Citation: Gamal A. Mosa, Mohamed A. Abdou, Ahmed S. Rahby. Correction: Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag[J]. AIMS Mathematics, 2022, 7(1): 258-259. doi: 10.3934/math.2022016
[1] | Gamal A. Mosa, Mohamed A. Abdou, Ahmed S. Rahby . Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag. AIMS Mathematics, 2021, 6(8): 8525-8543. doi: 10.3934/math.2021495 |
[2] | R. T. Matoog, M. A. Abdou, M. A. Abdel-Aty . New algorithms for solving nonlinear mixed integral equations. AIMS Mathematics, 2023, 8(11): 27488-27512. doi: 10.3934/math.20231406 |
[3] | A. M. Al-Bugami . Nonlinear Fredholm integro-differential equation in two-dimensional and its numerical solutions. AIMS Mathematics, 2021, 6(10): 10383-10394. doi: 10.3934/math.2021602 |
[4] | Hassanein Falah, Parviz Darania, Saeed Pishbin . Study of numerical treatment of functional first-kind Volterra integral equations. AIMS Mathematics, 2024, 9(7): 17414-17429. doi: 10.3934/math.2024846 |
[5] | Faheem Khan, Tayyaba Arshad, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar . Numerical solutions of 2D Fredholm integral equation of first kind by discretization technique. AIMS Mathematics, 2020, 5(3): 2295-2306. doi: 10.3934/math.2020152 |
[6] | Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876 |
[7] | Hawsar Ali Hama Rashid, Mudhafar Fattah Hama . Approximate solutions for a class of nonlinear Volterra-Fredholm integro-differential equations under Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 463-483. doi: 10.3934/math.2023022 |
[8] | A. Z. Amin, M. A. Abdelkawy, Amr Kamel Amin, António M. Lopes, Abdulrahim A. Alluhaybi, I. Hashim . Legendre-Gauss-Lobatto collocation method for solving multi-dimensional systems of mixed Volterra-Fredholm integral equations. AIMS Mathematics, 2023, 8(9): 20871-20891. doi: 10.3934/math.20231063 |
[9] | Apassara Suechoei, Parinya Sa Ngiamsunthorn . Extremal solutions of $ \varphi- $Caputo fractional evolution equations involving integral kernels. AIMS Mathematics, 2021, 6(5): 4734-4757. doi: 10.3934/math.2021278 |
[10] | Sharifah E. Alhazmi, M. A. Abdou, M. Basseem . Physical phenomena of spectral relationships via quadratic third kind mixed integral equation with discontinuous kernel. AIMS Mathematics, 2023, 8(10): 24379-24400. doi: 10.3934/math.20231243 |
Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag
by G. A. Mosa, M. A. Abdou and A. S. Rahby. AIMS Mathematics, 2021, 6(8): 8525–8543.
DOI: 10.3934/math.2021495
These errata give the following correct statements for the corresponding statements on the cited page of our published article[1].
In page 8528, in the first line we should replace "plan" with "plane" and "Eq (2.3)" by "Eq (2.2)". In addition, correcting of (2.4) as given below in (0.1).
|λ|<|μ|(2q−T2)A1D1(2qB2T+B3T2). | (0.1) |
In page 8529, correcting of η1=Tq+|λqμ|A1D1(qB2+TB3)<1 in (2.10) is η1=T22q+|λ|q|μ|A1D1(qB2T+B3T22)<1. Therefore, correcting (2.11) as given in (0.1).
In page 8530, correcting of (2.14) is
¯Wϕ=qμH(x,t)+Wϕ and ¯Wϕ=qμϕ, | (0.2) |
where
Wϕ=−W1ϕ+W2ϕ+W3ϕ, W1ϕ=μ∫t0ϕ(x,z)dz, |
W2ϕ=λ∫q0∫baΘ(t,τ)K(x,y)G(y,τ,ϕ(y,τ))dydτ, |
and
W3ϕ=λ∫t+qq∫baΨ(t,τ)K(x,y)G(y,τ,ϕ(y,τ))dydτ. |
Moreover, (2.15) becomes
‖Wϕ‖≤‖μ∫t0ϕ(x,z)dz‖+‖λ∫q0∫ba Θ(t,τ) K(x,y)G(y,τ,ϕ(y,τ))dy dτ‖+‖λ∫t+qq∫ba Ψ(t,τ)K(x,y)G(y,τ,ϕ(y,τ))dy dτ‖. | (0.3) |
In addition, correcting of η2=Tq+|λq|(qB2+TB3)A1D2<1 in (2.16) is η2=|μ|T22+|λ|A1D2(qTB2+B3T22)<1 and correcting of the last inequality in Section 2.2.1 is |λ|<2−|μ|T2(2qTB2+B3T2)A1D2.
Also, (2.17) becomes
‖¯Wϕ1−¯Wϕ2‖=‖Wϕ1−Wϕ2‖≤η3‖ϕ1−ϕ2‖,η3=|μ|T22+|λ|A1D1(qTB2+B3T22)<1. | (0.4) |
In page 8531, correcting of the first inequality is |λ|<2−|μ|T2(2qTB2+B3T2)A1D1.
The authors declare that they have no competing interests.
[1] |
G. A. Mosa, M. A. Abdou, A. S. Rahby, Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag, AIMS Math., 6 (2021), 8525–8543. doi: 10.3934/math.2021495. doi: 10.3934/math.2021495
![]() |