Spatial decay estimates for the Fochheimer fluid interfacing with a Darcy flow in a semi-infinite pipe was studied. The exponential decay result can be obtained by integrating a first-order differential inequality. The result can be seen as the usage of Saint-Venant's principle for the interfacing fluids.
Citation: Ze Wang, Yan Zhang, Jincheng Shi, Baiping Ouyang. Spatial decay estimates for the Fochheimer equations interfacing with a Darcy equations[J]. AIMS Mathematics, 2021, 6(11): 12632-12649. doi: 10.3934/math.2021728
Spatial decay estimates for the Fochheimer fluid interfacing with a Darcy flow in a semi-infinite pipe was studied. The exponential decay result can be obtained by integrating a first-order differential inequality. The result can be seen as the usage of Saint-Venant's principle for the interfacing fluids.
[1] | B. A. Boley, The determination of temperature, stresses and deflection in two-dimensional thermoelastic problem, J. Aero. Sci., 23 (1956), 67–75. doi: 10.2514/8.3503 |
[2] | C. O. Horgan, J. K. Knowles, Recent developments concerning Saint-Venant's principle, Adv. Appl. Mech., 23 (1983), 179–264. doi: 10.1016/S0065-2156(08)70244-8 |
[3] | C. O. Horgan, Recent developments concerning Saint-Venant's principle: An update, Appl. Mech. Rev., 42 (1989), 295–302. doi: 10.1115/1.3152414 |
[4] | C. O. Horgan, Recent development concerning Saint-Venant's principle: A second update, Appl. Mech. Rev., 49 (1996), s101–s111. doi: 10.1115/1.3101961 |
[5] | B. Straughan, Mathematical aspects of penetrative convection, CRC Press, 1993. |
[6] | P. N. Kaloni, J. Guo, Double diffusive convection in a porous medium, nonlinear stability and the Brinkman effect, Stud. Appl. Math., 94 (1995), 341–358. doi: 10.1002/sapm1995943341 |
[7] | J. Guo, Y. Qin, Steady nonlinear double-diffusive convection in a porous medium base upon the Brinkman-Forchheimer model, J. Math. Anal. Appl., 204 (1996), 138–155. doi: 10.1006/jmaa.1996.0428 |
[8] | P. N. Kaloni, Y. Qin, Spatial decay estimates for flow in the Brinkman-Forchheimer model, Quartely Appl. Math., 56 (1998), 71–87. doi: 10.1090/qam/1604880 |
[9] | L. E. Payne, B. Straughan, Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in porous media, J. Math. Pures Appl., 75 (1996), 225–271. |
[10] | L. E. Payne, B. Straughan, Convergence and continuous dependence for the Brinkman- Forchheimer equations, Stud. Appl. Math., 102 (1999), 419–439. doi: 10.1111/1467-9590.00116 |
[11] | L. E. Payne, B. Straughan, Structural stability for the Darcy equations of flow in porous media, P. Roy. Soc. A, 54 (1984), 1691–1698. |
[12] | L. E. Payne, J. C. Song, B. Straughan, Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity, P. Roy. Soc. A, 45 (1999), 2173–2190. |
[13] | K. A. Ames, L. E. Payne, Continuous dependence results for an ill-posed problem in nonlinear viscoelasticity, Z. Angew. Math. Phys., 48 (1997), 20–29. doi: 10.1007/PL00001467 |
[14] | F. Franchi, B. Straughan, Structural stability for the Brinkman equations of porous media, Math. Methods Appl. Sci., 19 (1996), 1335–1347. doi: 10.1002/(SICI)1099-1476(19961110)19:16<1335::AID-MMA842>3.0.CO;2-Y |
[15] | K. A. Ames, L. E. Payne, On stabilizing against modeling errors in a penetrative convection problem for a porous medium, Math. Mod. Methods Appl. Sci., 4 (1994), 733–740. doi: 10.1142/S0218202594000406 |
[16] | F. Franchi, Stabilization estimates for penetrative motions in porous media, Math. Methods Appl. Sci., 17 (1994), 11–20. doi: 10.1002/mma.1670170103 |
[17] | A. Morro, B. Straughan, Continuous dependence on the source parameters for convective motion in porous media, Nonlinear Anal.: Theory Methods Appl., 18 (1992), 307–315. doi: 10.1016/0362-546X(92)90147-7 |
