Correction

Correction: Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag

  • Correction of: AIMS Mathematics 6: 8525-8543
  • Received: 27 September 2021 Accepted: 27 September 2021 Published: 11 October 2021
  • Citation: Gamal A. Mosa, Mohamed A. Abdou, Ahmed S. Rahby. Correction: Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag[J]. AIMS Mathematics, 2022, 7(1): 258-259. doi: 10.3934/math.2022016

    Related Papers:

    [1] Gamal A. Mosa, Mohamed A. Abdou, Ahmed S. Rahby . Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag. AIMS Mathematics, 2021, 6(8): 8525-8543. doi: 10.3934/math.2021495
    [2] R. T. Matoog, M. A. Abdou, M. A. Abdel-Aty . New algorithms for solving nonlinear mixed integral equations. AIMS Mathematics, 2023, 8(11): 27488-27512. doi: 10.3934/math.20231406
    [3] A. M. Al-Bugami . Nonlinear Fredholm integro-differential equation in two-dimensional and its numerical solutions. AIMS Mathematics, 2021, 6(10): 10383-10394. doi: 10.3934/math.2021602
    [4] Hassanein Falah, Parviz Darania, Saeed Pishbin . Study of numerical treatment of functional first-kind Volterra integral equations. AIMS Mathematics, 2024, 9(7): 17414-17429. doi: 10.3934/math.2024846
    [5] Faheem Khan, Tayyaba Arshad, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar . Numerical solutions of 2D Fredholm integral equation of first kind by discretization technique. AIMS Mathematics, 2020, 5(3): 2295-2306. doi: 10.3934/math.2020152
    [6] Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876
    [7] Hawsar Ali Hama Rashid, Mudhafar Fattah Hama . Approximate solutions for a class of nonlinear Volterra-Fredholm integro-differential equations under Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 463-483. doi: 10.3934/math.2023022
    [8] A. Z. Amin, M. A. Abdelkawy, Amr Kamel Amin, António M. Lopes, Abdulrahim A. Alluhaybi, I. Hashim . Legendre-Gauss-Lobatto collocation method for solving multi-dimensional systems of mixed Volterra-Fredholm integral equations. AIMS Mathematics, 2023, 8(9): 20871-20891. doi: 10.3934/math.20231063
    [9] Apassara Suechoei, Parinya Sa Ngiamsunthorn . Extremal solutions of $ \varphi- $Caputo fractional evolution equations involving integral kernels. AIMS Mathematics, 2021, 6(5): 4734-4757. doi: 10.3934/math.2021278
    [10] Sharifah E. Alhazmi, M. A. Abdou, M. Basseem . Physical phenomena of spectral relationships via quadratic third kind mixed integral equation with discontinuous kernel. AIMS Mathematics, 2023, 8(10): 24379-24400. doi: 10.3934/math.20231243


  • Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag

    by G. A. Mosa, M. A. Abdou and A. S. Rahby. AIMS Mathematics, 2021, 6(8): 8525–8543.

    DOI: 10.3934/math.2021495

    These errata give the following correct statements for the corresponding statements on the cited page of our published article[1].

    In page 8528, in the first line we should replace "plan" with "plane" and "Eq (2.3)" by "Eq (2.2)". In addition, correcting of (2.4) as given below in (0.1).

    |λ|<|μ|(2qT2)A1D1(2qB2T+B3T2). (0.1)

    In page 8529, correcting of η1=Tq+|λqμ|A1D1(qB2+TB3)<1 in (2.10) is η1=T22q+|λ|q|μ|A1D1(qB2T+B3T22)<1. Therefore, correcting (2.11) as given in (0.1).

    In page 8530, correcting of (2.14) is

    ¯Wϕ=qμH(x,t)+Wϕ and  ¯Wϕ=qμϕ, (0.2)

    where

    Wϕ=W1ϕ+W2ϕ+W3ϕ,  W1ϕ=μt0ϕ(x,z)dz,
    W2ϕ=λq0baΘ(t,τ)K(x,y)G(y,τ,ϕ(y,τ))dydτ,

    and

     W3ϕ=λt+qqbaΨ(t,τ)K(x,y)G(y,τ,ϕ(y,τ))dydτ.

    Moreover, (2.15) becomes

    Wϕμt0ϕ(x,z)dz+λq0ba Θ(t,τ) K(x,y)G(y,τ,ϕ(y,τ))dy dτ+λt+qqba Ψ(t,τ)K(x,y)G(y,τ,ϕ(y,τ))dy dτ. (0.3)

    In addition, correcting of η2=Tq+|λq|(qB2+TB3)A1D2<1 in (2.16) is η2=|μ|T22+|λ|A1D2(qTB2+B3T22)<1 and correcting of the last inequality in Section 2.2.1 is |λ|<2|μ|T2(2qTB2+B3T2)A1D2.

    Also, (2.17) becomes

    ¯Wϕ1¯Wϕ2=Wϕ1Wϕ2η3ϕ1ϕ2,η3=|μ|T22+|λ|A1D1(qTB2+B3T22)<1. (0.4)

    In page 8531, correcting of the first inequality is |λ|<2|μ|T2(2qTB2+B3T2)A1D1.

    The authors declare that they have no competing interests.



    [1] G. A. Mosa, M. A. Abdou, A. S. Rahby, Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag, AIMS Math., 6 (2021), 8525–8543. doi: 10.3934/math.2021495. doi: 10.3934/math.2021495
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2435) PDF downloads(91) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog