
Spatial decay estimates for the Fochheimer fluid interfacing with a Darcy flow in a semi-infinite pipe was studied. The exponential decay result can be obtained by integrating a first-order differential inequality. The result can be seen as the usage of Saint-Venant's principle for the interfacing fluids.
Citation: Ze Wang, Yan Zhang, Jincheng Shi, Baiping Ouyang. Spatial decay estimates for the Fochheimer equations interfacing with a Darcy equations[J]. AIMS Mathematics, 2021, 6(11): 12632-12649. doi: 10.3934/math.2021728
[1] | Jincheng Shi, Yan Liu . Spatial decay estimates for the coupled system of wave-plate type with thermal effect. AIMS Mathematics, 2025, 10(1): 338-352. doi: 10.3934/math.2025016 |
[2] | José Luis Díaz Palencia, Saeed ur Rahman, Antonio Naranjo Redondo . Analysis of travelling wave solutions for Eyring-Powell fluid formulated with a degenerate diffusivity and a Darcy-Forchheimer law. AIMS Mathematics, 2022, 7(8): 15212-15233. doi: 10.3934/math.2022834 |
[3] | Zhanwei Guo, Jincheng Shi . Structural stability for the Darcy model in double diffusive convection flow with Magnetic field effect. AIMS Mathematics, 2022, 7(9): 16366-16386. doi: 10.3934/math.2022894 |
[4] | Maxime Krier, Julia Orlik . Solvability of a fluid-structure interaction problem with semigroup theory. AIMS Mathematics, 2023, 8(12): 29490-29516. doi: 10.3934/math.20231510 |
[5] | S. Rahman, J. L. Díaz Palencia, J. Roa González . Analysis and profiles of travelling wave solutions to a Darcy-Forchheimer fluid formulated with a non-linear diffusion. AIMS Mathematics, 2022, 7(4): 6898-6914. doi: 10.3934/math.2022383 |
[6] | Nadeem Abbas, Wasfi Shatanawi, Taqi A. M. Shatnawi, Fady Hasan . Theoretical analysis of induced MHD Sutterby fluid flow with variable thermal conductivity and thermal slip over a stretching cylinder. AIMS Mathematics, 2023, 8(5): 10146-10159. doi: 10.3934/math.2023513 |
[7] | Ru Bai, Tiantian Chen, Sen Liu . Global stability solution of the 2D incompressible anisotropic magneto-micropolar fluid equations. AIMS Mathematics, 2022, 7(12): 20627-20644. doi: 10.3934/math.20221131 |
[8] | Khalil Ur Rehman, Nosheen Fatima, Wasfi Shatanawi, Nabeela Kousar . Mathematical solutions for coupled nonlinear equations based on bioconvection in MHD Casson nanofluid flow. AIMS Mathematics, 2025, 10(1): 598-633. doi: 10.3934/math.2025027 |
[9] | Dagmar Medková . Classical solutions of the Dirichlet problem for the Darcy-Forchheimer-Brinkman system. AIMS Mathematics, 2019, 4(6): 1540-1553. doi: 10.3934/math.2019.6.1540 |
[10] | Xin Zhao, Xin Liu, Jian Li . Convergence analysis and error estimate of finite element method of a nonlinear fluid-structure interaction problem. AIMS Mathematics, 2020, 5(5): 5240-5260. doi: 10.3934/math.2020337 |
Spatial decay estimates for the Fochheimer fluid interfacing with a Darcy flow in a semi-infinite pipe was studied. The exponential decay result can be obtained by integrating a first-order differential inequality. The result can be seen as the usage of Saint-Venant's principle for the interfacing fluids.
The model equations (Brinkman, Forchheimer and Darcy equations) have been widely studied by many authors. If the net flow into the infinite end of the cylinder is zero, then the velocity can decay to zero as the distance tends to infinity. The result can be explained by Saint-Venant's Principle. Early results on Saint-Venant's principle mainly focused on the elliptic equations. Boley [1] in 1856 firstly proved that Saint-Venant's principle was valid for the heat equations. Then, many efforts were to the parabolic equations. References [2,3,4] gave a review of recent development on Saint-Venant's principle.
There has been substantial interest in spatial decay estimates for the model equations in porous medium. In fact, the Brinkman-Forchheimer type equations have been studied by many papers in the literature. Following the paper [5] which studied the model equations (Brinkman, Darcy, Forchheimer and Brinkman-Forchheimer equations) describing flow in a porous medium, several papers have appeared (see [6,7,8,9,10,11,12]). Ames and Payne [13], and Franchi and Straughan [14] analyzed certain structural stability questions and Payne and Straughan [9] studied the question of continuous dependence of solutions of both systems on the initial-time geometry for bounded spatial domains both forward and backward in time. Other questions for these systems have been treated by Ames and Payne [15], Franchi [16], Morro and Straughan [17], Qin and Kaloni [18], and Richardson and Straughan [19]. For more recent work, one may refer to [20]. In that paper, Payne and Song examined the time-dependent double diffusive convection in Brinkman flow in a semi-infinite cylinder. Under appropriate initial and boundary conditions the authors established the exponential decay of solutions in energy norm with distance from the finite end of the cylinder. Other results for models of Brinkman, Forchheimer and Darcy equations were found in [21,22,23,24,25,26,27,28]. Some new results about properties of solutions for fluids in porous medium may be found in [29,30,31,32,33,34,35,36].
In [37], the authors studied the spatial decay for the stokes flow interfacing with a Darcy flow in a cylinder. Under homogeneous initial lateral surface boundary conditions and some other interface conditions, they established the exponential decay estimates for the energy expression. For a review of other porous interface problems, one could see [38,39,40]. Some new results about the structural stability of the interfacing problems may be found in [41,42,43,44,45]. In [46], Payne and Song obtained the spatial decay result for flows in a porous medium. For other Saint-Venant's principal results on penetrative convention, one could see [5]. Most of these papers studied only one fluid in a domain. In reality, there usually exist two or more fluids interfacing with each other in a domain. People want to know the behavior of their solutions. Inspired by paper [37], we continue to study these interfacing problems. We replace the Brinkman term Δui by a nonlinear item b|u|ui. The nonlinear term is difficult to tackle. We cannot follow the method used in [37]. A new method should be developed to deal with this nonlinear term. We want to establish exponential decay results for the interfacing problems. We have never seen such results for the interfacing fluids in literature except [37].
We assume that one part is filled with the Forchheimer flow, while the other part is filled with the Darcy fluid. Some new results for the Forchheimer-Darcy equations may be found in [47,48,49,50,51,52,53].
Let
Ω=Ω1∪Ω2 | (1.1) |
be the interior of a semi-infinite cylinder. The generators of the cylinder are paralleled to the x3-axis. Ω1 is a portion lying above the x1x3-plane. While Ω2 is a portion lying below the x1x3-plane. L denotes the common plane boundary of Ω1 and Ω2. The plane x3=0, L, and a lateral surface Γ1 can bound Ω1. The plane x3=0, L, and a lateral surface Γ2 can bound Ω2. We further define (see Figure 1)
Ω1={(x1,x2)∈D1,x3>0}, | (1.2) |
Ω2={(x1,x2)∈D2,x3>0}. | (1.3) |
D1 is the cross-section of Ω1, and D2 is the cross-section of Ω2. We can easily get the results x2>0 (x∈Ω1) and x2<0 (x∈Ω2). We assume that the fluid satisfies the Forchheimer equations in Ω1 and the Darcy equations in Ω2.
The Forchheimer model is believed accurate when the flow velocity is too large for Darcy's law to be valid and additionally the porosity is not too small. They usually use the Boussinesq approximation to get the equation.
The Forchheimer equations are the governing equations in Ω1 (see [54]).
b|u|ui+(1+γT)ui=−p,i+giT,∂ui∂xi=0,∂T∂t+ui∂T∂xi=κΔT. | (1.4) |
Here ui denotes the velocity, T denotes the temperature and p denotes the pressure. b and γ are positive constants. The gravity field is represented by the vector gi. We assume
|gigi|≤ζ2. | (1.5) |
κ is the thermal diffusivity. In Ω2, the governing equations are the Darcy equations
bkvi=−∂q∂xi+giS,∂vi∂xi=0,∂S∂t+vi∂S∂xi=κsΔS, | (1.6) |
where vi denotes the velocity, S denotes the temperature and q denotes the pressure. k denotes the permeability and κs denotes the thermal diffusivity of the porous medium. We impose the following boundary and initial conditions:
uini=0,T=0onΓ1×{t>0},vini=0,S=0onΓ2×{t>0},T=0inΩ1×{t=0},S=0inΩ2×{t=0},u3=f3,T=g≥0onD1×{x3=0}×{t>0},v3=h3,S=τonD2×{x3=0}×{t>0}. | (1.7) |
We assume when x3→∞, the following conditions are satisfied
|u|,|v|,|T|,|S|=O(1),|u3|,|v3|,|∇T|,|∇S|,|p|,|q|=o(x−13), | (1.8) |
uniformly in x1,x2.
At last, we impose the same conditions at the interface as [37]:
u2=v2,T=S,κ∂T∂x2=κs∂S∂x2,q=p, | (1.9) |
on L×{t>0}.
We will use the following notations for convenience (see Figure 2).
Ωi(z)=Ωi∩{x3>z},i=1,2,Di(z)=Ωi∩{x3=z},i=1,2,L(z)=L∩{x3>z},Γi(z)=Γi∩{x3>z},i=1,2,∂Di(z)=BoundaryofDi(z),i=1,2,D(z)=D1(z)∪D2(z),i=1,2. | (1.10) |
We want to formulate a first-order differential inequality for a weighted energy expression. An inequality which will imply exponential decay.
In the present paper, the partial differentiation with respect to the direction xk is defined by ,k. Thus, u,i denotes ∂u∂xi. The usual summation convection is used in this paper. The repeated Latin subscripts is used to sum from 1 to 3. While repeated Greek subscripts is used to sum from 1 to 2. Hence we have ui,i=3∑i=1∂ui∂xi, uα,α=2∑α=1∂ui∂xi.
