(ψ(s)−ψ(τ))αj2−1dsdτ=m∑j1=1bj1(t)m∑j2=1bj2(t)∫taψ′(τ)x(τ)∫tτψ′(s)(ψ(t)−ψ(τ))αj1−1×[1−ψ(s)−ψ(τ)ψ(t)−ψ(τ)]αj1−1(ψ(s)−ψ(τ))αj2−1dsdτ=m∑j1=1bj1(t)m∑j2=1bj2(t)∫taψ′(τ)x(τ)∫10(1−θ)αj1−1θαj2−1dθ(ψ(t)−ψ(τ))αj1+αj2−1dτ=m∑j1=1m∑j2=1bj1(t)bj2(t)Γ(αj1)Γ(αj2)Γ(αj+αl)∫taψ′(τ)(ψ(t)−φ(τ))αj1+αj2−1x(τ)dτ≤b2(t)m∑j=1m∑l=1Γ(αj1)Γ(αj2)Γ(αj1+αj2)∫taψ′(τ)(ψ(t)−φ(τ))αj1+αj2−1x(τ)dτ, t∈[a,b]. | (3.8) |
For t∈[a,b], we can suppose
Akx(t)≤bk(t)m∑j1=1m∑j2=1⋯m∑jk=1Γ(αj1)Γ(αj2)×⋯×Γ(αjk)Γ(k∑ν=1αjν)∫taψ′(τ)(ψ(t)−ψ(τ))(k∑ν=1αjν−1)x(τ)dτ. | (3.9) |
For n=k+1, using the non-increasing properties of bj(t),j=1,2,⋯,m,t∈[a,b], we have
Ak+1x(t)=A(Akx(t))≤m∑jk+1=1bjk+1(t)∫taψ′(s)(ψ(t)−ψ(s))αjk+1−1dsbk(s)×m∑j1=1⋯m∑jk=1Γ(αj1)Γ(αj2)×⋯×Γ(αjk)Γ(k∑ν=1αjν)∫saψ′(τ)(ψ(s)−ψ(τ))(k∑ν=1αjν−1)x(τ)dτ≤bk+1(t)m∑j1=1⋯m∑jk+1=1Γ(αj1)Γ(αj2)⋯Γ(αjk+1)Γ(k+1∑ν=1αjν)∫taψ′(τ)(ψ(t)−ψ(τ))(k+1∑ν=1αjν−1)x(τ)dτ. | (3.10) |
Since bj(t),j=1,2,⋯,m are all continuous functions on [a,b], then there exist a constant M>0 such that b(t)=max{bj(t)}≤M,j=1,2,⋯,m. So we have
Anx(t)≤Mnm∑j1=1m∑j2=1⋯m∑jn=1Γ(αj1)Γ(αj2)⋯Γ(αjn)Γ(n∑ν=1αjν)∫taψ′(τ)(ψ(t)−ψ(τ))(n∑ν=1αjν−1)x(τ)dτ. | (3.11) |
Consider the infinite series of number ∞∑n=1Mnm∑j1=1m∑j2=1⋯m∑jn=1Γ(αj1)Γ(αj2)⋯Γ(αjn)Γ(n∑ν=1αjν), by virtue of the ratio test
to the infinite series of number and the asymptotic approximation in [36], we get
limn→∞Mm∑j1=1m∑j2=1⋯m∑jn=1m∑jn+1=1Γ(αj1)Γ(αj2)⋯Γ(αjn)Γ(αjn+1)Γ(n+1∑ν=1αjν)m∑j1=1m∑j2=1⋯m∑jn=1Γ(αj1)Γ(αj2)⋯Γ(αjn)Γ(n∑ν=1αjν)=ρ∈[0,1), | (3.12) |
which implies that Anx(t) is convergent. Hence the conclusion in (3.2) holds.
Theorem 3.2. Under the hypotheses of Theorem 3.1 and let a(t) be a nondecreasing function for t∈[a,b]. Then
x(t)≤a(t)[1+∞∑k=1bk(t)m∑j1=1⋯m∑jk=1Γ(αj1)Γ(αj2)×⋯×Γ(αjk)Γ(k∑ν=1αjν)∫taψ′(τ)(ψ(t)−ψ(τ))(k∑ν=1αjν−1)dτ]. | (3.13) |
Proof. Since a(t) ia a nondecreasing function, for αj,j=1,2,⋯,m, then we get
∫saψ′(τ)(ψ(s)−ψ(τ))(k+1∑ν=1αjν−1)a(τ)dτ≤a(s)∫saψ′(τ)(ψ(s)−ψ(τ))(k+1∑ν=1αjν−1)dτ=a(s)(k+1∑ν=1αjν−1)(ψ(s)−ψ(a))(k+1∑ν=1αjν). | (3.14) |
So from (3.2) and (3.14), we have
x(t)≤a(t)+∞∑k=1bk(t)m∑j1=1⋯m∑jk=1Γ(αj1)×⋯×Γ(αjk)Γ(k+1∑ν=1αjν−1)∫taψ′(τ)(ψ(t)−ψ(τ))(k+1∑ν=1αjν−1)−1a(t)dτ=a(t)[1+∞∑k=1bk(t)m∑j1=1⋯m∑jk=1Γ(αj1)×⋯×Γ(αjk)Γ(k+1∑ν=1αjν−1)∫taψ′(τ)(ψ(t)−ψ(τ))(k+1∑ν=1αjν−1)−1dτ]. | (3.15) |
Consider the following neutral fractional equations involving ψ-fractional integral operator
Ct0Dγψ[x(t)−l∑i=1t0Iγiψgi(t,x(t))]=f(t,x(t)), t0,t∈J=[a,b], | (4.1) |
where γ>0,γi>0,i=1,2,⋯,l.
(H1) For the functions f,gi∈C(J×R,R), there are some constants ci,c≥0 such that
‖gi(t,ϕ)−gi(t,φ)‖≤ci‖ϕ−φ‖, ‖f(t,ϕ)−f(t,φ)‖≤c‖ϕ−φ‖, t∈J. | (4.2) |
(H′1) For the functions f,gi∈C(J×R,R), there are some constants ci,c≥0 such that
‖gi(t,ϕ)‖≤ci(1+‖ϕ‖), ‖f(t,ϕ)‖≤c(1+‖ϕ‖), t∈J. |
(H2) H=l∑i=1ci(ψ(b)−ψ(a))γiΓ(γi+1)+c(ψ(b)−ψ(a))γΓ(γ+1)<1.
By using Definitions 2.1 and 2.2, we get the following result.
Lemma 4.1. Under the hypotheses (H1),(H2). x(t) satisfies (4.1) if and only if x(t) satisfies the equality
x(t)=X(t0)+l∑i=1t0Iγiψgi(t,x(t))+t0Iγψf(t,x(t)), t0,t∈J, | (4.3) |
where
X(t0)=x(t0)+l∑i=1t0Iγiψgi(t0,x(t0)). |
Theorem 4.1. Under the hypotheses (H1),(H2). Then (4.1) has a unique solution on J.
Proof. For x∈C(J,R), denote by
Br={x∈C1(J,R):‖x‖≤r},r>0 |
with
‖X(t0)‖+[l∑i=1ci(ψ(b)−ψ(a))γiΓ(γi+1)+c(ψ(b)−ψ(a))γΓ(γ+1)]r≤r. |
On Br, we define the operator Γx as
(Γx)(t)=X(t0)+l∑i=1t0Iγiψgi(t,x(t))+t0Iγψf(t,x(t)), t0,t∈J. | (4.4) |
By (H1),(H2), we have
‖(Γx)‖≤‖X(t0)‖+l∑i=1‖t0Iγiψgi(t,x(t))‖+‖t0Iγψf(t,x(t))‖≤‖X(t0)‖+l∑i=1t0Iγiψci‖x‖+t0Iγψc‖x‖≤‖X(t0)‖+[l∑i=1ci(ψ(t)−ψ(t0))γiΓ(γi+1)+c(ψ(t)−ψ(t0))γΓ(γ+1)]r≤‖X(t0)‖+[l∑i=1ci(ψ(b)−ψ(a))γiΓ(γi+1)+c(ψ(b)−ψ(a))γΓ(γ+1)]r≤r, t0,t∈J, | (4.5) |
Then for x,y∈C(J,R), by (H2), we get
‖Γx−Γy‖=‖l∑i=1[t0Iγiψgi(t,x(t))−t0Iγiψgi(t,y(t))]+[t0Iγψf(t,x(t))−t0Iγψf(t,y(t))]‖≤l∑i=1t0Iγiψ‖gi(t,x(t))−gi(t,y(t))‖+t0Iγψ‖f(t,x(t))−f(t,y(t))‖≤l∑i=1t0Iγiψci‖x−y‖+t0Iγψc‖x−y‖≤[l∑i=1cit0Iγiψ1+ct0Iγψ1]‖x−y‖≤[l∑i=1ci(ψ(t)−ψ(t0))γiΓ(γi+1)+c(ψ(t)−ψ(t0))γΓ(γ+1)]‖x−y‖≤H‖x−y‖<‖x−y‖, | (4.6) |
i.e. the operator Γ has a unique solution on J.
Theorem 4.2. Under the hypotheses (H′1),(H2). Then (4.1) has at least one solution on J.
Proof. Consider the Cauchy problem (4.1). Define the operator Γ as in (4.4).
Claim 1: Γ is continuous. Let xn be a sequence such that xn→x∈C1(J,R). Then since gi,f are continuous and (H′1), then we have
‖(Γxn)(t)−(Γx)(t)‖≤l∑i=1‖t0Iγiψ[gi(t,xn(t))−gi(t,x(t))‖+‖t0Iγψ[f(t,xn(t))−f(t,x(t))]‖≤ε[l∑i=1cit0Iγiψ1+ct0Iγψ1]‖x−xn‖→0, t∈J. | (4.7) |
Thus (Γxn)→(Γx) in C1(J,R) and Γ is continuous.
Claim 2: Γ maps bounded sets into bounded sets in C1(J,R). Denote by Br as in Theorem 4.1. Then as (4.5), we get that ‖(Γx)‖≤r, t∈J, which implies that ‖Γx‖≤r and the operator Γ is uniformly bounded.
Claim 3: Γ maps bounded sets into equi-continuous sets of C1(J,R). For any x∈Br, where Br is defined as in Claim 2. As t1→t2 for t1,t2∈J, we have
|(Γx)(t2)−(Γx)(t1)|≤l∑i=1|[t0Iγiψgi(t2,x(t2))−t0Iγiψgi(t1,x(t1))]|+|t0Iγψf(t2,x(t2))−t0Iγψf(t1,x(t1))|≤l∑i=11Γ(γi)[∫t1t0|((ψ(t2)−ψ(s))γ−1−(ψ(t1)−ψ(s))γ−1)ψ′(s)gi(s,x(s))|ds+∫t2t1|(ψ(t2)−ψ(s))γ−1ψ′(s)gi(s,x(s))|ds]+1Γ(γ)[∫t1t0|((ψ(t2)−ψ(s))γ−1−(ψ(t1)−ψ(s))γ−1)ψ′(s)f(s,x(s))|ds+∫t2t1|(ψ(t2)−ψ(s))γ−1ψ′(s)f(s,x(s))|ds]≤l∑i=1[εΓ(γi)∫t1t0|ψ′(s)gi(s,x(s))|ds+1Γ(γi)∫t2t1|(ψ(t2)−ψ(s))γi−1ψ′(s)gi(s,x(s))|ds]+εΓ(γ)[∫t1t0|ψ′(s)f(s,x(s))|ds+1Γ(γ)∫t2t1|(ψ(t2)−ψ(s))γ−1ψ′(s)f(s,x(s))|ds]≤l∑i=1[εΓ(γi)∫t1t0ψ′(s)ci(1+|x(s)|)ds+1Γ(γi)∫t2t1|(ψ(t2)−ψ(s))γi−1ψ′(s)ci(1+|x(s)|ds]+[εΓ(γ)∫t1t0ψ′(s)c(1+|x(s)|ds+1Γ(γ)∫t2t1(ψ(t2)−ψ(s))γ−1ψ′(s)c(1+|x(s)|ds]≤l∑i=1[ci(1+r)εΓ(γi)∫t1t0ψ′(s)ds+ci(1+r)Γ(γi)∫t2t1(ψ(t2)−ψ(s))γi−1ψ′(s)ds]+[c(1+r)εΓ(γ)∫t1t0ψ′(s)ds+c(1+r)Γ(γ)∫t2t1(ψ(t2)−ψ(s))γ−1ψ′(s)ds]≤l∑i=1[ci(1+r)εΓ(γi)(ψ(t1)−ψ(t0))+ci(1+r)(ψ(t2)−ψ(t1))γiΓ(γi+1)]+[c(1+r)εΓ(γ)(ψ(t1)−ψ(t0))+c(1+r)(ψ(t2)−ψ(t1))γΓ(γ+1)]→0. | (4.8) |
Thus ‖(Γx)(ˆt2)−(Γx)(ˆt1)‖→0, as ˆt1→ˆt2. As a consequence of Claims 1–3, it follows that Γ:C1(J,R)→C1(J,R) is continuous and completely continuous.
