Let $ f $ be a meromorphic function, $ R $ be a nonconstant rational function and $ k $ be a positive integer. In this paper, we consider the Schwarzian differential equation of the form
$ \begin{align*} \left[\frac{f'''}{f'}-\frac{3}{2}\left(\frac{f''}{f'}\right)^{2}\right]^{k} = R(z). \end{align*} $
We investigate the uniqueness of meromorphic solutions of the above Schwarzian differential equation if the meromorphic solution $ f $ shares three values with any other meromorphic function.
Citation: Dan-Gui Yao, Zhi-Bo Huang, Ran-Ran Zhang. Uniqueness for meromorphic solutions of Schwarzian differential equation[J]. AIMS Mathematics, 2021, 6(11): 12619-12631. doi: 10.3934/math.2021727
Let $ f $ be a meromorphic function, $ R $ be a nonconstant rational function and $ k $ be a positive integer. In this paper, we consider the Schwarzian differential equation of the form
$ \begin{align*} \left[\frac{f'''}{f'}-\frac{3}{2}\left(\frac{f''}{f'}\right)^{2}\right]^{k} = R(z). \end{align*} $
We investigate the uniqueness of meromorphic solutions of the above Schwarzian differential equation if the meromorphic solution $ f $ shares three values with any other meromorphic function.
[1] | G. G. Gundersen, Meromorphic functions that share four values, T. Am. Math. Soc., 277 (1983), 545–567. doi: 10.1090/S0002-9947-1983-0694375-0 |
[2] | G. G. Gundersen, Correction to "Meromorphic functions that share four values", T. Am. Math. Soc., 304 (1987), 847–850. |
[3] | W. K. Hayman, Meromorphic functions, Oxford: Clarendon Press, 1964. |
[4] | K. Ishizaki, Admissible solutions of the Schwarzian differential equation, J. Aust. Math. Soc. A., 50 (1991), 258–278. doi: 10.1017/S1446788700032742 |
[5] | I. Laine, Nevanlinna theory and complex differential equations, Berlin: Walter de Gruyter, 1993. |
[6] | L. Liao, Z. Ye, On the growth of meromorphic solutions of the Schwarzian differential equations, J. Math. Anal. Appl., 309 (2005), 91–102. doi: 10.1016/j.jmaa.2004.12.011 |
[7] | E. Mues, Meromorphic functions sharing four values, Complex Var. Elliptic, 12 (1989), 167–179. |
[8] | R. Nevanlinna, Einige Eindentigkeitssätze in der theorie der meromorphen funktionen, Acta Math., 48 (1926), 367–391. doi: 10.1007/BF02565342 |
[9] | C. C. Yang, H. X. Yi, Uniquenss theory of meromorphic functions, Springer Science & Business Media, 2003. |
[10] | L. Yang, Value distribution theory and its new research (in Chinese), Beijing: Science Press, 1982. |