In this section, we want to derive a weighted energy ψ(z,t). If we define a function
f(z,t)=b∫t0∫Ω1(z)(ξ−z)(uiui)32dxdη+∫t0∫Ω1(z)(ξ−z)(1+γT)uiuidxdη, | (2.1) |
using the Eq (1.4) and integrating by parts, we have
f(z,t)=∫t0∫Ω1(z)pu3dxdη+∫t0∫Ω1(z)gi(ξ−z)Tuidxdη−∫t0∫L(z)(ξ−z)u2pdAdη. | (2.2) |
Using the interface condition (1.9), we have
−∫t0∫L(z)(ξ−z)u2pdAdη=−∫t0∫L(z)(ξ−z)v2qdAdη=∫t0∫Ω2(z)[(ξ−z)qvi],idxdη=∫t0∫Ω2(z)(ξ−z)viq,idxdη+∫t0∫Ω2(z)qv3dxdη. | (2.3) |
Using the Eq (1.6) and integrating by parts, we obtain
∫t0∫Ω2(z)(ξ−z)viq,idxdη=∫t0∫Ω2(z)(ξ−z)vi(−bkvi+giS)dxdη=−bk∫t0∫Ω2(z)(ξ−z)vividxdη+∫t0∫Ω2(z)(ξ−z)giSvidxdη. | (2.4) |
If we define
E1(z,t)=b∫t0∫Ω1(z)(ξ−z)(uiui)32dxdη+∫t0∫Ω1(z)(ξ−z)(1+γT)uiuidxdη+bk∫t0∫Ω2(z)(ξ−z)vividxdη, | (2.5) |
Combining (2.2)–(2.4), we have
E1(z,t)=∫t0∫Ω1(z)(ξ−z)giTuidxdη+∫t0∫Ω2(z)gi(ξ−z)viSdxdη+∫t0∫Ω1(z)pu3dxdη+∫t0∫Ω2(z)qv3dxdη. | (2.6) |
We now begin to deal with items involving T and S. We know
∫t0∫Ω1(z)(ξ−z)T,iT,idxdη=−∫t0∫Ω1(z)(ξ−z)TT,iidxdη−∫t0∫Ω1(z)TT,3dxdη+∫t0∫L(z)(ξ−z)TT,2dAdη=−1κ∫t0∫Ω1(z)(ξ−z)T(T,t+uiT,i)dxdη−∫t0∫Ω1(z)TT,3dxdη+∫t0∫L(z)(ξ−z)TT,2dAdη=−12κ∫Ω1(z)(ξ−z)T2dx|η=t+12κ∫t0∫Ω1(z)T2u3dxdη−12κ∫t0∫L(z)(ξ−z)T2u2dAdη−∫t0∫Ω1(z)TT,3dxdη+∫t0∫L(z)(ξ−z)TT,2dAdη. | (2.7) |
Following the same procedure, we obtain the following results for items contain S
∫t0∫Ω2(z)(ξ−z)S,iS,idxdη=−12κs∫Ω2(z)(ξ−z)S2dx|η=t+12κs∫t0∫Ω2(z)S2v3dxdη+12κs∫t0∫L(z)(ξ−z)v2S2dAdη−∫t0∫Ω2(z)SS,3dxdη−∫t0∫L(z)(ξ−z)SS,2dxdη. | (2.8) |
We define
E2(z,t)=κ∫t0∫Ω1(z)(ξ−z)T,iT,idxdη+κs∫t0∫Ω2(z)(ξ−z)S,iS,idxdη+12∫Ω1(z)(ξ−z)T2dx+12∫Ω2(z)(ξ−z)S2dx, | (2.9) |
We now define
ψ(z,t)=E1(z,t)+AE2(z,t)=b∫t0∫Ω1(z)(ξ−z)(uiui)32dxdη+∫t0∫Ω1(z)(ξ−z)(1+γT)uiuidxdη+bk∫t0∫Ω2(z)(ξ−z)vividxdη+Aκ∫t0∫Ω1(z)(ξ−z)T,iT,idxdη+Aκs∫t0∫Ω2(z)(ξ−z)S,iS,idxdη+A2∫Ω1(z)(ξ−z)T2dx+A2∫Ω2(z)(ξ−z)S2dx, | (2.10) |
where A is a positive constant to be determined later.
Combining (2.6)–(2.10), we can also get
ψ(z,t)=∫t0∫Ω1(z)(ξ−z)giTuidxdη+∫t0∫Ω2(z)gi(ξ−z)viSdxdη+∫t0∫Ω1(z)pu3dxdη+∫t0∫Ω2(z)qv3dxdη+A2∫t0∫Ω1(z)T2u3dxdη−Aκ∫t0∫Ω1(z)TT,3dxdη+A2∫t0∫Ω2(z)v3S2dxdη−κsA∫t0∫Ω2(z)SS,3dxdη=8∑i=1Ki. | (2.11) |
In this paper, we want to obtain a first-order differential inequality for ψ(z,t).
In the proof of our main result, we will use the following Lemmas:
Lemma 1. (see [37]) We suppose ˉΩ is a bounded region in R3 which has Lipschitz boundary. χ is a bounded function in ˉΩ satisfies ∫ˉΩχdx=0. There exists a vector function ωi satifies
ωi,i=χonˉΩ,ωi=0on∂ˉΩ, | (3.1) |
and
∫ˉΩωi,jωi,jdx≤C∫ˉΩχ2dx, | (3.2) |
with C is a constant which is dependent on the shape of ˉΩ.
Lemma 2. (See [37]) The temperatures T and S satisfy the following maximum estimates:
max{|T|,|S|}≤TM, | (3.3) |
with TM=max{supD1(0)×[0,∞]|g|,supD2(0)×[0,∞]|τ|}. For g≥0, using the maximum principle, we can easily get T≥0 in Ω1×{t≥0}.
Lemma 3. For Kn defined in (2.11), we have the following estimates:
K1+K2+K5+K6+K7+K8≤12ψ(z,t)+n1[−∂ψ(z,t)∂z], | (3.4) |
with n1 is a positive constant to be defined later.
Proof. We give a bound for K1+K2.
K1+K2=∫t0∫Ω1(z)(ξ−z)giTuidxdη+∫t0∫Ω2(z)gi(ξ−z)viSdxdη≤ζ22∫t0∫Ω1(z)(ξ−z)T2dxdη+12∫t0∫Ω1(z)(ξ−z)(1+γT)uiuidxdη+ζ22∫t0∫Ω2(z)(ξ−z)S2dxdη+12∫t0∫Ω2(z)(ξ−z)vividxdη≤ζ22λ∫t0∫Ω1(z)(ξ−z)T,αT,αdxdη+12∫t0∫Ω1(z)(ξ−z)(1+γT)uiuidxdη+ζ22υ∫t0∫Ω2(z)(ξ−z)S,αS,αdxdη+12∫t0∫Ω2(z)(ξ−z)vividxdη, | (3.5) |
where λ is the lowest eigenvalue of
U,αα+λU=0inD1,U=0on∂D1∩Γ1,U,α=0on∂D1∩L, | (3.6) |
and υ is the lowest eigenvalue of
V,αα+υV=0inD2,V=0on∂D2∩Γ2,V,α=0on∂D2∩L. | (3.7) |
For K5+K6, we have
K5+K6=A2∫t0∫Ω1(z)T2u3dxdη−Aκ∫t0∫Ω1(z)TT,3dxdη≤ATM4∫t0∫Ω1(z)T2dxdη+ATM4∫t0∫Ω1(z)(1+γT)uiuidxdη+Aκ2∫t0∫Ω1(z)T2dxdη+Aκ2∫t0∫Ω1(z)T2,3dxdη≤[ATM4λ+Aκ2λ]∫t0∫Ω1(z)T,iT,idxdη+ATM4∫t0∫Ω1(z)(1+γT)uiuidxdη+Aκ2∫t0∫Ω1(z)T2,3dxdη≤[ATM4λ+Aκ2λ+Aκ2]∫t0∫Ω1(z)T,iT,idxdη+ATM4∫t0∫Ω1(z)(1+γT)uiuidxdη. | (3.8) |
Similarly, we can get
K7+K8=A2∫t0∫Ω2(z)v3S2dxdη−κsA∫t0∫Ω2(z)SS,3dxdη≤ATM4∫t0∫Ω2(z)v23dxdη+ATM4υ∫t0∫Ω2(z)S,iS,idxdη+[κsA2υ+κsA2]∫t0∫Ω2(z)S,iS,idxdη≤ATM4∫t0∫Ω2(z)v23dxdη+[κsA2υ+κsA2+ATM4υ]∫t0∫Ω2(z)S,iS,idxdη. | (3.9) |
Combining (3.5), (3.8), (3.9) and (2.10), and choosing A>max{ζ2κλ,ζ2κsυ}, we have
K1+K2+K5+K6+K7+K8≤12ψ(z,t)+n1[−∂ψ(z,t)∂z], | (3.10) |
with n1=max{ATM4λκ+12λ+12,ATM4,κATM4b,12υ+12+TM4υκs}.
Lemma 4. For Kn defined in (2.11), we have the following estimates:
K3+K4≤˜k5[−∂ψ(z,t)∂z]+b2∫t0[∫Ω1(z)(ujuj)32dx]43dη, | (3.11) |
where ˜k5 is a computable constant.
Proof. We define
J=∫Ω1(z)pu3dx|s=η+∫Ω2(z)qv3dx|s=η. |
We then rewritten J as
J=∫Ω1(z)∪Ω2(z)σω3dx|s=η=∫Ω1(z)pu3dx|s=η+∫Ω2(z)qv3dx|s=η, | (3.12) |
with
σ={pinΩ1×{t>0},qinΩ2×{t>0}, | (3.13) |
and
ω3={u3inΩ1×{t>0},v3inΩ2×{t>0}. | (3.14) |
Therefore, we find
J=∞∑n=0∫z+(n+1)az+na∫D1(z)pu3dx|s=η+∞∑n=0∫z+(n+1)az+na∫D2(z)qv3dx|s=η, | (3.15) |
with a is an arbitrary positive constant. We note that
∫Ω1(z)ui,idx|s=η+∫Ω2(z)vi,idx|s=η=0. | (3.16) |
Using integration by parts, we have
−∫D1(z)u3dA|s=η−∫L(z)∩D(z)u2dA|s=η−∫D2(z)v3dA|s=η+∫L(z)∩D(z)v2dA|s=η=0. | (3.17) |
We have
∫D1(z)u3dA+∫D2(z)v3dA=0. |
Thus, we can obtain
∫Dw3dA|s=η=0. | (3.18) |
Using the result of Lemma 1, we have
∫z+az∫Dσw3dx|s=η=−∫z+az∫Dωjσ,idx|s=η≤b[∫z+az∫D1(ωjωj)32dx|s=η]13[∫z+az∫D1(ujuj)32dx|s=η]23+[∫z+az∫D1(1+γT)ωjωjdx]12[∫z+az∫D1(1+γT)uiuidx|s=η]12+[∫z+az∫D1ωjωjdx|s=η]12[∫z+az∫D1T2dx|s=η]12+bk∫z+az∫D2(ωjvj)dx−∫z+az∫D2ωjgjSdx. | (3.19) |
We have
∫z+az∫D1(ωjωj)32dx|s=η≤(∫z+az∫D1(ωjωj)2dx|s=η)12(∫z+az∫D1ωjωjdx|s=η)12≤˜k12(∫z+az∫D1ωj,iωj,idx|s=η)14(∫z+az∫D1ωjωjdx|s=η)54≤C14˜k12ˆ∧54(∫z+az∫D1ω32dx|s=η)14(∫z+az∫D1ωj,iωj,idx|s=η)54≤C32˜k12ˆ∧54(∫z+az∫D1ω32dx|s=η)32≤C32˜k12ˆ∧54(∫z+az∫D1u32dx|s=η+∫z+az∫D2v32dx|s=η)32≤2C32˜k12ˆ∧54(∫z+az∫D1u32dx|s=η)32+2C32˜k12ˆ∧54(∫z+az∫D2v32dx|s=η)32≤2C32˜k12a13|D|13ˆ∧54∫z+az∫D1(uiui)32dx|s=η+2C32˜k12ˆ∧54(∫z+az∫D2v32dx|s=η)32, | (3.20) |
with ˆ∧ is the first eigenvalue of the following problem.
Δϕ+ˆ∧ϕ=0inD∩{z<x3<z+a},ϕ=0on(Γ1∪Γ2)∩{z<x3<z+a},ϕ=0onDforx3=z,x3=z+a, | (3.21) |
and ˜k is the constant satisfies the following poincarˊe inequality
∫Ω(ωjωj)2dx≤˜k(∫Ωωj,iωj,idx)12(∫Ωωjωjdx)32. | (3.22) |
Using (3.20), we have
[∫z+az∫D1(ωjωj)32dx|s=η]13×[∫z+az∫D1(ujuj)32dx|s=η]23≤[(2C32˜k12a13|D|13ˆ∧54)13(∫z+az∫D1(uiui)32dx|s=η)13+(2C32˜k12ˆ∧54)13(∫z+az∫D2v32dx|s=η)12]×[∫z+az∫D1(ujuj)32dx|s=η]23≤[(2C32˜k12a13|D|13ˆ∧54)13∫z+az∫D1(ujuj)32dx|s=η+12(2C32˜k12ˆ∧54)23∫z+az∫D2v23dx|s=η+12[∫z+az∫D1(ujuj)32dx|s=η]43. | (3.23) |
Using the Schwarz and poincarˊe inequalities, we can get
[∫z+az∫D1(1+γT)ωjωjdx|s=η]12[∫z+az∫D1(1+γT)uiuidx|s=η]12≤[(1+γTM)ˆ∧∫z+az∫Dωj,iωj,idx|s=η]12[∫z+az∫D1(1+γT)uiuidx|s=η]12≤[C(1+γTM)ˆ∧∫z+az∫Dw3w3dx|s=η]12[∫z+az∫D1(1+γT)uiuidx|s=η]12≤[C(1+γTM)ˆ∧]12∫z+az∫D1(1+γT)ujujdx|s=η+[C(1+γTM)ˆ∧∫z+az∫D2vividx|s=η]12[∫z+az∫D1(1+γT)uiuidx|s=η]12≤{[C(1+γTM)ˆ∧]12+C(1+γTM)2ˆ∧}∫z+az∫D1(1+γT)ujujdx|s=η+12∫z+az∫D2vividx|s=η. | (3.24) |
Following the same procedure as (3.24), we have
[∫z+az∫D1ωjωjdx|s=η]12×[∫z+az∫D1T2dx|s=η]12≤C2ˆ∧∫z+az∫D1(1+γT)ujujdx|s=η+C2ˆ∧∫z+az∫D2vjvjdx|s=η+12∫z+az∫D1T2dx|s=η. | (3.25) |
We can also get
bk∫z+az∫D2ωjvjdx|s=η−∫z+az∫D2ωjgjSdx|s=η≤Cˆ∧∫z+az∫D1(1+γT)ujujdx|s=η+(b22k2+Cˆ∧)∫z+az∫D2vjvjdx|s=η+12∫z+az∫D2S2dx|s=η. | (3.26) |
Inserting (3.23)–(3.26) into (3.19), we obtain
∫z+az∫Dσw3dx|s=η≤b(2C32˜k12a13|D|13ˆ∧54)13[∫z+az∫D1(ujuj)32dx|s=η]+b2[∫z+az∫D1(ujuj)32dx]43+˜k1∫z+az∫D1(1+γT)ujujdx|s=η+˜k2∫z+az∫D2vividx|s=η+˜k3∫z+az∫D1T2dx|s=η+˜k4∫z+az∫D2S2dx|s=η, | (3.27) |
where ˜k1, ˜k2, ˜k3 and ˜k4 are computable positive constance.
Thus
∫Ω(z)σw3dx|s=η≤b(2C32˜k12a13|D|13ˆ∧54)13[∫Ω1(z)(ujuj)32dx|s=η]+b2[∫Ω1(z)(ujuj)32dx]43+˜k1∫Ω1(z)(1+γT)ujujdx|s=η+˜k2∫Ω2(z)vividx|s=η+˜k3∫Ω1(z)T2dx|s=η+˜k4∫Ω2(z)S2dx|s=η. | (3.28) |
We can easily get
K3+K4≤˜k5[−∂ψ(z,t)∂z]+b2∫t0[∫Ω1(z)(ujuj)32dx]43dη, | (3.29) |
where ˜k5 is a computable constant.
Lemma 5. The velocity ui satisfies
maxη∫Ω1(z)(ujuj)32dx|s=η≤2δ∫t0∫Ω1(0)(ujuj)32dxdη, | (3.30) |
with δ is a positive constant.
Proof. From the definition of Ω1(z), we have
maxη∫Ω1(z)(ujuj)32dx|s=η≤maxη∫Ω1(0)(ujuj)32dx|s=η. | (3.31) |
We now define a function
F(s)=∫Ω1(0)(ujuj)32dx. | (3.32) |
The following method was used in [23] in deriving (3.8). Since F(s) is continuous on [0, t], there exists a ˜t∈[0,t] such that
maxsF(s)=F(˜t). |
The following discussions will be divided into three cases. If ˜t=0, there exists a 0<δ1<t, when s∈(0,δ1), we have
F(s)≥12F(˜t). |
We can get
∫δ10F(s)ds≥12δ1F(˜t). |
We can easily get
F(˜t)≤2δ1∫t0F(s)ds. | (3.33) |
If ˜t=t, there exists a 0<δ2<t, when s∈(t−δ2,t), we also get
F(˜t)≤2δ2∫t0F(s)ds. | (3.34) |
If ˜t∈(0,t), there exists a 0<δ3<t−˜t, when s∈(˜t,˜t+δ3), we can get
F(˜t)≤2δ3∫t0F(s)ds. | (3.35) |
A combination of (3.33)–(3.35) gives
F(˜t)≤2δ∫t0F(s)ds, | (3.36) |
with δ=min{δ1,δ2,δ3}.
Inserting (3.36) and (3.32) into (3.31), we obtain
maxη∫Ω1(z)(ujuj)32dx|s=η≤2δ∫t0∫Ω1(0)(ujuj)32dxdη. | (3.37) |
Lemma 6. From the definition of ψ(z,t) in (2.11), we can get
ψ(z,t)≤(˜k6+˜k7[ψ(0,t)]13)[−∂ψ(z,t)∂z], | (3.38) |
where ˜k6 and ˜k7 are computable positive constants.
Proof. We know
∫t0[∫Ω1(z)(ujuj)32dx]43dη≤maxη[∫Ω1(z)(ujuj)32dx|s=η]13∫t0∫Ω1(z)(ujuj)32dxdη. | (3.39) |
Inserting (3.30) and (3.39) into (3.11), we have
K3+K4≤˜k5[−∂ψ(z,t)∂z]+b223δ13[∫t0∫Ω1(0)(ujuj)32dxdη]13∫t0∫Ω1(z)(ujuj)32dxdη. | (3.40) |
From the definition of ψ(z,t) in (2.10), we have
K3+K4≤˜k5[−∂ψ(z,t)∂z]+b223δ13[ψ(0,t)]13[−∂ψ(z,t)∂z]. | (3.41) |
A combination of (3.4) and (3.41) gives
ψ(z,t)≤(˜k6+˜k7[ψ(0,t)]13)[−∂ψ(z,t)∂z], | (3.42) |
where ˜k6 and ˜k7 are computable positive constants.
In this part, we will get the following main result.
Theorem 1. The energy ψ(z,t) defined in (2.10) satisfies the following decay estimates:
ψ(z,t)≤ψ(0,t)e−(˜k6+˜k7[ψ(0,t)]13)−1z. | (3.43) |
Proof. We rewrite (3.38) as
ψ(z,t)+(˜k6+˜k7[ψ(0,t)]13)∂ψ(z,t)∂z≤0, |
We can easily get
e(˜k6+˜k7[ψ(0,t)]13)−1z((˜k6+˜k7[ψ(0,t)]13)−1ψ(z,t)+∂ψ(z,t)∂z)≤0, | (3.44) |
An integration of (3.44) from 0 to z, we get
ψ(z,t)≤ψ(0,t)e−(˜k6+˜k7[ψ(0,t)]13)−1z. | (3.45) |
Inequality (3.45) shows the desired decay estimates.
In this paper, we study the spatial decay estimates for the Forchheimer-Darcy interfacing problems in a semi-infinite pipe. We get the Saint-Venant type result for the interfacing fluids. We can extend the result to the equations which the velocity eqaution contains a nonlinear term. We have never seen similar results in literature. Our method is useful to study other interfacing problems in porous medium. If the velocity equation contains the derivative of time, the problem will become very complex. We can not get similar result by using the method proposed in this paper. For the pressure term is difficult to tackle. We must seek new method to overcome this difficulty. We will discuss this problem in the following paper. We can further study the structural stability for these equations based on the result obtained in this paper. We think it would be interesting.
The work was supported national natural Science Foundation of China (Grant #61907010), natural Science foundation in Higher Education of Guangdong, China (Grant #2018KZDXM048; #2019KZDXM036; #2019KZDXM042; #2020ZDZX3051), the General Project of Science Research of Guangzhou (Grant #201707010126), and the science foundation of Huashang College Guangdong University of Finance & Economics (Grant #2019HSDS28).
The authors declare that they have no competing interests.
[1] |
B. A. Boley, The determination of temperature, stresses and deflection in two-dimensional thermoelastic problem, J. Aero. Sci., 23 (1956), 67–75. doi: 10.2514/8.3503
![]() |
[2] |
C. O. Horgan, J. K. Knowles, Recent developments concerning Saint-Venant's principle, Adv. Appl. Mech., 23 (1983), 179–264. doi: 10.1016/S0065-2156(08)70244-8
![]() |
[3] |
C. O. Horgan, Recent developments concerning Saint-Venant's principle: An update, Appl. Mech. Rev., 42 (1989), 295–302. doi: 10.1115/1.3152414
![]() |
[4] |
C. O. Horgan, Recent development concerning Saint-Venant's principle: A second update, Appl. Mech. Rev., 49 (1996), s101–s111. doi: 10.1115/1.3101961
![]() |
[5] | B. Straughan, Mathematical aspects of penetrative convection, CRC Press, 1993. |
[6] |
P. N. Kaloni, J. Guo, Double diffusive convection in a porous medium, nonlinear stability and the Brinkman effect, Stud. Appl. Math., 94 (1995), 341–358. doi: 10.1002/sapm1995943341
![]() |
[7] |
J. Guo, Y. Qin, Steady nonlinear double-diffusive convection in a porous medium base upon the Brinkman-Forchheimer model, J. Math. Anal. Appl., 204 (1996), 138–155. doi: 10.1006/jmaa.1996.0428
![]() |
[8] |
P. N. Kaloni, Y. Qin, Spatial decay estimates for flow in the Brinkman-Forchheimer model, Quartely Appl. Math., 56 (1998), 71–87. doi: 10.1090/qam/1604880
![]() |
[9] | L. E. Payne, B. Straughan, Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in porous media, J. Math. Pures Appl., 75 (1996), 225–271. |
[10] |
L. E. Payne, B. Straughan, Convergence and continuous dependence for the Brinkman- Forchheimer equations, Stud. Appl. Math., 102 (1999), 419–439. doi: 10.1111/1467-9590.00116
![]() |
[11] | L. E. Payne, B. Straughan, Structural stability for the Darcy equations of flow in porous media, P. Roy. Soc. A, 54 (1984), 1691–1698. |
[12] | L. E. Payne, J. C. Song, B. Straughan, Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity, P. Roy. Soc. A, 45 (1999), 2173–2190. |
[13] |
K. A. Ames, L. E. Payne, Continuous dependence results for an ill-posed problem in nonlinear viscoelasticity, Z. Angew. Math. Phys., 48 (1997), 20–29. doi: 10.1007/PL00001467
![]() |
[14] |
F. Franchi, B. Straughan, Structural stability for the Brinkman equations of porous media, Math. Methods Appl. Sci., 19 (1996), 1335–1347. doi: 10.1002/(SICI)1099-1476(19961110)19:16<1335::AID-MMA842>3.0.CO;2-Y
![]() |
[15] |
K. A. Ames, L. E. Payne, On stabilizing against modeling errors in a penetrative convection problem for a porous medium, Math. Mod. Methods Appl. Sci., 4 (1994), 733–740. doi: 10.1142/S0218202594000406
![]() |
[16] |
F. Franchi, Stabilization estimates for penetrative motions in porous media, Math. Methods Appl. Sci., 17 (1994), 11–20. doi: 10.1002/mma.1670170103
![]() |
[17] |
A. Morro, B. Straughan, Continuous dependence on the source parameters for convective motion in porous media, Nonlinear Anal.: Theory Methods Appl., 18 (1992), 307–315. doi: 10.1016/0362-546X(92)90147-7
![]() |
[18] |
Y. Qin, P. N. Kaloni, Steady convection in a porous medium based upon the Brinkman model, IMA J. Appl. Math., 48 (1992), 85–95. doi: 10.1093/imamat/48.1.85
![]() |
[19] | L. Richardson, B. Straughan, Convection with temperature dependent viscosity in a porous medium: Nonlinear stability and the Brinkman effect, Atti Accad. Naz. Lincei, Cl. Sci. Fisiche, Mat. Nat., Rend. Lincei, Mat. Appl., 4 (1993), 223–230. |
[20] |
L. E. Payne, J. C. Song, Spatial decay bounds for double diffusive convection in Brinkman flow, J. Differ. Equations, 244 (2008), 413–430. doi: 10.1016/j.jde.2007.10.003
![]() |
[21] | W. Liu, J. T. Cui, Z. F. Wang, Numerical analysis and modeling of multiscale Forchheimer-Forchheimer coupled model for compressible fluid flow in fractured media aquifer system, Appl. Math. Comput., 353 (2019), 7–28. |
[22] |
J. S. Kou, S. Y. Sun, Y. Q. Wu, A semi-analytic porosity evolution scheme for simulating wormhole propagation with the Darcy-Brinkman-Forchheimer model, J. Comput. Appl. Math., 348 (2019), 401–420. doi: 10.1016/j.cam.2018.08.055
![]() |
[23] |
Y. Liu, S. Z. Xiao, Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain, Nonlinear Anal.: Real World Appl., 42 (2018), 308–333. doi: 10.1016/j.nonrwa.2018.01.007
![]() |
[24] |
A. K. Alzahrani, Darcy-Forchheimer 3D flow of carbon nanotubes with homogeneous and heterogeneous reactions, Phys. Lett. A, 382 (2018), 2787–2793. doi: 10.1016/j.physleta.2018.06.011
![]() |
[25] | Y. Liu, Continuous dependence for a thermal convection model with temperature-dependent solubility, Appl. Math. Comput., 308 (2017), 18–30. |
[26] |
F. A. Morales, R. E. Showalter, A Darcy-Brinkman model of fractures in porous media, J. Math. Anal. Appl., 452 (2017), 1332–1358. doi: 10.1016/j.jmaa.2017.03.063
![]() |
[27] | Y. F. Li, C. H. Lin, Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe, Appl. Math. Comput., 244 (2014), 201–208. |
[28] |
N. L. Scott, Continuous dependence on boundary reaction terms in a porous medium of Darcy type, J. Math. Anal. Appl., 399 (2013), 667–675. doi: 10.1016/j.jmaa.2012.10.054
![]() |
[29] |
B. Jamil, M. S. Anwar, A. Rasheeda, M. Irfanc, MHD Maxwell flow modeled by fractional derivatives with chemical reaction and thermal radiation, Chin. J. Phys., 67 (2020), 512–533. doi: 10.1016/j.cjph.2020.08.012
![]() |
[30] |
M. S. Anwar, R. T. M. Ahmad, T. Shahzad, M. Irfanc, M. Z. Ashraf, Electrified fractional nanofluid flow with suspended carbon nanotubes, Comput. Math. Appl., 80 (2020), 1375–1386. doi: 10.1016/j.camwa.2020.07.005
![]() |
[31] |
M. S. Anwar, Numerical study of transport phenomena in a nanofluid using fractional relaxation times in Buongiorno model, Phys. Scr., 95 (2020), 035211. doi: 10.1088/1402-4896/ab4ba9
![]() |
[32] |
M. Irfan, M. S. Anwar, M. Rashid, M. Waqas, W. A. Khan, Arrhenius activation energy aspects in mixed convection Carreau nanofluid with nonlinear thermal radiation, Appl. Nanosci., 10 (2020), 4403–4413. doi: 10.1007/s13204-020-01498-5
![]() |
[33] |
M. S. Anwar, A. Rasheed, Joule heating in magnetic resistive flow with fractional Cattaneo-Maxwell model, J. Braz. Soc. Mech. Sci. Eng., 40 (2018), 501. doi: 10.1007/s40430-018-1426-8
![]() |
[34] |
M. S. Anwar, A. Rasheed, Interplay of chemical reacting species in a fractional viscoelastic fluid flow, J. Mol. Liq., 273 (2019), 576–588. doi: 10.1016/j.molliq.2018.10.028
![]() |
[35] | M. Farooq, M. Javed, M. Ijaz Khan, A. Anjum, T. Hayat, Melting heat transfer and double stratification in stagnation flow of viscous nanofluid, Results Phys., 7 (2017), 2297–2301. |
[36] |
M. Ijaz Khan, M. Waqas, T. Hayat, A. Al-saedi, Magneto-hydrodynamical numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface, Phys. Chem. Liq., 56 (2018), 584–595. doi: 10.1080/00319104.2017.1367791
![]() |
[37] |
K. A. Ames, L. E. Payne, J. C. Song, Spatial decay in the pipe flow of a viscous fluid interfacing a porous medium, Math. Mod. Methods Appl. Sci., 11 (2001), 1547–1562. doi: 10.1142/S021820250100146X
![]() |
[38] | G. Mckay, B. Straughan, Patterned ground formation under water, Contin. Mech. Thermodyn., 5 (1993), 145–162. |
[39] | D. A. Nield, A. Bejan, Convection in porous media, Springer-Verlag, 2006. |
[40] |
L. E. Payne, B. Straughan, Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related questions, J. Math. Pures Appl., 77 (1998), 317–354. doi: 10.1016/S0021-7824(98)80102-5
![]() |
[41] |
Y. F. Li, S. H. Zhang, C. H. Lin, Structural stability for the Boussinesq equations interfacing with Darcy equations in a bounded domain, Bound. Value Probl., 2021 (2021), 27. doi: 10.1186/s13661-021-01501-0
![]() |
[42] |
Y. Liu, S. Z. Xiao, Y. W. Lin, Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain, Math. Comput. Simulat., 150 (2018), 66–82. doi: 10.1016/j.matcom.2018.02.009
![]() |
[43] | Y. Liu, S. Z. Xiao, Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain, Nonlinear Anal.: Real World Appl., 42 (2018), 308-333. |
[44] | J. C. Shi, Y. Liu, Structural stability for the Forchheimer equations interfacing with a Darcy fluid in a bounded region in R3, Bound. Value Probl., 2021 (2021), 46. |
[45] | Y. Liu, X. L. Qin, J. C. Shi, W. J. Zhi, Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in R2, Appl. Math. Comput., 411 (2021), 126488. |
[46] |
L. E. Payne, J. C. Song, Spatial decay estimates for Brinkman and Darcy flows in a semi-infinite cylinder, Continuum Mech. Therm., 9 (1997), 175–190. doi: 10.1007/s001610050064
![]() |
[47] |
Y. X. Li, T. Muhammad, M. Bilal, M. A. Khan, A. Ahmadian, B. A. Pansera, Fractional simulation for Darcy-Forchheimer hybrid nanoliquid flow with partial slip over a spinning disk, Alexandria Eng. J., 60 (2021), 4787–4796. doi: 10.1016/j.aej.2021.03.062
![]() |
[48] |
M. Z. Ullah, T. Muhammad, F. Mallawi, On model for Darcy-Forchheimer 3D nanofluid flow subject to heat flux boundary condition, J. Therm. Anal. Calorim., 143 (2021), 2411–2418. doi: 10.1007/s10973-020-09892-5
![]() |
[49] |
H. Waqas, M. Imran, T. Muhammad, S. M. Sait, R. Ellahi, On bio-convection thermal radiation in Darcy-Forchheimer flow of nanofluid with gyrotactic motile microorganism under Wu's slip over stretching cylinder/plate, Int. J. Numer. Methods Heat Fluid Flow, 31 (2021), 1520–1546. doi: 10.1108/HFF-05-2020-0313
![]() |
[50] | H. Rout, S. S. Mohapatra, S. Shaw, T. Muhammad, M. K. Nayak, O. D. Makinde, Entropy optimization for Darcy-Forchheimer electro-magneto-hydrodynamic slip flow of ferronanofluid due to stretching/shrinking rotating disk, Waves Random Complex Media, 2021. Available from: https://doi.org/10.1080/17455030.2021.1927238. |
[51] |
M. Ijaz Khan, Transportation of hybrid nanoparticles in forced convective Darcy-Forchheimer flow by a rotating disk, Int. Commun. Heat Mass Transfer, 122 (2021), 105177. doi: 10.1016/j.icheatmasstransfer.2021.105177
![]() |
[52] |
M. Ijaz Khan, F. Alzahrani, A. Hobiny, Simulation and modeling of second order velocity slip flow of micropolar ferrofluid with Darcy-Forchheimer porous medium, J. Mater. Res. Technol., 9 (2020), 7335–7340. doi: 10.1016/j.jmrt.2020.04.079
![]() |
[53] |
T. Muhammad, K. Rafique, M. Asma, M. Alghamdi, Darcy-Forchheimer flow over an exponentially stretching curved surface with Cattaneo-Christov double diffusion, Phys. A: Stat. Mech. Appl., 556 (2020), 123968. doi: 10.1016/j.physa.2019.123968
![]() |
[54] |
L. E. Payne, J. C. Song, Spatial decay bounds for the Forchheimer equations, Int. J. Eng. Sci., 40 (2002), 943–956. doi: 10.1016/S0020-7225(01)00102-1
![]() |
1. | José R. Fernández, Ramón Quintanilla, Spatial-time decay for nonlinear problems backward in time, 2025, 32, 1021-9722, 10.1007/s00030-024-01010-w |