Processing math: 24%
Research article

Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions

  • Received: 22 February 2021 Accepted: 30 April 2021 Published: 07 May 2021
  • MSC : Primary: 11B83; Secondary: 11C08, 12E10, 26A39, 33B10, 41A58

  • In the paper, the authors

    1. establish general expressions of series expansions of (arcsinx) for N;

    2. find closed-form formulas for the sequence

    B2n,k(0,13,0,95,0,2257,,1+(1)k+12[(2nk)!!]22nk+2),

    where Bn,k denotes the second kind Bell polynomials;

    3. derive series representations of generalized logsine functions.

    The series expansions of the powers (arcsinx) were related with series representations for generalized logsine functions by Andrei I. Davydychev, Mikhail Yu. Kalmykov, and Alexey Sheplyakov. The above sequence represented by special values of the second kind Bell polynomials appeared in the study of Grothendieck's inequality and completely correlation-preserving functions by Frank Oertel.

    Citation: Bai-Ni Guo, Dongkyu Lim, Feng Qi. Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions[J]. AIMS Mathematics, 2021, 6(7): 7494-7517. doi: 10.3934/math.2021438

    Related Papers:

    [1] Jiaye Lin . Evaluations of some Euler-type series via powers of the arcsin function. AIMS Mathematics, 2025, 10(4): 8116-8130. doi: 10.3934/math.2025372
    [2] Aimin Xu . Some identities connecting Stirling numbers, central factorial numbers and higher-order Bernoulli polynomials. AIMS Mathematics, 2025, 10(2): 3197-3206. doi: 10.3934/math.2025148
    [3] Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta . A collocation procedure for the numerical treatment of FitzHugh–Nagumo equation using a kind of Chebyshev polynomials. AIMS Mathematics, 2025, 10(1): 1201-1223. doi: 10.3934/math.2025057
    [4] Taekyun Kim, Dae San Kim, Dmitry V. Dolgy, Hye Kyung Kim, Hyunseok Lee . A new approach to Bell and poly-Bell numbers and polynomials. AIMS Mathematics, 2022, 7(3): 4004-4016. doi: 10.3934/math.2022221
    [5] Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim . Representations of modified type 2 degenerate poly-Bernoulli polynomials. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638
    [6] Nusrat Raza, Mohammed Fadel, Kottakkaran Sooppy Nisar, M. Zakarya . On 2-variable q-Hermite polynomials. AIMS Mathematics, 2021, 6(8): 8705-8727. doi: 10.3934/math.2021506
    [7] Qiuxia Hu, Bilal Khan, Serkan Araci, Mehmet Acikgoz . New double-sum expansions for certain Mock theta functions. AIMS Mathematics, 2022, 7(9): 17225-17235. doi: 10.3934/math.2022948
    [8] Gamal Hassan, Mohra Zayed . Expansions of generalized bases constructed via Hasse derivative operator in Clifford analysis. AIMS Mathematics, 2023, 8(11): 26115-26133. doi: 10.3934/math.20231331
    [9] Chunli Li, Wenchang Chu . Remarkable series concerning (3nn) and harmonic numbers in numerators. AIMS Mathematics, 2024, 9(7): 17234-17258. doi: 10.3934/math.2024837
    [10] Aimin Xu . Some identities involving derangement polynomials and r-Bell polynomials. AIMS Mathematics, 2024, 9(1): 2051-2062. doi: 10.3934/math.2024102
  • In the paper, the authors

    1. establish general expressions of series expansions of (arcsinx) for N;

    2. find closed-form formulas for the sequence

    B2n,k(0,13,0,95,0,2257,,1+(1)k+12[(2nk)!!]22nk+2),

    where Bn,k denotes the second kind Bell polynomials;

    3. derive series representations of generalized logsine functions.

    The series expansions of the powers (arcsinx) were related with series representations for generalized logsine functions by Andrei I. Davydychev, Mikhail Yu. Kalmykov, and Alexey Sheplyakov. The above sequence represented by special values of the second kind Bell polynomials appeared in the study of Grothendieck's inequality and completely correlation-preserving functions by Frank Oertel.



    In [12,Definition 11.2] and [18,p. 134,Theorem A], the second kind Bell polynomials Bn,k for nk0 are defined by

    Bn,k(x1,x2,,xnk+1)=Nnk+10n!nk+1i=1i!nk+1i=1(xii!)i,

    where N0={0}N, the sum is taken over =(1,2,,nk+1) with iN0 satisfying nk+1i=1i=k and nk+1i=1ii=n. This kind of polynomials are very important in combinatorics, analysis, and the like. See the review and survey article [53] and closely related references therein.

    In [36,pp. 13–15], when studying Grothendieck's inequality and completely correlation-preserving functions, Oertel obtained the interesting identity

    2nk=1(1)k(2n+k)!k!B2n,k(0,16,0,340,0,5112,,1+(1)k+12[(2nk)!!]2(2nk+2)!)=(1)n

    for nN, where

    Bn,k(x1,x2,,xnk+1)=k!n!Bn,k(1!x1,2!x2,,(nk+1)!xnk+1). (1.1)

    In [36,p. 15], Oertel wrote that "However, already in this case we don't know a closed form expression for the numbers

    B2n,k(0,16,0,340,0,5112,,1+(1)k+12[(2nk)!!]2(2nk+2)!). (1.2)

    An even stronger problem appears in the complex case, since already a closed-form formula for the coefficients of the Taylor series of the inverse of the Haagerup function is still unknown''.

    By virtue of the relation (1.1), we see that, to find a closed-form formula for the sequence (1.2), it suffices to discover a closed-form formula for

    B2n,k(0,13,0,95,0,2257,,1+(1)k+12[(2nk)!!]22nk+2). (1.3)

    In this paper, one of our aims is to derive closed-form formulas for the sequence (1.3). The first main result can be stated as the following theorem.

    Theorem 1.1. For k,n0, mN, and xmC, we have

    B2n+1,k(0,x2,0,x4,,1+(1)k2x2nk+2)=0. (1.4)

    For k,nN, we have

    B2n,2k1(0,13,0,95,0,2257,,0,[(2n2k+1)!!]22n2k+3)=22n(2k1)![kp=1(4)p1(2k12p1)(2n+2p12p1)2p2q=0T(n+p1;q,2p2;12)k1p=1(1)p1(2k12p)(2n+2p2p)2p2q=0T(n+p1;q,2p2;1)]

    and

    B2n,2k(0,13,0,95,0,2257,,[(2n2k1)!!]22n2k+1,0)=22n(2k)![kp=1(1)p1(2k2p)(2n+2p2p)2p2q=0T(n+p1;q,2p2;1)kp=1(4)p1(2k2p1)(2n+2p12p1)2p2q=0T(n+p1;q,2p2;12)],

    where s(n,k), which can be generated by

    xn=nm=0s(n,m)xm, (1.5)

    denote the first kind Stirling numbers and

    T(r;q,j;ρ)=(1)q[rm=q(ρ)ms(r,m)(mq)][rm=jq(ρ)ms(r,m)(mjq)]. (1.6)

    In Section 2, for proving Theorem 1.1, we will establish two general expressions for power series expansions of (arcsinx)21 and (arcsinx)2 respectively.

    In Section 3, with the aid of general expressions for power series expansions of the functions (arcsinx)21 and (arcsinx)2 established in Section 2, we will prove Theorem 1.1 in details.

    In Section 4, basing on arguments in [20,p. 308] and [28,Section 2.4] and utilizing general expressions for power series expansions of (arcsinx)21 and (arcsinx)2 established in Section 2, we will derive series representations of generalized logsine functions which were originally introduced in [34] and have been investigating actively, deeply, and systematically by mathematicians [9,10,14,15,16,17,29,30,31,37,38,57] and physicists [3,19,20,28].

    Finally, in Section 5, we will list several remarks on our main results and related stuffs.

    To prove Theorem 1.1, we need to establish the following general expressions of the power series expansions of (arcsinx) for N.

    Theorem 2.1. For N and |x|<1, the functions (arcsinx) can be expanded into power series

    (arcsinx)21=(4)1n=04n(2n)![22q=0T(n+1;q,22;12)]x2n+21(2n+2121) (2.1)

    or

    (arcsinx)2=(1)1n=04n(2n)![22q=0T(n+1;q,22;1)]x2n+2(2n+22), (2.2)

    where s(n,k) denotes the first kind Stirling numbers generated in (1.5) and T(r;q,j;ρ) is defined by (1.6).