[18] | Y. Qin, P. N. Kaloni, Steady convection in a porous medium based upon the Brinkman model, IMA J. Appl. Math., 48 (1992), 85–95. doi: 10.1093/imamat/48.1.85 |
[19] | L. Richardson, B. Straughan, Convection with temperature dependent viscosity in a porous medium: Nonlinear stability and the Brinkman effect, Atti Accad. Naz. Lincei, Cl. Sci. Fisiche, Mat. Nat., Rend. Lincei, Mat. Appl., 4 (1993), 223–230. |
[20] | L. E. Payne, J. C. Song, Spatial decay bounds for double diffusive convection in Brinkman flow, J. Differ. Equations, 244 (2008), 413–430. doi: 10.1016/j.jde.2007.10.003 |
[21] | W. Liu, J. T. Cui, Z. F. Wang, Numerical analysis and modeling of multiscale Forchheimer-Forchheimer coupled model for compressible fluid flow in fractured media aquifer system, Appl. Math. Comput., 353 (2019), 7–28. |
[22] | J. S. Kou, S. Y. Sun, Y. Q. Wu, A semi-analytic porosity evolution scheme for simulating wormhole propagation with the Darcy-Brinkman-Forchheimer model, J. Comput. Appl. Math., 348 (2019), 401–420. doi: 10.1016/j.cam.2018.08.055 |
[23] | Y. Liu, S. Z. Xiao, Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain, Nonlinear Anal.: Real World Appl., 42 (2018), 308–333. doi: 10.1016/j.nonrwa.2018.01.007 |
[24] | A. K. Alzahrani, Darcy-Forchheimer 3D flow of carbon nanotubes with homogeneous and heterogeneous reactions, Phys. Lett. A, 382 (2018), 2787–2793. doi: 10.1016/j.physleta.2018.06.011 |
[25] | Y. Liu, Continuous dependence for a thermal convection model with temperature-dependent solubility, Appl. Math. Comput., 308 (2017), 18–30. |
[26] | F. A. Morales, R. E. Showalter, A Darcy-Brinkman model of fractures in porous media, J. Math. Anal. Appl., 452 (2017), 1332–1358. doi: 10.1016/j.jmaa.2017.03.063 |
[27] | Y. F. Li, C. H. Lin, Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe, Appl. Math. Comput., 244 (2014), 201–208. |
[28] | N. L. Scott, Continuous dependence on boundary reaction terms in a porous medium of Darcy type, J. Math. Anal. Appl., 399 (2013), 667–675. doi: 10.1016/j.jmaa.2012.10.054 |
[29] | B. Jamil, M. S. Anwar, A. Rasheeda, M. Irfanc, MHD Maxwell flow modeled by fractional derivatives with chemical reaction and thermal radiation, Chin. J. Phys., 67 (2020), 512–533. doi: 10.1016/j.cjph.2020.08.012 |
[30] | M. S. Anwar, R. T. M. Ahmad, T. Shahzad, M. Irfanc, M. Z. Ashraf, Electrified fractional nanofluid flow with suspended carbon nanotubes, Comput. Math. Appl., 80 (2020), 1375–1386. doi: 10.1016/j.camwa.2020.07.005 |
[31] | M. S. Anwar, Numerical study of transport phenomena in a nanofluid using fractional relaxation times in Buongiorno model, Phys. Scr., 95 (2020), 035211. doi: 10.1088/1402-4896/ab4ba9 |
[32] | M. Irfan, M. S. Anwar, M. Rashid, M. Waqas, W. A. Khan, Arrhenius activation energy aspects in mixed convection Carreau nanofluid with nonlinear thermal radiation, Appl. Nanosci., 10 (2020), 4403–4413. doi: 10.1007/s13204-020-01498-5 |
[33] | M. S. Anwar, A. Rasheed, Joule heating in magnetic resistive flow with fractional Cattaneo-Maxwell model, J. Braz. Soc. Mech. Sci. Eng., 40 (2018), 501. doi: 10.1007/s40430-018-1426-8 |
[34] | M. S. Anwar, A. Rasheed, Interplay of chemical reacting species in a fractional viscoelastic fluid flow, J. Mol. Liq., 273 (2019), 576–588. doi: 10.1016/j.molliq.2018.10.028 |
[35] | M. Farooq, M. Javed, M. Ijaz Khan, A. Anjum, T. Hayat, Melting heat transfer and double stratification in stagnation flow of viscous nanofluid, Results Phys., 7 (2017), 2297–2301. |
[36] | M. Ijaz Khan, M. Waqas, T. Hayat, A. Al-saedi, Magneto-hydrodynamical numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface, Phys. Chem. Liq., 56 (2018), 584–595. doi: 10.1080/00319104.2017.1367791 |
[37] | K. A. Ames, L. E. Payne, J. C. Song, Spatial decay in the pipe flow of a viscous fluid interfacing a porous medium, Math. Mod. Methods Appl. Sci., 11 (2001), 1547–1562. doi: 10.1142/S021820250100146X |
[38] | G. Mckay, B. Straughan, Patterned ground formation under water, Contin. Mech. Thermodyn., 5 (1993), 145–162. |
[39] | D. A. Nield, A. Bejan, Convection in porous media, Springer-Verlag, 2006. |
[40] | L. E. Payne, B. Straughan, Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related questions, J. Math. Pures Appl., 77 (1998), 317–354. doi: 10.1016/S0021-7824(98)80102-5 |
[41] | Y. F. Li, S. H. Zhang, C. H. Lin, Structural stability for the Boussinesq equations interfacing with Darcy equations in a bounded domain, Bound. Value Probl., 2021 (2021), 27. doi: 10.1186/s13661-021-01501-0 |
[42] | Y. Liu, S. Z. Xiao, Y. W. Lin, Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain, Math. Comput. Simulat., 150 (2018), 66–82. doi: 10.1016/j.matcom.2018.02.009 |
[43] | Y. Liu, S. Z. Xiao, Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain, Nonlinear Anal.: Real World Appl., 42 (2018), 308-333. |
[44] | J. C. Shi, Y. Liu, Structural stability for the Forchheimer equations interfacing with a Darcy fluid in a bounded region in $R^3$, Bound. Value Probl., 2021 (2021), 46. |
[45] | Y. Liu, X. L. Qin, J. C. Shi, W. J. Zhi, Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in $R^2$, Appl. Math. Comput., 411 (2021), 126488. |
[46] | L. E. Payne, J. C. Song, Spatial decay estimates for Brinkman and Darcy flows in a semi-infinite cylinder, Continuum Mech. Therm., 9 (1997), 175–190. doi: 10.1007/s001610050064 |
[47] | Y. X. Li, T. Muhammad, M. Bilal, M. A. Khan, A. Ahmadian, B. A. Pansera, Fractional simulation for Darcy-Forchheimer hybrid nanoliquid flow with partial slip over a spinning disk, Alexandria Eng. J., 60 (2021), 4787–4796. doi: 10.1016/j.aej.2021.03.062 |
[48] | M. Z. Ullah, T. Muhammad, F. Mallawi, On model for Darcy-Forchheimer 3D nanofluid flow subject to heat flux boundary condition, J. Therm. Anal. Calorim., 143 (2021), 2411–2418. doi: 10.1007/s10973-020-09892-5 |
[49] | H. Waqas, M. Imran, T. Muhammad, S. M. Sait, R. Ellahi, On bio-convection thermal radiation in Darcy-Forchheimer flow of nanofluid with gyrotactic motile microorganism under Wu's slip over stretching cylinder/plate, Int. J. Numer. Methods Heat Fluid Flow, 31 (2021), 1520–1546. doi: 10.1108/HFF-05-2020-0313 |
[50] | H. Rout, S. S. Mohapatra, S. Shaw, T. Muhammad, M. K. Nayak, O. D. Makinde, Entropy optimization for Darcy-Forchheimer electro-magneto-hydrodynamic slip flow of ferronanofluid due to stretching/shrinking rotating disk, Waves Random Complex Media, 2021. Available from: https://doi.org/10.1080/17455030.2021.1927238. |
[51] | M. Ijaz Khan, Transportation of hybrid nanoparticles in forced convective Darcy-Forchheimer flow by a rotating disk, Int. Commun. Heat Mass Transfer, 122 (2021), 105177. doi: 10.1016/j.icheatmasstransfer.2021.105177 |
[52] | M. Ijaz Khan, F. Alzahrani, A. Hobiny, Simulation and modeling of second order velocity slip flow of micropolar ferrofluid with Darcy-Forchheimer porous medium, J. Mater. Res. Technol., 9 (2020), 7335–7340. doi: 10.1016/j.jmrt.2020.04.079 |
[53] | T. Muhammad, K. Rafique, M. Asma, M. Alghamdi, Darcy-Forchheimer flow over an exponentially stretching curved surface with Cattaneo-Christov double diffusion, Phys. A: Stat. Mech. Appl., 556 (2020), 123968. doi: 10.1016/j.physa.2019.123968 |
[54] | L. E. Payne, J. C. Song, Spatial decay bounds for the Forchheimer equations, Int. J. Eng. Sci., 40 (2002), 943–956. doi: 10.1016/S0020-7225(01)00102-1 |