Claim 4: We show that the set K={x∈C1(J,R):x=λΓx for some 0<λ<1} is bounded. Let x∈K, then x=λΓx for some 0<λ<1. Thus we have
x(t)=λ[X(t0)+l∑i=1t0Iγiψgi(t,x(t))+t0Iγψf(t,x(t))], t0,t∈J. | (4.9) |
By (H′1), we have
‖x(t)‖≤‖X(t0)‖+l∑i=1‖t0Iγiψgi(t,x(t))‖+‖t0Iγψf(t,x(t))‖≤‖X(t0)‖+l∑i=1t0Iγiψ‖gi(t,x(t))‖+t0Iγψ‖f(t,x(t))‖≤‖X(t0)‖+l∑i=1cit0Iγiψ1+ct0Iγψ1+l∑i=1t0Iγiψci‖x(t)‖+t0Iγψc‖x(t)‖, t0,t∈J, | (4.10) |
and Theorem 3.2 implies that
‖x(t)‖≤(‖X(t0)‖+l∑i=1cit0Iγiψ1+ct0Iγψ1)×[1+∞∑k=1Ckm∑j1=1⋯m∑jk=1Γ(αj1)×⋯×Γ(αjk)Γ(k∑ν=1αjν)∫taψ′(τ)(ψ(t)−ψ(τ))k∑ν=1αjν−1dτ]=(‖X(t0)‖+l∑i=1cit0Iγiψ1+ct0Iγψ1)[1+∞∑k=1Ckm∑j1=1⋯×m∑jk=1Γ(αj1)Γ(αj2)×⋯×Γ(αjk)(k∑ν=1αjν)Γ(k∑ν=1αjν)(ψ(b)−ψ(a))(k∑ν=1αjν)], | (4.11) |
where C=max{c1,⋯,cl,c},αjk∈{γ1,⋯,γl,γ},k∈N and which shows that the set K is bounded.
By Theorem 2.1, the operator Γ has a fixed point, which is a solution of problem (4.1).
Consider the following neutral ψ-fractional differential equation
C1Dγψ[x(t)−1Iγ1ψgi(t,x(t))]=f(t,x(t)), t∈J=[1,6], | (5.1) |
where γ=23,γ1=34,i=1,g1(t,x(t))=√t5sinx(t),f(t,x(t))=lnt4arctanx(t). Then g1,f are continuous and satisfy the assumptions (H1),(H2) with ψ(t)=3√t,c1=√65,c=ln64 and
c1(ψ(t)−ψ(t0))γ1Γ(γ1+1)+c(ψ(t)−ψ(t0))γΓ(γ+1)=√65(3√6−1)74Γ(74)+ln64(3√6−1)23Γ(53)=0.8918<1. |
Then by Theorem 4.1, (5.1) has a unique solution x(t) on the interval [1,6].
By Theorem 4.2, (5.1) also has at least one solution x(t) on the interval [1,6].
In this paper, we obtained a new generalized Gronwall inequality involving ψ-ractional integral operator that include the results in [23]. Furthermore, the Riemann-Liouville, the Hadamard, the Katugampola fractional integrals etc can be considered uniformly. The feasibility of the main results is checked by considering the existence of solutions of a type of neutral fractional differential equation involving ψ-fractional derivative. In the future, we will consider the stabilities for the neutral ψ-fractional differential equation.
We are really thankful to the reviewers for their careful reading of our manuscript and their many insightful comments and valuable suggestions that have improved the quality of our manuscript. This work is supported by the Key Natural Science Project of Anhui Provincial Education Department (KJ2018A0027).
The authors declare that there are no conflicts of interest.
[1] | D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Vol. 840, Springer Berlin, Heidelberg, 1981. https://doi.org/10.1007/BFb0089647 |
[2] |
H. P. Ye, J. M. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075–1081. https://doi.org/10.1016/j.jmaa.2006.05.061 doi: 10.1016/j.jmaa.2006.05.061
![]() |
[3] |
M. P. Lazarević, A. M. Spasić, Finite-time stability analysis of fractional order time-delay systems: Gronwall'sapproach, Math. Comp. Model., 49 (2009), 475–481. https://doi.org/10.1016/j.mcm.2008.09.011 doi: 10.1016/j.mcm.2008.09.011
![]() |
[4] |
A. Al-Jaser, K. M. Furati, Singular fractional integro-differential inequalities and applications, J. Inequal. Appl., 2011 (2011), 110. https://doi.org/10.1186/1029-242X-2011-110 doi: 10.1186/1029-242X-2011-110
![]() |
[5] |
J. R. Wang, Y. Zhou, Existence of mild solutions for fractional delay evolution systems, Appl. Math. Comput., 218 (2011), 357–367. https://doi.org/10.1016/j.amc.2011.05.071 doi: 10.1016/j.amc.2011.05.071
![]() |
[6] |
J. R. Wang, L. L. Lv, Y. Zhou, Boundary value problems for fractional differential equations involving Caputo derivative in Banach spaces, J. Appl. Math. Comput., 38 (2012), 209–224. https://doi.org/10.1007/s12190-011-0474-3 doi: 10.1007/s12190-011-0474-3
![]() |
[7] |
Y. Jalilian, R. Jalilian, Existence of solutions of delay fractional differential equations, Mediterr. J. Math., 10 (2013), 1731–1747. https://doi.org/10.1007/s00009-013-0281-1 doi: 10.1007/s00009-013-0281-1
![]() |
[8] |
D. N. Chalishajar, K. Karthikeyan, Eexistence and uniqueness results for bounadary value problems of higher order fractional integro-differential equations involving Gronwall's inequality in Banach spaces, Acta Math. Sci., 33 (2013), 758–772. https://doi.org/10.1016/S0252-9602(13)60036-3 doi: 10.1016/S0252-9602(13)60036-3
![]() |
[9] |
W. S. Wang, Estimation of unknown function of a class of integral inequalities and applications in fractional integral equaations, Appl. Math. Comput., 268 (2015), 1029–1037. https://doi.org/10.1016/j.amc.2015.07.015 doi: 10.1016/j.amc.2015.07.015
![]() |
[10] |
Q. Wang, D. C. Lu, Y. Y. Fang, Stability analysis of impulsive fractional differential systems with delay, Appl. Math. Lett., 40 (2015), 1–6. https://doi.org/10.1016/j.aml.2014.08.017 doi: 10.1016/j.aml.2014.08.017
![]() |
[11] |
Y. Jalilian, Fractional integr inequalities and their applications to fractional differential equations, Acta Math. Sci., 36 (2016), 1317–1330. https://doi.org/10.1016/S0252-9602(16)30071-6 doi: 10.1016/S0252-9602(16)30071-6
![]() |
[12] |
Z. Zhang, Z. Wei, A generalized Gronwall inequality and its application to a fractional neutral evolution inclusions, J. Inequal. Appl., 2016 (2016), 45. https://doi.org/10.1186/s13660-016-0991-6 doi: 10.1186/s13660-016-0991-6
![]() |
[13] |
J. L. Sheng, W. Jiang, Existence and uniqueness of the solution of fractional damped dynamical systems, Adv. Differ. Equ., 2017 (2017), 16. https://doi.org/10.1186/s13662-016-1049-2 doi: 10.1186/s13662-016-1049-2
![]() |
[14] |
V. N. Phat, N. T. Thanh, New criteria for finite-time stability of nonlinear fractional-order delay systems: A Gronwall inequality approach, Appl. Math. Lett., 83 (2018), 169–175. https://doi.org/10.1016/j.aml.2018.03.023 doi: 10.1016/j.aml.2018.03.023
![]() |
[15] | A. Ekinci, M. E. Ozdemir, Some new integral inequalities via Riemann-Liouville integral operators, Appl. Comput. Math., 18 (2019), 288–295. |
[16] |
J. R. L. Webb, Weakly singular Gronwall inequalities and applications to fractional differential equations, J. Math. Anal. Appl., 471 (2019), 692–711. https://doi.org/10.1016/j.jmaa.2018.11.004 doi: 10.1016/j.jmaa.2018.11.004
![]() |
[17] |
R. Almeida, A Gronwall inequality for a general Caputo fractional operator, Math. Inequal. Appl., 20 (2017), 1089–1105. https://doi.org/10.7153/mia-2017-20-70 doi: 10.7153/mia-2017-20-70
![]() |
[18] |
K. S. Nisar, G. Rahman, J. Choi, S. Mubeen, M. Arshad, Certain Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249–263. https://doi.org/10.7858/eamj.2018.018 doi: 10.7858/eamj.2018.018
![]() |
[19] |
Y. Adjabi, F. Jarad, T. Abdeljawad, On generalized fractional operators and a Gronwall type inequality with applications, Filomat, 31 (2017), 5457–5473. https://doi.org/10.2298/FIL1717457A doi: 10.2298/FIL1717457A
![]() |
[20] | Ş. Kızıl, M. A. Ardıç, Inequalities for strongly convex functions via Atangana-Baleanu integral operators, Turkish J. Sci., 6 (2021), 96–109. |
[21] |
J. Alzabut, T. Abdeljawad, F. Jarad, W. Sudsutad, A Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 2019 (2019), 101. https://doi.org/10.1186/s13660-019-2052-4 doi: 10.1186/s13660-019-2052-4
![]() |
[22] |
J. V. D. C. Sousa, E. C. D. Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
![]() |
[23] | J. V. D. C. Sousa, E. C. D. Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, arXiv, 2017. https://doi.org/10.48550/arXiv.1709.03634 |
[24] |
J. Ren, C. B. Zhai, Stability analysis of generalized neutral fractional differential systems with time delays, Appl. Math. Lett., 116 (2021), 106987. https://doi.org/10.1016/j.aml.2020.106987 doi: 10.1016/j.aml.2020.106987
![]() |
[25] |
D. H. Jiang, C. Z. Bai, On coupled Gronwall inequalities involving a ψ-fractional integral operator with its applications, AIMS Math., 7 (2022), 7728–7741. https://doi.org/10.3934/math.2022434 doi: 10.3934/math.2022434
![]() |
[26] | H. Kalsoom, M. A. Alı, M. Abbas, H. Budak, G. Murtaza, Generalized quantum Montgomery identity and Ostrowski type inequalities for preinvex functions, TWMS J. Pure Appl. Math., 13 (2022), 72–90. |
[27] |
A. Salim, J. E. Lazreg, B. Ahmad, M. Benchohra, J. J. Nieto, A study on k-generalized ψ-Hilfer derivative operator, Vietnam J. Math., 2022. https://doi.org/10.1007/s10013-022-00561-8 doi: 10.1007/s10013-022-00561-8
![]() |
[28] |
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
![]() |
[29] | S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential s-convex functions, Turk. J. Sci., 5 (2020), 140–146. |
[30] |
S. S. Zhou, S. Rashid, S. Parveen, A. O. Akdemir, Z. Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, AIMS Math., 6 (2021), 4507–4525. https://doi.org/10.3934/math.2021267 doi: 10.3934/math.2021267
![]() |
[31] | V. Kiryakova, A brief story about the operators of generalized fractional calculus, Fract. Calc. Appl. Anal., 11 (2008), 203–220. |
[32] |
R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41 (2018), 336–352. https://doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
![]() |
[33] |
A. Seemab, M. U. Rehman, J. Alzabut, A. Hamdi, On the existence of positive solutions for generalized fractional boundary value problems, Bound. Value Probl., 2019 (2019), 186. https://doi.org/10.1186/s13661-019-01300-8 doi: 10.1186/s13661-019-01300-8
![]() |
[34] |
F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn. Syst. Ser. S, 13 (2019), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
![]() |
[35] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2003. https://doi.org/10.1007/978-0-387-21593-8 |
[36] | R. Wong, Asymptotic approximations of integrals, Philadelphia: Society for Industrial and Applied Mathematics, 2001. |
1. | Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan, A generalized Gronwall inequality via $ \psi $-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system, 2024, 9, 2473-6988, 24443, 10.3934/math.20241191 |