    Proof. In [4,pp. 262–263,Proposition 15], [7,p. 3], [20,p. 308], and [28,pp. 49–50], it was stated that the generating expression for the series expansion of (arcsinx)n with nN is

    exp(tarcsinx)==0b(t)x!,

    where b0(t)=1, b1(t)=t, and

    b2(t)=1k=0[t2+(2k)2],b2+1(t)=tk=1[t2+(2k1)2]

    for N. This means that, when writing

    b(t)=k=0β,ktk,0,

    where β0,0=1, β2,0=0, β2,2k+1=0, and β21,2k=0 for k0 and 1, we have

    =0(arcsinx)t!==0x!k=0β,ktk=k=0=kx!β,ktk==0[m=βm,xmm!]t.

    Equating coefficients of t gives

    (arcsinx)=!m=βm,xmm!=!n=0βn+,xn+(n+)!,N. (2.3)

    It is not difficult to see that

    b2(t)=41t2(1it2)1(1+it2)1andb2+1(t)=4t(12it2)(12+it2),

    where i=1 is the imaginary unit and

    (z)n=n1=0(z+)={z(z+1)(z+n1),n11,n=0

    is called the rising factorial of zC, while

    zn=n1=0(z)={z(z1)(zn+1),n11,n=0 (2.4)

    is called the falling factorial of zC. Making use of the relation

    (z)n=(1)nznorzn=(1)n(z)n

    in [52,p. 167], we acquire

    b2(t)=41t2it211it211andb2+1(t)=4tit212it212.

    Utilizing the relation (1.5) in [59,p. 19,(1.26)], we obtain

    b2(t)=41t21m=0s(1,m)2m(it2)m1m=0(1)ms(1,m)2m(it+2)m=41t21m=0s(1,m)2mmk=0(mk)iktk(2)mk1m=0(1)ms(1,m)2mmk=0(mk)iktk2mk=41t21m=0(1)ms(1,m)mk=0(1)k2k(mk)iktk1m=0(1)ms(1,m)mk=012k(mk)iktk=41t21k=0[1m=k(1)m+ks(1,m)2k(mk)]iktk1k=0[1m=k(1)ms(1,m)2k(mk)]iktk=41t22(1)k=0kq=0[1m=q(1)m+qs(1,m)2q(mq)1m=kq(1)ms(1,m)2kq(mkq)]iktk=41t22(1)k=012kkq=0[1m=q(1)m+qs(1,m)(mq)1m=kq(1)ms(1,m)(mkq)]iktk=412(1)k=0ik2k[kq=0(1m=q(1)ms(1,m)(mq))1m=kq(1)ms(1,m)(mkq)]tk+2=412(1)k=0ik2k[kq=0T(1;q,k;1)]tk+2

    and

    b2+1(t)=4tm=0s(,m)2m(it1)mm=0(1)ms(,m)2m(it+1)m=4tm=0s(,m)2mmk=0(1)mk(mk)iktkm=0(1)ms(,m)2mmk=0(mk)iktk=4tk=0[m=k(1)ms(,m)2m(mk)](i)ktkk=0[m=k(1)ms(,m)2m(mk)]iktk=42k=0ik[kq=0(1)q(m=q(1)ms(,m)2m(mq))m=kq(1)ms(,m)2m(mkq)]tk+1=42k=0ik[kq=0T(;q,k;12)]tk+1.

    This means that

    2k=0β2,ktk=2(1)k=2β2,k+2tk+2=2(1)k=0β2,k+2tk+2=412(1)k=0ik2k[kq=0T(1;q,k;1)]tk+2

    and

    2+1k=0β2+1,ktk=2k=1β2+1,k+1tk+1=2k=0β2+1,k+1tk+1=42k=0ik[kq=0T(;q,k;12)]tk+1.

    Further equating coefficients of tk+2 and tk+1 respectively arrives at

    β2,k+2=41ik2kkq=0T(1;q,k;1)andβ2+1,k+1=4ikkq=0T(;q,k;12)

    for k0.

    Replacing by 21 for N in (2.3) leads to

    (arcsinx)21=(21)!n=0βn+21,21xn+21(n+21)!=(21)!n=0β2n+21,21x2n+21(2n+21)!=(21)!n=0[4n+1i2(1)2(1)q=0T(n+1;q,22;12)]x2n+21(2n+21)!=(1)141(21)!n=0[4n2(1)q=0T(n+1;q,22;12)]x2n+21(2n+21)!=(4)1n=04n(2n)![22q=0T(n+1;q,22;12)]x2n+21(2n+2121).

    Replacing by 2 for N in (2.3) leads to

    (arcsinx)2=(2)!n=0βn+2,2xn+2(n+2)!=(2)!n=0β2n+2,2x2n+2(2n+2)!=(1)1(2)!n=0[4n2(1)q=0T(n+1;q,22;1)]x2n+2(2n+2)!=(1)1n=04n(2n)![22q=0T(n+1;q,22;1)]x2n+2(2n+22).

    The proof of Theorem 2.1 is complete.

    We now start out to prove Theorem 1.1.

    In the last line of [18,p. 133], there exists the formula

    1k!(m=1xmtmm!)k=n=kBn,k(x1,x2,,xnk+1)tnn! (3.1)

    for k0. When taking x2m1=0 for mN, the left hand side of the formula (3.1) is even in t(,) for all k0. Therefore, the formula (1.4) is valid.

    Ones know that the power series expansion

    arcsint==0[(21)!!]2(2+1)!t2+1,|t|<1 (3.2)

    is valid, where (1)!!=1. This implies that

    B2n,k(0,13,0,95,0,2257,,1+(1)k+12[(2nk)!!]22nk+2)=B2n,k((arcsint)|t=02,(arcsint)|t=03,(arcsint)(4)|t=04,,(arcsint)(2nk+2)|t=02nk+2).

    Employing the formula

    Bn,k(x22,x33,,xnk+2nk+2)=n!(n+k)!Bn+k,k(0,x2,x3,,xn+1)

    in [18,p. 136], we derive

    B2n,k(0,13,0,95,0,2257,,1+(1)k+12[(2nk)!!]22nk+2)=(2n)!(2n+k)!B2n+k,k(0,(arcsint)|t=0,(arcsint)|t=0,,(arcsint)(2n+1)|t=0).

    Making use of the formula (3.1) yields

    n=0Bn+k,k(x1,x2,,xn+1)k!n!(n+k)!tn+kn!=(m=1xmtmm!)k,n=0Bn+k,k(x1,x2,,xn+1)(n+kk)tn+kn!=(m=1xmtmm!)k,Bn+k,k(x1,x2,,xn+1)=(n+kk)limt0dndtn[m=0xm+1tm(m+1)!]k,B2n+k,k(x1,x2,,x2n+1)=(2n+kk)limt0d2ndt2n[m=0xm+1tm(m+1)!]k.

    Setting x1=0 and xm=(arcsint)(m)|t=0 for m2 gives

    d2ndt2n[m=0xm+1tm(m+1)!]k=d2ndt2n[1tm=2(arcsint)(m)|t=0tmm!]k=d2ndt2n(arcsinttt)k=d2ndt2nkp=0(1)kp(kp)(arcsintt)p=kp=1(1)kp(kp)d2ndt2n(arcsintt)p.

    Accordingly, we obtain

    limt0d2ndt2n[1tm=2(arcsint)(m)|t=0tmm!]2k1=2k1p=1(1)2kp1(2k1p)limt0d2ndt2n(arcsintt)p=kp=1(2k12p1)limt0d2ndt2n(arcsintt)2p1k1p=1(2k12p)limt0d2ndt2n(arcsintt)2p

    and

    limt0d2ndt2n[1tm=2(arcsint)(m)|t=0tmm!]2k=2kp=1(1)2kp(2kp)limt0d2ndt2n(arcsintt)p=kp=1(2k2p)limt0d2ndt2n(arcsintt)2pkp=1(2k2p1)limt0d2ndt2n(arcsintt)2p1.

    From the power series expansions (2.1) and (2.2) in Theorem 2.1, it follows that

    limt0d2ndt2n(arcsintt)2p1=(1)p14p1(2p1)!×limt0d2ndt2nj=0[4j2p2q=0T(j+p1;q,2p2;12)]t2j(2j+2p1)!=(1)p14n+p1(2n+2p12n)2p2q=0T(n+p1;q,2p2;12)

    and

    limt0d2ndt2n(arcsintt)2p=(1)p1(2p)!limt0d2ndt2nj=0[4j2p2q=0T(j+p1;q,2p2;1)]t2j(2j+2p)!=(1)p14n(2n+2p2n)2p2q=0T(n+p1;q,2p2;1).

    Therefore, we arrive at

    limt0d2ndt2n[1tm=2(arcsint)(m)|t=0tmm!]2k1=4nkp=1(4)p1(2k12p1)(2n+2p12p1)2p2q=0T(n+p1;q,2p2;12)4nk1p=1(1)p1(2k12p)(2n+2p2p)2p2q=0T(n+p1;q,2p2;1)

    and

    limt0d2ndt2n[1tm=2(arcsint)(m)|t=0tmm!]2k=4nkp=1(1)p1(2k2p)(2n+2p2p)2p2q=0T(n+p1;q,2p2;1)4nkp=1(4)p1(2k2p1)(2n+2p12p1)2p2q=0T(n+p1;q,2p2;12).

    Consequently, we acquire

    B2n,2k1(0,13,0,95,0,2257,,0,[(2n2k+1)!!]22n2k+3)=(2n)!(2n+2k1)!B2n+2k1,2k1(0,(arcsint)|t=0,(arcsint)|t=0,,(arcsint)(2n+1)|t=0)=(2n)!(2n+2k1)!(2n+2k12k1)limt0d2ndt2n(1tm=2(arcsint)(m)|t=0tmm!)2k1=1(2k1)![4nkp=1(4)p1(2k12p1)(2n+2p12p1)2p2q=0T(n+p1;q,2p2;12)4nk1p=0(1)p1(2k12p)(2n+2p2p)2p2q=0T(n+p1;q,2p2;1)]

    and

    B2n,2k(0,13,0,95,0,2257,,[(2n2k1)!!]22n2k+1,0)=(2n)!(2n+2k)!B2n+2k,2k(0,(arcsint)|t=0,(arcsint)|t=0,,(arcsint)(2n+1)|t=0)=(2n)!(2n+2k)!(2n+2k2k)limt0d2ndt2n(1tm=2(arcsint)(m)|t=0tmm!)2k=1(2k)![4nkp=1(1)p1(2k2p)(2n+2p2p)2p2q=0T(n+p1;q,2p2;1)4nkp=1(4)p1(2k2p1)(2n+2p12p1)2p2q=0T(n+p1;q,2p2;12)].

    The proof of Theorem 1.1 is complete.

    The logsine function

    Lsj(θ)=θ0(ln|2sinx2|)j1dx

    and generalized logsine function

    Ls()j(θ)=θ0x(ln|2sinx2|)j1dx

    were introduced originally in [34,pp. 191–192], where ,j are integers, j+11, and θ is an arbitrary real number. There have been many papers such as [3,9,10,14,15,16,17,19,20,28,29,30,31,37,38,57] devoted to investigation and applications of the (generalized) logsine functions in mathematics, physics, engineering, and other mathematical sciences.

    Theorem 4.1. Let zn for zC and n{0}N denote the falling factorial defined by (2.4) and let T(r;q,j;ρ) be defined by (1.6). In the region 0<θπ and for j,N, generalized logsine functions Ls()j(θ) have the following series representations:

    1. for j2+13,

    Ls(21)j(θ)=θ22[ln(2sinθ2)]j2(1)(j2)(21)!(ln2)j1(2sinθ2ln2)2×n=0(2sinθ2)2n(2n+2)![22q=0T(n+1;q,22;1)]×[j21α=0(lnsinθ2ln2)α(j21α)αk=0(1)kαk(2n+2)k+1(lnsinθ2)k]; (4.1)

    2. for j2+24,

    Ls(2)j(θ)=θ2+12+1[ln(2sinθ2)]j21+(1)(j21)(2)!(ln2)j12(4sinθ2ln2)2+1×n=0[(2sinθ2)2n(2n+2+1)!2q=0T(n+;q,2;12)]×[j22α=0(j22α)(lnsinθ2ln2)ααk=0(1)kαk(2n+2+1)k+1(lnsinθ2)k]; (4.2)

    3. for j211,

    Ls(22)j(θ)=(1)243(22)!(ln2)j(sinθ2ln2)21×n=0[(2sinθ2)2n(2n+22)!22q=0T(n+1;q,22;12)]×j2+1α=0(j2+1α)(lnsinθ2ln2)ααk=0(1)kαk(2n+21)k+1(lnsinθ2)k; (4.3)

    4. for j211,

    Ls(21)j(θ)=(1)(21)!(ln2)j(2sinθ2ln2)2×n=0[(2sinθ2)2n(2n+21)!22q=0T(n+1;q,22;1)]×j2α=0(j2α)(lnsinθ2ln2)ααk=0(1)kαk(2n+2)k+1(lnsinθ2)k. (4.4)

    Proof. In [28,p. 49,Section 2.4], it was obtained that

    Ls(k)j(θ)=θk+1k+1[ln(2sinθ2)]jk1+2k+1(jk1)k+1sin(θ/2)0(arcsinx)k+1lnjk2(2x)xdx (4.5)

    for 0<θπ and jk20. Making use of Theorem 2.1 and the formula

    xnlnmxdx=xn+1mk=0(1)kmklnmkx(n+1)k+1,m,n0 (4.6)

    in [22,p. 238,2.722], we acquire

    sin(θ/2)0(arcsinx)2lnj21(2x)xdx=(1)1(2)!n=04n(2n+2)![22q=0T(n+1;q,22;1)]sin(θ/2)0x2n+21lnj21(2x)dx=(1)1(2)!n=04n(2n+2)![22q=0T(n+1;q,22;1)]×[sin(θ/2)0x2n+21(ln2+lnx)j21dx]=(1)1(2)!n=04n(2n+2)![22q=0T(n+1;q,22;1)]×[j21α=0(j21α)(ln2)j2α1sin(θ/2)0x2n+21(lnx)αdx]=(1)1(2)!n=04n(2n+2)![22q=0T(n+1;q,22;1)]×[j21α=0(j21α)(ln2)j2α1(sinθ2)2n+2αk=0(1)kαk(2n+2)k+1(lnsinθ2)αk]=(1)1(2)!(ln2)j21(sinθ2)2n=04n(2n+2)!(sinθ2)2n[22q=0T(n+1;q,22;1)]×[j21α=0(lnsinθ2ln2)α(j21α)αk=0(1)kαk(2n+2)k+1(lnsinθ2)k]

    for j2+13. Substituting this result into (4.5) for k=21 yields (4.1).

    Similarly, by virtue of Theorem 2.1 and the formula (4.6), we also have

    sin(θ/2)0(arcsinx)2+1lnj22(2x)xdx=(1)4(2+1)!n=0[4n(2n+2+1)!2q=0T(n+;q,2;12)]sin(θ/2)0x2n+2lnj22(2x)dx=(1)4(2+1)!n=0[4n(2n+2+1)!2q=0T(n+;q,2;12)]×j22α=0(j22α)(ln2)j2α2sin(θ/2)0x2n+2(lnx)αdx=(1)4(2+1)!n=0[4n(2n+2+1)!2q=0T(n+;q,2;12)]×j22α=0(j22α)(ln2)j2α2(sinθ2)2n+2+1αk=0(1)kαk(lnsinθ2)αk(2n+2+1)k+1=(1)4(2+1)!(sinθ2)2+1(ln2)j22n=0[4n(2n+2+1)!(sinθ2)2n2q=0T(n+;q,2;12)]×[j22α=0(j22α)(lnsinθ2ln2)ααk=0(1)kαk(2n+2+1)k+1(lnsinθ2)k]

    for N and j2(+1)4. Substituting this result into (4.5) for k=2 yields (4.2).

    In [20,p. 308], it was derived that

    Ls(k)j(θ)=2k+1sin(θ/2)0(arcsinx)k1x2lnjk1(2x)dx (4.7)

    for 0<θπ and jk+11. Differentiating with respect to x on both sides of the formulas (2.1) and (2.2) in Theorem 2.1 results in

    (arcsinx)221x2=(1)141(22)!n=0[4n22q=0T(n+1;q,22;12)]x2n+22(2n+22)! (4.8)

    and

    (arcsinx)211x2=(1)1(21)!n=0[4n22q=0T(n+;q,2;1)]x2n+21(2n+21)! (4.9)

    for N. Substituting the power series expansions (4.8) and (4.9) into (4.7) and employing the indefinite integral (4.6) respectively reveal

    Ls(22)j(θ)=221sin(θ/2)0(arcsinx)221x2lnj2+1(2x)dx=(1)243(22)!n=0[4n(2n+22)!22q=0T(n+1;q,22;12)]×sin(θ/2)0x2n+22(ln2+lnx)j2+1dx=(1)243(22)!n=0[4n(2n+22)!22q=0T(n+1;q,22;12)]×j2+1α=0(j2+1α)(ln2)j2α+1sin(θ/2)0x2n+22(lnx)αdx=(1)243(22)!(ln2)j(sinθ2ln2)21n=0[4n(2n+22)!(sinθ2)2n×22q=0T(n+1;q,22;12)]×j2+1α=0(j2+1α)(lnsinθ2ln2)ααk=0(1)kαk(2n+21)k+1(lnsinθ2)k

    for j211 and

    Ls(21)j(θ)=22sin(θ/2)0(arcsinx)211x2lnj2(2x)dx=(1)22(21)!n=0[4n(2n+21)!22q=0T(n+1;q,22;1)]×sin(θ/2)0x2n+21(ln2+lnx)j2dx=(1)22(21)!n=0[4n(2n+21)!22q=0T(n+1;q,22;1)]×j2α=0(j2α)(ln2)j2αsin(θ/2)0x2n+21(lnx)αdx=(1)(21)!(ln2)j(2sinθ2ln2)2n=0[(2sinθ2)2n(2n+21)!22q=0T(n+1;q,22;1)]×j2α=0(j2α)(lnsinθ2ln2)ααk=0(1)kαk(2n+2)k+1(lnsinθ2)k

    for j21. The series representations (4.3) and (4.4) are thus proved. The proof of Theorem 4.1 is complete.

    Finally, we list several remarks on our main results and related stuffs.

    Remark 5.1. For nk1, the first kind Stirling numbers s(n,k) can be explicitly computed by

    |s(n+1,k+1)|=n!n1=k11112=k112k21k1=21k1k11k=11k. (5.1)

    The formula (5.1) was derived in [41,Corollary 2.3] and can be reformulated as

    |s(n+1,k+1)|n!=nm=k|s(m,k)|m!

    for nk1. From the equation (1.5), by convention, we assume s(n,k)=0 for n<k and k,n<0. In recent years, the first kind Stirling numbers s(n,k) have been investigated in [39,40,41,42,45] and closely related references therein.

    Remark 5.2. For |x|<1, we have the following series expansions of arcsinx and its powers.

    1. The series expansion (3.2) of arcsinx can be rewritten as

    arcsinxx=1!n=0[(2n1)!!]2x2n(2n+1)!, (5.2)

    where (1)!!=1. Various forms of (5.2) can be found in [1,4.4.40] and [2,p. 121,6.41.1].

    2. The series expansion of (arcsinx)2 can be rearranged as

    (arcsinxx)2=2!n=0[(2n)!!]2x2n(2n+2)!. (5.3)

    The variants of (5.3) can be found in [2,p. 122,6.42.1], [4,pp. 262–263,Proposition 15], [5,pp. 50–51 and p. 287], [6,p. 384], [7,p. 2,(2.1)], [13,Lemma 2], [20,p. 308], [21,pp. 88-90], [22,p. 61,1.645], [32,p. 1011], [33,p. 453], [47,Section 6.3], [58], [60,p. 59,(2.56)], or [62,p. 676,(2.2)]. It is clear that the series expansion (5.3) and its equivalent forms have been rediscovered repeatedly. For more information on the history, dated back to 1899 or earlier, of the series expansion (5.3) and its equivalent forms, see [7,p. 2] and [32,p. 1011].

    3. The series expansion of (arcsinx)3 can be reformulated as

    (arcsinxx)3=3!n=0[(2n+1)!!]2[nk=01(2k+1)2]x2n(2n+3)!. (5.4)

    Different variants of (5.4) can be found in [2,p. 122,6.42.2], [4,pp. 262–263,Proposition 15], [11,p. 188,Example 1], [20,p. 308], [21,pp. 88–90], [22,p. 61,1.645], or [27,pp. 154–155,(832)].

    4. The series expansion of (arcsinx)4 can be restated as

    (arcsinxx)4=4!n=0[(2n+2)!!]2[nk=01(2k+2)2]x2n(2n+4)!. (5.5)

    There exist three variants of (5.5) in [4,pp. 262–263,Proposition 15], [7,p. 3,(2.2)], and [20,p. 309].

    5. Basing on the formula (2.21) in [28,p. 50], we concretely obtain

    (arcsinxx)5=5!2n=0[(2n+3)!!]2[(n+1k=01(2k+1)2)2n+1k=01(2k+1)4]x2n(2n+5)!. (5.6)

    6. In [7], the special series expansions

    (arcsinx2)2=12n=1x2n(2nn)n2,(arcsinx2)4=32n=1(n1m=11m2)x2n(2nn)n2,(arcsinx2)6=454n=1(n1m=11m2m1=112)x2n(2nn)n2,(arcsinx2)8=3152n=1(n1m=11m2m1=1121p=11p2)x2n(2nn)n2

    were listed. In general, it was obtained in [7,pp. 1–2] that

    (arcsinx2)2=(2)!n=1H(n)x2n(2nn)n2,N (5.7)

    and

    (arcsinx2)2+1=(2+1)!n=1G(n)(2nn)24n+1x2n+12n+1,{0}N, (5.8)

    where H_1(n) = \frac{1}{4} , G_0(n) = 1 ,

    \begin{equation*} H_{\ell+1}(n) = \frac{1}{4}\sum\limits_{m_1 = 1}^{n-1}\frac{1}{(2m_1)^2} \sum\limits_{m_2 = 1}^{m_1-1}\frac{1}{(2m_2)^2} \dotsm\sum\limits_{m_\ell = 1}^{m_{\ell-1}-1}\frac{1}{(2m_\ell)^2}, \end{equation*}

    and

    \begin{equation*} G_\ell(n) = \sum\limits_{m_1 = 0}^{n-1}\frac{1}{(2m_1+1)^2} \sum\limits_{m_2 = 0}^{m_1-1}\frac{1}{(2\ell_2+1)^2} \dotsm\sum\limits_{m_\ell = 0}^{m_{\ell-1}-1}\frac{1}{(2m_\ell+1)^2}. \end{equation*}

    The convention is that the sum is zero if the starting index exceeds the finishing index.

    7. In [7,(2.9) and (4.3)], [25,p. 480,(88.2.2)], and [56,p. 124], there exist the formulas

    \begin{equation} \begin{aligned} \biggl(\frac{\arcsin x}{x}\biggr)^\ell& = \sum\limits_{n = 0}^{\infty}\Biggl[\Biggl(\prod\limits_{k = 1}^{\ell-1} \Biggl\{\sum\limits_{n_k = 0}^{n_{k-1}}\frac{(2n_{k-1}-2n_k)!}{[(n_{k-1}-n_k)!]^2(2n_{k-1}-2n_k+1)}\frac{1}{2^{2n_{k-1}-2n_k}}\Biggr\}\Biggr)\\ &\quad\times\frac{(2n_{\ell-1})!}{(n_{\ell-1}!)^2(2n_{\ell-1}+1)}\frac{1}{2^{2n_{\ell-1}}}\Biggr]x^{2n} \end{aligned} \end{equation} (5.9)

    and

    \begin{equation} \biggl(\frac{\arcsin x}{x}\biggr)^\ell = \ell!\sum\limits_{n = 0}^{\infty}\Biggl[\sum\limits_{n_1 = 0}^{n}\frac{\binom{2n_1}{n_1}}{2n_1+1} \sum\limits_{n_2 = n_1}^{n}\frac{\binom{2n_2-2n_1}{n_2-n_1}}{2n_2+2}\dotsm \sum\limits_{n_\ell = n_{\ell-1}}^{n}\frac{\binom{2n_\ell-2n_{\ell-1}}{n_\ell-n_{\ell-1}}}{2n_\ell+\ell}\frac{1}{4^{n_\ell}}\Biggr]x^n. \end{equation} (5.10)

    All the power series expansions from (5.2) to (5.6) can also be deduced from Theorem 2.1.

    By the way, we notice that the quantity in the pair of bigger brackets, the coefficient of x^{2n} , in the formula (5.9) has no explicit relation with n . This means that there must be some misprints and typos somewhere in the formula (5.9). On 30 January 2021, Christophe Vignat (Tulane University) pointed out that n_0 = n is the missing information in the formula (5.9).

    In [28,pp. 49–50,Section 2.4], the power series expansions of (\arcsin x)^k for 2\le k\le 13 were concretely and explicitly written down in alternative forms. The main idea in the study of the power series expansions of (\arcsin x)^k for 2\le k\le 13 was related with series representations for generalized logsine functions in [28,p. 50,(2.24) and (2.25)]. The special interest is special values of generalized logsine functions defined by [28,p. 50,(2.26) and (2.27)].

    In [54,Theorem 1.4] and [55,Theorem 2.1], the n th derivative of \arcsin x was explicitly computed.

    In [43,44], three series expansions (5.2), (5.3), (5.4) and their first derivatives were used to derive known and new combinatorial identities and others.

    Because coefficients of x^{2n+2\ell-1} and x^{2n+2\ell} in (2.1) and (2.2) contain three times sums, coefficients of x^{2n} and x^{2n+1} in (5.7) and (5.8) contain \ell times sums, coefficients of x^{2n} in (5.9) contain \ell-1 times sums, and coefficients of x^n in (5.10) contain \ell times sums, we conclude that the series expansions (2.1) and (2.2) are more elegant, more operable, more computable, and more applicable.

    Remark 5.3. Two expressions (2.1) and (2.2) in Theorem 2.1 for series expansions of (\arcsin x)^{2\ell-1} and (\arcsin x)^{2\ell} are very close and similar to, but different from, each other. Is there a unified expression for series expansions of (\arcsin x)^{2\ell-1} and (\arcsin x)^{2\ell} ? If yes, two closed-form formulas for {\rm{B}}_{2n, k} in Theorem 1.1 would also be unified. We believe that the formula

    \begin{equation} \exp\biggl(2a\arcsin\frac{x}{2}\biggr) = \sum\limits_{n = 0}^{\infty}\frac{(ia)_{n/2}}{(ia+1)_{-n/2}}\frac{(-ix)^n}{n!} \end{equation} (5.11)

    mentioned in [7,p. 3,(2.7)] and collected in [25,p. 210,(10.49.33)] would be useful for unifying two expressions (2.1) and (2.2) in Theorem 2.1, where extended Pochhammer symbols

    \begin{equation} (ia)_{n/2} = \frac{\Gamma\bigl(ia+\frac{n}{2}\bigr)}{\Gamma(ia)}\quad{\rm{and}}\quad (ia+1)_{-n/2} = \frac{\Gamma\bigl(ia+1-\frac{n}{2}\bigr)}{\Gamma(ia+1)} \end{equation} (5.12)

    were defined in [25,p. 5,Section 2.2.3], and the Euler gamma function \Gamma(z) is defined [59,Chapter 3] by

    \begin{equation*} \Gamma(z) = \lim\limits_{n\to\infty}\frac{n!n^z}{\prod\limits_{k = 0}^n(z+k)}, \quad z\in\mathbb{C}\setminus\{0,-1,-2,\dotsc\}. \end{equation*}

    What are closed forms and why do we care closed forms? Please read the paper [8].

    Remark 5.4. In [2,p. 122,6.42], [27,pp. 154–155,(834)], [33,p. 452,Theorem], and [47,Section 6.3,Theorem 21,Sections 8 and 9], it was proved or collected that

    \begin{equation} \frac{\arcsin x}{\sqrt{1-x^2}\,} = \sum\limits_{n = 0}^{\infty}2^{2n}(n!)^2\frac{x^{2n+1}}{(2n+1)!}, \quad |x|\le1. \end{equation} (5.13)

    In [6,p. 385], [47,Theorem 24], and [61,p. 174,(10)], it was proved that

    \begin{equation} \sum\limits_{n = 1}^{\infty}\frac{(2x)^{2n}}{\binom{2n}{n}} = \frac{x^2}{1-x^2}+\frac{x\arcsin x}{\bigl(1-x^2\bigr)^{3/2}}, \quad |x| < 1. \end{equation} (5.14)

    These series expansions (5.13) and (5.14) can be derived directly from the series expansion for (\arcsin x)^2 and are a special case of (4.9) for \ell = 1 .

    Remark 5.5. The series expansion of the function \sqrt{1-x^2}\, \arcsin x was listed in [2,p. 122,6.42.4] which can be corrected and reformulated as

    \begin{equation} \sqrt{1-x^2}\,\arcsin x = x-1!\sum\limits_{n = 1}^{\infty}[(2n-2)!!]^2(2n)\frac{x^{2n+1}}{(2n+1)!}, \quad |x|\le1. \end{equation} (5.15)

    Basing on the relation

    \begin{equation*} \bigl(1-x^2\bigr)\bigl[(\arcsin x)^\ell\bigr]' = \ell\sqrt{1-x^2}\,(\arcsin x)^{\ell-1} \end{equation*}

    and utilizing series expansions of (\arcsin x)^3 and (\arcsin x)^4 , after simple operations, we can readily derive

    \begin{equation} \sqrt{1-x^2}\,(\arcsin x)^2 = x^2-2!\sum\limits_{n = 1}^{\infty}[(2n-1)!!]^2\Biggl[(2n+1) \sum\limits_{k = 0}^{n-1}\frac{1}{(2k+1)^2}-1\Biggr]\frac{x^{2n+2}}{(2n+2)!} \end{equation} (5.16)

    and

    \begin{equation} \sqrt{1-x^2}\,(\arcsin x)^3 = x^3-3!\sum\limits_{n = 1}^{\infty}[(2n)!!]^2 \Biggl[(2n+2)\sum\limits_{k = 0}^{n-1} \frac{1}{(2k+2)^2}-1\Biggr]\frac{x^{2n+3}}{(2n+3)!}. \end{equation} (5.17)

    From (4.8) and (4.9), we can generalize the series expansions (5.15), (5.16), and (5.17) as

    \begin{equation} \begin{aligned} \sqrt{1-x^2}\,(\arcsin x)^{2\ell-2} & = x^{2\ell-2}+(-1)^{\ell-1}4^{\ell-1}(2\ell-2)! \\ &\quad\times\sum\limits_{n = 1}^{\infty}[A(\ell,n)-(2n+2\ell-2)(2n+2\ell-3)A(\ell,n-1)] \frac{x^{2n+2\ell-2}}{(2n+2\ell-2)!} \end{aligned} \end{equation} (5.18)

    and

    \begin{equation} \begin{aligned} \sqrt{1-x^2}\,(\arcsin x)^{2\ell-1} & = x^{2\ell-1}+(-1)^{\ell-1}(2\ell-1)!\\ &\quad\times\sum\limits_{n = 1}^{\infty}[B(\ell,n)-(2n+2\ell-1)(2n+2\ell-2)B(\ell,n-1)]\frac{x^{2n+2\ell-1}}{(2n+2\ell-1)!} \end{aligned} \end{equation} (5.19)

    for \ell\in\mathbb{N} , where

    \begin{align*} A(\ell,n)& = 4^{n}\sum\limits_{q = 0}^{2\ell-2}T\biggl(n+\ell-1;q,2\ell-2;\frac12\biggr),\\ B(\ell,n)& = 4^{n} \sum\limits_{q = 0}^{2\ell-2} T(n+\ell-1;q,2\ell-2;1), \end{align*}

    and T(r; q, j;\rho) is defined by (1.6). Considering both coefficients of x^{2\ell-2} and x^{2\ell-1} in the power series expansions (5.18) and (5.19) must be 1 , we acquire two combinatorial identities

    \begin{equation*} \sum\limits_{q = 0}^{2\ell}T\biggl(\ell;q,2\ell;\frac12\biggr) = \frac{(-1)^{\ell}}{4^{\ell}} \quad{\rm{and}}\quad \sum\limits_{q = 0}^{2\ell} T(\ell;q,2\ell;1) = (-1)^{\ell} \end{equation*}

    for \ell\in\{0\}\cup\mathbb{N} , where T(r; q, j;\rho) is defined by (1.6).

    Remark 5.6. Making use of Theorem 1.1, we readily obtain the first several values of the sequence (1.3) in Tables 1 and 2.

    Table 1.  The sequence {\rm{B}}_{2n, 2k-1} in (1.3) for 1\le n, k\le8 .
    {\rm{B}}_{2n, 2k-1} k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
    n=1 \frac{1}{3} 0 0 0 0 0 0 0
    n=2 \frac{9}{5} 0 0 0 0 0 0 0
    n=3 \frac{225}{7} \frac{5}{9} 0 0 0 0 0 0
    n=4 1225 42 0 0 0 0 0 0
    n=5 \frac{893025}{11} 3951 \frac{35}{9} 0 0 0 0 0
    n=6 \frac{108056025}{13} \frac{2515524}{5} 1155 0 0 0 0 0
    n=7 1217431215 85621185 314314 \frac{5005}{81} 0 0 0 0
    n=8 \frac{4108830350625}{17} 18974980350 \frac{284770486}{3} \frac{140140}{3} 0 0 0 0

     | Show Table
    DownLoad: CSV
    Table 2.  The sequence {\rm{B}}_{2n, 2k} in (1.3) for 1\le n, k \le 8 .
    {\rm{B}}_{2n, 2k} k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
    n=1 0 0 0 0 0 0 0 0
    n=2 \frac{1}{3} 0 0 0 0 0 0 0
    n=3 9 0 0 0 0 0 0 0
    n=4 \frac{2067}{5} \frac{35}{27} 0 0 0 0 0 0
    n=5 30525 210 0 0 0 0 0 0
    n=6 \frac{23483925}{7} 35211 \frac{385}{27} 0 0 0 0 0
    n=7 516651345 \frac{106790684}{15} 7007 0 0 0 0 0
    n=8 106480673775 \frac{8891683281}{5} 2892890 \frac{25025}{81} 0 0 0 0

     | Show Table
    DownLoad: CSV

    In the papers [46,48,49,50,51,52,53,54,55] and closely related references therein, the authors and their coauthors discovered and applied closed form expressions for many special values of the second kind Bell polynomials {\rm{B}}_{n, k}(x_1, x_2, \dotsc, x_{n-k+1}) for n\ge k\ge0 .

    Remark 5.7. Taking \theta = \frac{\pi}{3} in (4.3) and (4.4) give

    \begin{align*} {\rm{Ls}}_j^{(2\ell-2)}\biggl(\frac{\pi}{3}\biggr) & = (-1)^{\ell}(4\ell-4)!!(\ln2)^{j-2\ell+1} \sum\limits_{n = 0}^{\infty}\Biggl[\frac{1}{{(2n+2\ell-2)!}}\sum\limits_{q = 0}^{2\ell-2} T\biggl(n+\ell-1;q,2\ell-2;\frac12\biggr)\Biggr] \\ &\quad\times\sum\limits_{\alpha = 0}^{j-2\ell+1}(-1)^{\alpha} \binom{j-2\ell+1}{\alpha} \sum\limits_{k = 0}^{\alpha}\frac{\langle\alpha\rangle_{k}} {(2n+2\ell-1)^{k+1}(\ln2)^{k}} \end{align*}

    and

    \begin{align*} {\rm{Ls}}_j^{(2\ell-1)}\biggl(\frac{\pi}{3}\biggr) & = (-1)^{\ell}(2\ell-1)!(\ln2)^{j-2\ell}\sum\limits_{n = 0}^{\infty}\Biggl[\frac{1}{(2n+2\ell-1)!} \sum\limits_{q = 0}^{2\ell-2} T(n+\ell-1;q,2\ell-2;1)\Biggr]\\ &\quad\times\sum\limits_{\alpha = 0}^{j-2\ell}(-1)^{\alpha}\binom{j-2\ell}{\alpha} \sum\limits_{k = 0}^{\alpha} \frac{\langle\alpha\rangle_{k}}{(2n+2\ell)^{k+1}(\ln2)^{k}} \end{align*}

    for \ell\in\mathbb{N} , where \langle z\rangle_n for z\in\mathbb{C} and n\in\{0\}\cup\mathbb{N} denotes the falling factorial defined by (2.4) and T(r; q, j;\rho) is defined by (1.6). In [28,p. 50], it was stated that the values {\rm{Ls}}_j^{(\ell)}\bigl(\frac{\pi}{3}\bigr) have been related to special interest in the calculation of the multiloop Feynman diagrams [19,20].

    Similarly, we can also deduce series representations for special values of the logsine function {\rm{Ls}}_j^{(\ell)}(\theta) at \theta = \frac{\pi}{2} , \frac{\pi}{4} , \frac{\pi}{6} and \theta = \pi . These special values were originally derived in [30,31,34] and also considered in [3,9,10,14,15,16,17,19,20,28,29,37,38,57] and closely related references therein.

    Remark 5.8. This paper is a revised version of electronic arXiv preprints [23,24].

    The authors thank

    1. Frank Oertel (Philosophy, Logic & Scientific Method Centre for Philosophy of Natural and Social Sciences, London School of Economics and Political Science, UK; f.oertel@email.de) for his citing the paper [53] in his electronic preprint [35]. On 10 October 2020, this citation and the Google Scholar Alerts leaded the authors to notice the numbers (1.2) in [35]. On 26 January 2021, he sent the important paper [7] to the authors and others. We communicated and discussed with each other many times.

    2. Chao-Ping Chen (Henan Polytechnic University, China; chenchaoping@sohu.com) for his asking the combinatorial identity in [43,Theorem 2.2], or the one in [44,Theorem 2.1], via Tencent QQ on 18 December 2020. Since then, we communicated and discussed with each other many times.

    3. Mikhail Yu. Kalmykov (Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Russia; kalmykov.mikhail@googlemail.com) for his noticing [43,Remark 4.2] and providing the references [19,20,28,30,31,34] on 9 and 27 January 2021. We communicated and discussed with each other many times.

    4. Li Yin (Binzhou University, China; yinli7979@163.com) for his frequent communications and helpful discussions with the authors via Tencent QQ online.

    5. Christophe Vignat (Department of Physics, Universite d'Orsay, France; Department of Mathematics, Tulane University, USA; cvignat@tulane.edu) for his sending electronic version of those pages containing the formulas (5.9), (5.11), and (5.12) in [25,56] on 30 January 2021 and for his sending electronic version of the monograph [27] on 8 February 2021.

    6. Frédéric Ouimet (California Institute of Technology, USA; ouimetfr@caltech.edu) for his photocopying by Caltech Library Services and transferring via ResearchGate those two pages containing the formulas (5.9) and (5.11) on 2 February 2021.

    7. anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

    The author Dongkyu Lim was partially supported by the National Research Foundation of Korea under Grant NRF-2021R1C1C1010902, Republic of Korea.

    All authors contributed equally to the manuscript and read and approved the final manuscript.

    The authors declare that they have no conflict of interest.



    [1] M. Abramowitz, I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, In: National Bureau of Standards, Applied Mathematics Series, 55, 10th printing, Dover Publications, 1972.
    [2] E. P. Adams, R. L. Hippisley, Smithsonian Mathematical Formulae and Tables of Elliptic Functions, Smithsonian Institute, Washington, D.C., 1922.
    [3] E. Alkan, Approximation by special values of harmonic zeta function and log-sine integrals, Commun. Number Theory Phys., 7 (2013), 515–550. Available from: https://doi.org/10.4310/CNTP.2013.v7.n3.a5.
    [4] B. C. Berndt, Ramanujan's Notebooks, Part I, With a foreword by S. Chandrasekhar, Springer-Verlag, New York, 1985. Available from: https://doi.org/10.1007/978-1-4612-1088-7.
    [5] J. M. Borwein, D. H. Bailey, R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Ltd., Natick, MA, 2004.
    [6] J. M. Borwein, P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1987.
    [7] J. M. Borwein, M. Chamberland, Integer powers of arcsin, Int. J. Math. Math. Sci., 19381 (2007), 10. Available from: https://doi.org/10.1155/2007/19381.
    [8] J. M. Borwein, R. E. Crandall, Closed forms: What they are and why we care, Notices Amer. Math. Soc., 60 (2013), 50–65. Available from: https://doi.org/10.1090/noti936.
    [9] J. M. Borwein, A. Straub, Mahler measures, short walks and log-sine integrals, Theoret. Comput. Sci., 479 (2013), 4–21; Available from: https://doi.org/10.1016/j.tcs.2012.10.025.
    [10] J. M. Borwein, A. Straub, Special values of generalized log-sine integrals, ISSAC 2011–Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, 43–50, ACM, New York, 2011. Available from: https://doi.org/10.1145/1993886.1993899.
    [11] T. J. I. Bromwich, An Introduction to the Theory of Infinite Series, Macmillan Co., Limited, London, 1908.
    [12] C. A. Charalambides, Enumerative Combinatorics, CRC Press Series on Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002.
    [13] C. P. Chen, Sharp Wilker- and Huygens-type inequalities for inverse trigonometric and inverse hyperbolic functions, Integral Transforms Spec. Funct., 23 (2012), 865–873. Available from: https://doi.org/10.1080/10652469.2011.644851.
    [14] J. Choi, Log-sine and log-cosine integrals, Honam Math. J., 35 (2013), 137–146. Available from: https://doi.org/10.5831/HMJ.2013.35.2.137.
    [15] J. Choi, Y. J. Cho, H. M. Srivastava, Log-sine integrals involving series associated with the zeta function and polylogarithms, Math. Scand., 105 (2009), 199–217. Available from: https://doi.org/10.7146/math.scand.a-15115.
    [16] J. Choi, H. M. Srivastava, Explicit evaluations of some families of log-sine and log-cosine integrals, Integral Trans. Spec. Funct., 22 (2011), 767–783. Available from: https://doi.org/10.1080/10652469.2011.564375.
    [17] J. Choi, H. M. Srivastava, Some applications of the Gamma and polygamma functions involving convolutions of the Rayleigh functions, multiple Euler sums and log-sine integrals, Math. Nachr., 282 (2009), 1709–1723. Available from: https://doi.org/10.1002/mana.200710032.
    [18] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., 1974. Available from: https://doi.org/10.1007/978-94-010-2196-8.
    [19] A. I. Davydychev, M. Yu. Kalmykov, Massive Feynman diagrams and inverse binomial sums, Nuclear Phys. B, 699 (2004), 3–64. Available from: https://doi.org/10.1016/j.nuclphysb.2004.08.020.
    [20] A. I. Davydychev, M. Yu. Kalmykov, New results for the \varepsilon-expansion of certain one-, two- and three-loop Feynman diagrams, Nuclear Phys. B, 605 (2001), 266–318. Available from: https://doi.org/10.1016/S0550-3213(01)00095-5.
    [21] J. Edwards, Differential Calculus, 2Eds., Macmillan, London, 1982.
    [22] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Eighth edition, Revised from the seventh edition, Elsevier/Academic Press, Amsterdam, 2015. Available from: https://doi.org/10.1016/B978-0-12-384933-5.00013-8.
    [23] B. N. Guo, D. Lim, F. Qi, Series expansions of powers of the arcsine function, closed forms for special Bell polynomials of the second kind, and series representations of generalized logsine functions, arXiv (2021). Available from: https://arXiv.org/abs/2101.10686v1.
    [24] B. N. Guo, D. Lim, F. Qi, Series expansions of powers of the arcsine function, closed forms for special values of the second kind Bell polynomials, and series representations of generalized logsine functions, arXiv (2021). Available from: https://arXiv.org/abs/2101.10686v2.
    [25] E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, USA, 1975.
    [26] A. Hoorfar, F. Qi, Sums of series of Rogers dilogarithm functions, Ramanujan J., 18 (2009), 231–238. Available from: http://dx.doi.org/10.1007/s11139-007-9043-7.
    [27] L. B. W. Jolley, Summation of Series, 2Eds., Dover Books on Advanced Mathematics Dover Publications, Inc., New York, 1961.
    [28] M. Yu. Kalmykov, A. Sheplyakov, lsjk——a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine functions, Computer Phys. Commun., 172 (2005), 45–59. Available from: https://doi.org/10.1016/j.cpc.2005.04.013.
    [29] S. Kanemitsu, H. Kumagai, M. Yoshimoto, On rapidly convergent series expressions for zeta- and L-values, and log sine integrals, Ramanujan J., 5 (2001), 91–104. Available from: https://doi.org/10.1023/A:1011449413387.
    [30] K. S. Kölbig, Explicit evaluation of certain definite integrals involving powers of logarithms, J. Symbolic Comput., 1 (1985), 109–114. Available from: https://doi.org/10.1016/S0747-7171(85)80032-8.
    [31] K. S. Kölbig, On the integral \int_{0}^{\pi/2}\log^n\cos x\log^p\sin x{\rm{d}} x, Math. Comp., 40 (1983), 565–570. Available from: https://doi.org/10.2307/2007532.
    [32] A. G. Konheim, J. W. Wrench Jr., M. S. Klamkin, A well-known series, Amer. Math. Monthly, 69 (1962), 1011–1011.
    [33] D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92 (1985), 449–457. Available from: http://dx.doi.org/10.2307/2322496.
    [34] L. Lewin, Polylogarithms and associated functions, With a foreword by A. J. Van der Poorten, North-Holland Publishing Co., New York-Amsterdam, 1981. Available from: https://doi.org/10.1090/S0273-0979-1982-14998-9.
    [35] F. Oertel, Grothendieck's inequality and completely correlation preserving functions——a summary of recent results and an indication of related research problems, arXiv (2020). Available from: https://arXiv.org/abs/2010.00746v1.
    [36] F. Oertel, Grothendieck's inequality and completely correlation preserving functions——a summary of recent results and an indication of related research problems, arXiv (2020). Available from: https://arXiv.org/abs/2010.00746v2.
    [37] K. Onodera, Generalized log sine integrals and the Mordell-Tornheim zeta values, Trans. Am. Math. Soc., 363 (2011), 1463–1485. Available from: https://doi.org/10.1090/S0002-9947-2010-05176-1.
    [38] D. Orr, Generalized Log-sine integrals and Bell polynomials, J. Comput. Appl. Math., 347 (2019), 330–342. Available from: https://doi.org/10.1016/j.cam.2018.08.026.
    [39] F. Qi, A new formula for the Bernoulli numbers of the second kind in terms of the Stirling numbers of the first kind, Publ. Inst. Math. (Beograd) (N.S.), 100 (2016), 243–249. Available from: https://doi.org/10.2298/PIM150501028Q.
    [40] F. Qi, Diagonal recurrence relations for the Stirling numbers of the first kind, Contrib. Discrete Math., 11 (2016), 22–30. Available from: https://doi.org/10.11575/cdm.v11i1.62389.
    [41] F. Qi, Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind, Filomat, 28 (2014), 319–327. Available from: https://doi.org/10.2298/FIL1402319O.
    [42] F. Qi, Integral representations and properties of Stirling numbers of the first kind, J. Number Theory, 133 (2013), 2307–2319. Available from: http://dx.doi.org/10.1016/j.jnt.2012.12.015.
    [43] F. Qi, C. P. Chen, D. Lim, Five identities involving the product or ratio of two central binomial coefficients, arXiv (2021). Available from: https://arXiv.org/abs/2101.02027v1.
    [44] F. Qi, C. P. Chen, D. Lim, Several identities containing central binomial coefficients and derived from series expansions of powers of the arcsine function, Results Nonlinear Anal., 4 (2021), 57–64.
    [45] F. Qi, B. N. Guo, A diagonal recurrence relation for the Stirling numbers of the first kind, Appl. Anal. Discrete Math., 12 (2018), 153–165. Available from: https://doi.org/10.2298/AADM170405004Q.
    [46] F. Qi, B. N. Guo, Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials, Mediterr. J. Math., 14 (2017), 14. Available from: https://doi.org/10.1007/s00009-017-0939-1.
    [47] F. Qi, B. N. Guo, Integral representations of the Catalan numbers and their applications, Mathematics, 5 (2017), 31. Available from: https://doi.org/10.3390/math5030040.
    [48] F. Qi, D. Lim, Closed formulas for special Bell polynomials by Stirling numbers and associate Stirling numbers, Publ. Inst. Math. (Beograd) (N.S.), 108 (2020), 131–136. Available from: https://doi.org/10.2298/PIM2022131Q.
    [49] F. Qi, D. Lim, B. N. Guo, Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (2019), 1–9. Available from: https://doi.org/10.1007/s13398-017-0427-2.
    [50] F. Qi, D. Lim, Y. H. Yao, Notes on two kinds of special values for the Bell polynomials of the second kind, Miskolc Math. Notes, 20 (2019), 465–474. Available from: https://doi.org/10.18514/MMN.2019.2635.
    [51] F. Qi, P. Natalini, P. E. Ricci, Recurrences of Stirling and Lah numbers via second kind Bell polynomials, Discrete Math. Lett., 3 (2020), 31–36.
    [52] F. Qi, D. W. Niu, D. Lim, B. N. Guo, Closed formulas and identities for the Bell polynomials and falling factorials, Contrib. Discrete Math., 15 (2020), 163–174. Available from: https://doi.org/10.11575/cdm.v15i1.68111.
    [53] F. Qi, D. W. Niu, D. Lim, Y. H. Yao, Special values of the Bell polynomials of the second kind for some sequences and functions, J. Math. Anal. Appl., 491 (2020), Article 124382, 31. Available from: https://doi.org/10.1016/j.jmaa.2020.124382.
    [54] F. Qi, X. T. Shi, F. F. Liu, D. V. Kruchinin, Several formulas for special values of the Bell polynomials of the second kind and applications, J. Appl. Anal. Comput., 7 (2017), 857–871. Available from: https://doi.org/10.11948/2017054.
    [55] F. Qi, M. M. Zheng, Explicit expressions for a family of the Bell polynomials and applications, Appl. Math. Comput., 258 (2015), 597–607. Available from: https://doi.org/10.1016/j.amc.2015.02.027.
    [56] I. J. Schwatt, An Introduction to the Operations with Series, Chelsea Publishing Co., New York, 1924. Available from: http://hdl.handle.net/2027/wu.89043168475.
    [57] N. N. Shang, H. Z. Qin, The closed form of a class of integrals involving log-cosine and log-sine, Math. Pract. Theory, 42 (2012), 234–246. (Chinese)
    [58] M. R. Spiegel, Some interesting series resulting from a certain Maclaurin expansion, Amer. Math. Monthly, 60 (1953), 243–247. Available from: https://doi.org/10.2307/2307433.
    [59] N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996. Available from: http://dx.doi.org/10.1002/9781118032572.
    [60] H. S. Wilf, generatingfunctionology, Third edition. A K Peters, Ltd., Wellesley, MA, 2006.
    [61] R. Witula, E. Hetmaniok, D. Słota, N. Gawrońska, Convolution identities for central binomial numbers, Int. J. Pure App. Math., 85 (2013), 171–178. Available from: https://doi.org/10.12732/ijpam.v85i1.14.
    [62] B. Zhang, C. P. Chen, Sharp Wilker and Huygens type inequalities for trigonometric and inverse trigonometric functions, J. Math. Inequal., 14 (2020), 673–684. Available from: https://doi.org/10.7153/jmi-2020-14-43.
  • This article has been cited by:

    1. Can Kizilateş, Explicit, determinantal, recursive formulas, and generating functions of generalized Humbert–Hermite polynomials via generalized Fibonacci polynomials, 2023, 0170-4214, 10.1002/mma.9048
    2. Sumedh B. Thool, Yogesh J. Bagul, Ramkrishna M. Dhaigude, Christophe Chesneau, Bounds for Quotients of Inverse Trigonometric and Inverse Hyperbolic Functions, 2022, 11, 2075-1680, 262, 10.3390/axioms11060262
    3. Feng Qi, Muhammet Cihat Dağlı, Dongkyu Lim, Several explicit formulas for (degenerate) Narumi and Cauchy polynomials and numbers, 2021, 19, 2391-5455, 833, 10.1515/math-2021-0079
    4. Muhammet Cihat Dağlı, Explicit, determinantal, recursive formulas and relations of the Peters polynomials and numbers, 2022, 45, 0170-4214, 2582, 10.1002/mma.7941
    5. Bai-Ni Guo, Dongkyu Lim, Feng Qi, MacLaurin’s series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial Bell polynomials, and series representation of generalized logsine function, 2022, 16, 1452-8630, 427, 10.2298/AADM210401017G
    6. Yan Hong, Bai-Ni Guo, Feng Qi, Determinantal Expressions and Recursive Relations for the Bessel Zeta Function and for a Sequence Originating from a Series Expansion of the Power of Modified Bessel Function of the First Kind, 2021, 129, 1526-1506, 409, 10.32604/cmes.2021.016431
    7. Jian Cao, Feng Qi, Wei-Shih Du, Closed-Form Formulas for the nth Derivative of the Power-Exponential Function xx, 2023, 15, 2073-8994, 323, 10.3390/sym15020323
    8. Wen-Hui Li, Qi-Xia Shen, Bai-Ni Guo, Several Double Inequalities for Integer Powers of the Sinc and Sinhc Functions with Applications to the Neuman–Sándor Mean and the First Seiffert Mean, 2022, 11, 2075-1680, 304, 10.3390/axioms11070304
    9. Ravi Prakash Agarwal, Erdal Karapinar, Marko Kostić, Jian Cao, Wei-Shih Du, A Brief Overview and Survey of the Scientific Work by Feng Qi, 2022, 11, 2075-1680, 385, 10.3390/axioms11080385
    10. Feng Qi, Taylor’s series expansions for real powers of two functions containing squares of inverse cosine function, closed-form formula for specific partial Bell polynomials, and series representations for real powers of Pi , 2022, 55, 2391-4661, 710, 10.1515/dema-2022-0157
    11. Lan Wu, Xue-Yan Chen, Muhammet Cihat Dağli, Feng Qi, On Degenerate Array Type Polynomials, 2022, 131, 1526-1506, 295, 10.32604/cmes.2022.018778
    12. Wei-shih DU, Dongkyu LIM, Feng Qİ, Several recursive and closed-form formulas for some specific values of partial Bell polynomials, 2022, 6, 2587-2648, 528, 10.31197/atnaa.1170948
    13. Feng Qi, Peter Taylor, Series expansions for powers of sinc function and closed-form expressions for specific partial bell polynomials, 2024, 18, 1452-8630, 92, 10.2298/AADM230902020Q
    14. Feng Qi, Power Series Expansions of Real Powers of Inverse Cosine and Sine Functions, Closed-Form Formulas of Partial Bell Polynomials at Specific Arguments, and Series Representations of Real Powers of Circular Constant, 2024, 16, 2073-8994, 1145, 10.3390/sym16091145
    15. A. V. Grishaev, V. F. Sazonov, New formulas for Maclaurin's series expansions of powers of arctangent and other related topics, 2024, 1065-2469, 1, 10.1080/10652469.2024.2382810
    16. Feng Qi, Da-Wei Niu, Dongkyu Lim, Some combinatorial identities containing central binomial coefficients or Catalan numbers*, 2023, 31, 2769-0911, 10.1080/27690911.2023.2204233
    17. Feng Qi, Gradimir Milovanovic, Dongkyu Lim, Specific values of partial bell polynomials and series expansions for real powers of functions and for composite functions, 2023, 37, 0354-5180, 9469, 10.2298/FIL2328469Q
    18. Feng Qi, Series and Connections Among Central Factorial Numbers, Stirling Numbers, Inverse of Vandermonde Matrix, and Normalized Remainders of Maclaurin Series Expansions †, 2025, 13, 2227-7390, 223, 10.3390/math13020223
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4720) PDF downloads(169) Cited by(18)

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog