Research article

Decay properties for evolution-parabolic coupled systems related to thermoelastic plate equations

  • Received: 13 July 2021 Accepted: 27 September 2021 Published: 11 October 2021
  • MSC : 35B40, 35M31, 35Q74, 74F05

  • In this paper, we consider the Cauchy problem for a family of evolution-parabolic coupled systems, which are related to the classical thermoelastic plate equations containing non-local operators. By using diagonalization procedure and WKB analysis, we derive representation of solutions in the phase space. Then, sharp decay properties in a framework of $ L^p-L^q $ are investigated via these representations. Particularly, some thresholds for the regularity-loss type decay properties are found.

    Citation: Zihan Cai, Yan Liu, Baiping Ouyang. Decay properties for evolution-parabolic coupled systems related to thermoelastic plate equations[J]. AIMS Mathematics, 2022, 7(1): 260-275. doi: 10.3934/math.2022017

    Related Papers:

  • In this paper, we consider the Cauchy problem for a family of evolution-parabolic coupled systems, which are related to the classical thermoelastic plate equations containing non-local operators. By using diagonalization procedure and WKB analysis, we derive representation of solutions in the phase space. Then, sharp decay properties in a framework of $ L^p-L^q $ are investigated via these representations. Particularly, some thresholds for the regularity-loss type decay properties are found.



    加载中


    [1] G. Avalos, I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1–28.
    [2] S. Aydinlik, A. Kiris, W. Sumelka, Nonlocal vibration analysis of microstretch plates in the framework of space-fractional mechanics-theory and validation, Eur. Phys. J. Plus, 136 (2021), 1–17. doi: 10.1140/epjp/s13360-021-01110-x. doi: 10.1140/epjp/s13360-021-01110-x
    [3] W. H. Chen, Cauchy problems for thermoelastic plate equations with different damping mechanisms, Commun. Math. Sci., 18 (2020), 429–457. doi: 10.4310/cms.2020.v18.n2.a7. doi: 10.4310/cms.2020.v18.n2.a7
    [4] W. H. Chen, Decay properties and asymptotic profiles for elastic waves with Kelvin-Voigt damping in 2D, Asymptotic Anal., 117 (2019), 113–140. doi: 10.3233/ASY-191548. doi: 10.3233/ASY-191548
    [5] W. H. Chen, Dissipative structure and diffusion phenomena for doubly dissipative elastic waves in two space dimensions, J. Math. Anal. Appl., 486 (2020), 123922. doi: 10.1016/j.jmaa.2020.123922. doi: 10.1016/j.jmaa.2020.123922
    [6] W. H. Chen, M. Reissig, Weakly coupled systems of semilinear elastic waves with different damping mechanisms in 3D, Math. Method. Appl. Sci., 42 (2019), 667–709. doi: 10.1002/mma.5370. doi: 10.1002/mma.5370
    [7] G. Chen, D. L. Russell, A mathematical model for linear elastic systems with structural damping, Q. Appl. Math., 39 (1981), 433–454. doi: 10.1090/QAM/644099. doi: 10.1090/QAM/644099
    [8] S. P. Chen, R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pac. J. Math., 136 (1989), 15–55. doi: 10.2140/pjm.1989.136.15. doi: 10.2140/pjm.1989.136.15
    [9] S. P. Chen, R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: The case $0 < \alpha < \frac{1}{2}$, Proc. Amer. Math. Soc., 110 (1990), 401–415. doi: 10.1090/S0002-9939-1990-1021208-4. doi: 10.1090/S0002-9939-1990-1021208-4
    [10] F. Dell'Oro, J. E. Muñoz Rivera, V. Pata, Stability properties of an abstract system with applications to linear thermoelastic plates, J. Evol. Equ., 13 (2013), 777–794. doi: 10.1007/s00028-013-0202-6. doi: 10.1007/s00028-013-0202-6
    [11] R. Denk, R. Racke, $L^p$-resolvent estimates and time decay for generalized thermoelastic plate equations, Electron. J. Differ. Equ., 2006 (2006), 1–16. doi: 10.1142/9789812772992_0015. doi: 10.1142/9789812772992_0015
    [12] R. Denk, R. Racke, Y. Shibata, $L_p$ theory for the linear thermoelastic plate equations in bounded and exterior domains, Adv. Differ. Equ., 14 (2009), 685–715.
    [13] R. Denk, R. Racke, Y. Shibata, Local energy decay estimate of solutions to the thermoelastic plate equations in two- and three-dimensional exterior domains, Z. Anal. Anwend., 29 (2010), 21–62. doi: 10.4171/ZAA/1396. doi: 10.4171/ZAA/1396
    [14] J. H. Hao, Z. Y. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations, Z. Angew. Math. Phys., 64 (2013), 1145–1159. doi: 10.1007/s00033-012-0274-0. doi: 10.1007/s00033-012-0274-0
    [15] J. H. Hao, Z. Y. Liu, J. M. Yong, Regularity analysis for an abstract system of coupled hyperbolic and parabolic equations, J. Differ. Equ., 259 (2015), 4763–4798. doi: 10.1016/j.jde.2015.06.010. doi: 10.1016/j.jde.2015.06.010
    [16] F. Huang, On the mathematical model for linear elastic systems with analytic damping, SIAM J. Control Optim., 26 (1988), 714–724. doi: 10.1137/0326041. doi: 10.1137/0326041
    [17] F. Huang, K. Liu, Holomorphic property and exponential stability of the semigroup associated with linear elastic systems with damping, Ann. Differ. Equ., 4 (1988), 411–424.
    [18] J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889–899. doi: 10.1137/0523047. doi: 10.1137/0523047
    [19] I. Lasiecka, R. Triggiani, Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations, Adv. Differ. Equ., 3 (1998), 387–416.
    [20] I. Lasiecka, R. Triggiani, Analyticity, and lack thereof, of thermo-elastic semigroups, ESAIM: Proc., 4 (1998), 199–222. doi: 10.1051/proc:1998029.
    [21] I. Lasiecka, R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C., Abstr. Appl. Anal., 3 (1998), 153–169. doi: 10.1155/S1085337598000487. doi: 10.1155/S1085337598000487
    [22] I. Lasiecka, R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm.-Sci., 27 (1998), 457–482.
    [23] Y. Liu, W. Chen, Asymptotic profifiles of solutions for regularity-loss-type generalized thermoelastic plate equations and their applications, Z. Angew. Math. Phys., 71 (2020), 1–26. doi: 10.1007/s00033-020-1283-z. doi: 10.1007/s00033-020-1283-z
    [24] K. Liu, Z. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48 (1997), 885–904. doi: 10.1007/s000330050071. doi: 10.1007/s000330050071
    [25] Z. Liu, J. Yong, Qualitative properties of certain $C_0$ semigroups arising in elastic systems with various dampings, Adv. Differ. Equ., 3 (1998), 643–686. doi: 10.1016/S1474-6670(17)56476-9. doi: 10.1016/S1474-6670(17)56476-9
    [26] K. Jachmann, A unified treatment of models of thermoelasticity, TU Bergakademie Freiberg, 2008.
    [27] J. E. Muñoz Rivera, R. Racke, Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547–1563. doi: 10.1137/S0036142993255058. doi: 10.1137/S0036142993255058
    [28] J. E. Muñoz Rivera, R. Racke, Large solutions and smoothing properties for nonlinear thermoelastic systems, J. Differ. Equ., 127 (1996), 454–483. doi: 10.1006/jdeq.1996.0078. doi: 10.1006/jdeq.1996.0078
    [29] S. Patnaik, S. Sidhardh, F. Semperlotti, Fractional-order models for the static and dynamic analysis of nonlocal plates, Commun. Nonlinear Sci., 95 (2021), 105601. doi: 10.1016/j.cnsns.2020.105601. doi: 10.1016/j.cnsns.2020.105601
    [30] S. Patnaik, S. Sidhardh, F. Semperlotti, Nonlinear thermoelastic fractional-order model of nonlocal plates: Application to postbuckling and bending response, Thin-Wall. Struct., 164 (2021), 107809. doi: 10.1016/j.tws.2021.107809. doi: 10.1016/j.tws.2021.107809
    [31] R. Racke, Y. Ueda, Dissipative structures for thermoelastic plate equations in $ \mathbb{R}^n$, Adv. Differ. Equ., 21 (2016), 610–630.
    [32] R. Racke, Y. Ueda, Nonlinear thermoelastic plate equations-Global existence and decay rates for the Cauchy problem, J. Differ. Equ., 263 (2017), 8138–8177. doi: 10.1016/j.jde.2017.08.036. doi: 10.1016/j.jde.2017.08.036
    [33] M. Reissig, Structurally damped elastic waves in 2D, Math. Method. Appl. Sci., 39 (2016), 4618–4628. doi: 10.1002/mma.3888. doi: 10.1002/mma.3888
    [34] M. Reissig, Y. G. Wang, Cauchy problems for linear thermoelastic systems of type III in one space variable, Math. Method. Appl. Sci., 28 (2005), 1359–1381. doi: 10.1002/mma.619. doi: 10.1002/mma.619
    [35] B. Said-Houari, Decay properties of linear thermoelastic plates: Cattaneo versus Fourier law, Appl. Anal., 92 (2013), 424–440. doi: 10.1080/00036811.2011.625015. doi: 10.1080/00036811.2011.625015
    [36] Y. G. Wang, L. Yang, $L^p-L^q$ decay estimates for Cauchy problems of linear thermoelastic systems with second sound in three dimensions, P. Roy. Soc. Edinb. A, 136 (2006), 189–207. doi: 10.1017/s0308210500004510. doi: 10.1017/s0308210500004510
    [37] J. Xu, N. Mori, S. Kawashima, $L^p-L^q-L^r$ estimates and minimal decay regularity for compressible Euler-Maxwell equations, J. Math. Pures Appl., 104 (2015), 965–981. doi: 10.1016/j.matpur.2015.07.001. doi: 10.1016/j.matpur.2015.07.001
    [38] K. Yagdjian, The Cauchy problem for hyperbolic operators. Multiple characteristics. Micro-local approach (Mathematical Topics 12), Berlin: Akademie Verlag, 1997.
    [39] H. Yu, G. J. Xu, Z. Q. Zheng, Transmission characteristics of terahertz waves propagation in magnetized plasma using the WKB method, Optik, 188 (2019), 244–250. doi: 10.1016/j.ijleo.2019.05.061. doi: 10.1016/j.ijleo.2019.05.061
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2059) PDF downloads(108) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog