Citation: H. M. Srivastava, T. M. Seoudy, M. K. Aouf. A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic (or $ q $-) calculus[J]. AIMS Mathematics, 2021, 6(6): 6580-6602. doi: 10.3934/math.2021388
[1] | M. H. Annaby, Z. S. Mansour, $q$-Fractional calculus and equations, Springer-Verlag, Berlin, Heidelberg, 2012. |
[2] | M. K. Aouf, A generalization of multivalent functions with negative coefficients, J. Korean Math. Soc., 25 (1988), 53–66. |
[3] | M. K. Aouf, On a class of $p$-valent starlike functions of order $\alpha$, Internat. J. Math. Math. Sci., 10 (1987), 733–744. doi: 10.1155/S0161171287000838 |
[4] | M. K. Aouf, H. E. Darwish, G. S. Sălăgean, On a generalization of starlike functions with negative coefficients, Mathematica $($Cluj$)$, 43 (2001), 3–10. |
[5] | M. K. Aouf, H. M. Hossen, H. M. Srivastava, Some families of multivalent functions, Comput. Math. Appl., 39 (2000), 39–48. |
[6] | M. K. Aouf, T. M. Seoudy, Convolution properties for classes of bounded analytic functions with complex order defined by $q$-derivative operator, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. $($RACSAM$)$, 113 (2019), 1279–1288. |
[7] | M. K. Aouf, T. M. Seoudy, Fekete-Szegö problem for certain subclass of analytic functions with complex order defined by $q$-analogue of Ruscheweyh operator, Constr. Math. Anal., 3 (2020), 36–44. |
[8] | T. Bulboacă, Differential subordinations and superordinations: Recent results, House of Scientific Book Publishers, Cluj-Napoca, 2005. |
[9] | P. L. Duren, Univalent functions, Grundlehren der mathematischen wissenschaften, Springer-Verlag, New York, 1983. |
[10] | G. Gasper, M. Rahman, Basic hypergeometric series, Second edition, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, London and New York, 2004. |
[11] | S. Hussain, S. Khan, M. A. Zaighum, M. Darus, Certain subclass of analytic functions related with conic domains and associated with $q$-differential operator, AIMS Mathematics, 2 (2017), 622–634. doi: 10.3934/Math.2017.4.622 |
[12] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77–84. doi: 10.1080/17476939008814407 |
[13] | F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[14] | F. H. Jackson, $q$-Difference equations, Am. J. Math., 32 (1910), 305–314. |
[15] | V. G. Kac, P. Cheung, Quantum calculus, Springer-Verlag, Berlin, Heidelberg, New York, 2002. |
[16] | S. Kanas, Coefficient estimates in subclasses of the Carathéodory class related to conical domains, Acta Math. Univ. Comenian., 75 (2005), 149–161. |
[17] | S. Kanas, H. M. Srivastava, Linear operators associated with $k$-uniformly convex functions, Integral Transforms Spec. Funct., 9 (2000), 121–132. doi: 10.1080/10652460008819249 |
[18] | S. Kanas, A. Wiśniowska, Conic regions and $k$-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. doi: 10.1016/S0377-0427(99)00018-7 |
[19] | S. Kanas, A. Wiśniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647–658. |
[20] | B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent $q$-starlike functions involving higher-order $q$-derivatives, Mathematics, 8 (2020), 1–12. |
[21] | B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Tahir, Applications of higher-order derivatives to subclasses of multivalent $q$-starlike functions, Maejo Internat. J. Sci. Technol., 15 (2021)), 61–72. |
[22] | B. Khan, H. M. Srivastava, N. Khan, M. Darus, Q. Z. Ahmad, M. Tahir, Applications of certain conic domains to a subclass of $q$-starlike functions associated with the Janowski functions, Symmetry, 13 (2021), 1–18. |
[23] | B. Khan, H. M. Srivastava, M.Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain $q$-integral operator to the subclasses of analytic and bi-univalent functions, AIMS Mathematicis, 6 (2021), 1110–1125. doi: 10.3934/math.2021067 |
[24] | Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, S. U. Rehman, et al. Some applications of a new integral operator in $q$-analog for multivalent functions, Mathematics, 7 (2019), 1–13. |
[25] | B. Kowalczyk, A. Lecko, H. M. Srivastava, A note on the Fekete-Szegö problem for close-to-convex functions with respect to convex functions, Publ. Inst. Math. $($Beograd$)$ $($Nouvelle Sér.$)$, 101 (2017), 143–149. |
[26] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis (Tianjin, 19–23 June 1992) (Z. Li, F.-Y. Ren, L. Yang, S.-Y. Zhang, Editors), Conference Proceedings and Lecture Notes in Analysis, Vol. I, International Press, Cambridge, Massachusetts, 1994,157–169. |
[27] | S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. J. Riaz, Some coefficient inequalities of $q$-starlike functions associated with conic domain defined by $q$-derivative, J. Funct. Space., 2018 (2018), 1–13. |
[28] | S. Mahmood, N. Raza, E. S. A. Abujarad, G. Srivastava, H. M. Srivastava, S. N. Malik, Geometric properties of certain classes of analytic functions associated with a $q$-integral operator, Symmetry, 11 (2019), 1–14. |
[29] | M. S. Marouf, A subclass of multivalent uniformly convex functions associated with Dziok-Srivastava linear operator, Int.. J. Math. Analysis, 3 (2009), 1087–1100. |
[30] | S. S. Miller, P. T. Mocanu, Differential subordination: Theory and applications, CRC Press, 2000. |
[31] | K. I. Noor, M. Arif, W. Ul-Haq, On $k$-uniformly close-to-convex functions of complex order, Appl. Math. Comput., 215 (2009), 629–635. |
[32] | S. Owa, On certain classes of $p$-valent functions with negative coefficients, Simon Stevin, 59 (1985), 385–402. |
[33] | P. M. Rajković, S. D. Marinković, M. S. Stanković, Fractional integrals and derivatives in $q$-calculus, Appl. Anal. Discr. Math., 1 (2007), 311–323. doi: 10.2298/AADM0701072C |
[34] | C. Ramachandran, T. Soupramanien, B. A. Frasin, New subclasses of analytic functions associated with $q$-difference operator, Eur. J. Pure Appl. Math., 10 (2017), 348–362. |
[35] | M. Raza, H. M. Srivastava, M. Arif, K. Ahmad, Coefficient estimates for a certain family of analytic functions involving a $q$-derivative operator, Ramanujan J., 54 (2021), 501–519. |
[36] | M. S. U. Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Coefficient inequalities for certain subclasses of multivalent functions associated with conic domain, J. Inequal. Appl., 2020 (2020), 1–17. doi: 10.1186/s13660-019-2265-6 |
[37] | M. S. U. Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, B. Khan, Applications of higher-order $q$-derivatives to the subclass of $q$-starlike functions associated with the Janowski functions, AIMS Mathematics, 6 (2021), 1110–1125. doi: 10.3934/math.2021067 |
[38] | T. M. Seoudy, M. K. Aouf, Convolution properties for certain classes of analytic functions defined by $q$-derivative operator, Abstr. Appl. Anal., 2014 (2014), 1–7. |
[39] | T. M. Seoudy, M. K. Aouf, Coefficient estimates of new classes of $q$-starlike and $q$-convex functions of complex order, J. Math. Inequal., 10 (2016), 135–145. |
[40] | L. Shi, Q. Khan, G. Srivastava, J. L. Liu, M. Arif, A study of multivalent $q$-starlike functions connected with circular domain, Mathematics, 7 (2019), 1–12. |
[41] | H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent Functions$, $ Fractional Calculus$, $ and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989,329–354. |
[42] | H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A$:$ Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0 |
[43] | H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of $q$-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 1–15. |
[44] | H. M. Srivastava, M. Arif, M. Raza, Convolution properties of meromorphically harmonic functions defined by a generalized convolution $q$-derivative operator, AIMS Mathematics, 6 (2021), 5869–5885. doi: 10.3934/math.2021347 |
[45] | H. M. Srivastava, J. Choi, Zeta and $q$-Zeta Functions and Associated Series and Integrals, Elsevier, 2012. |
[46] | H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the $q$-convolution, AIMS Mathematics, 5 (2020), 7087–7106. doi: 10.3934/math.2020454 |
[47] | H. M. Srivastava, S. Hussain, A. Raziq, M. Raza, The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination, Carpathian J. Math., 34 (2018), 103–113. doi: 10.37193/CJM.2018.01.11 |
[48] | H. M. Srivastava, P. W. Karlsson, Multiple gaussian hypergeometric series, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1985. |
[49] | H. M. Srivastava, G. Kaur, G. Singh, Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, J. Nonlinear Convex Anal., 22 (2021), 511–526. |
[50] | H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, Generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mountain J. Math., 49 (2019), 2325–2346. |
[51] | H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad, S. Hussain, Fekete-Szegö type problems and their applications for a subclass of $q$-starlike functions with respect to symmetrical points, Mathematics, 8 (2020), 1–18. |
[52] | H. M. Srivastava, B. Khan, Nazar Khan, M. Tahir, S. Ahmad, Nasir Khan, Upper bound of the third Hankel determinant for a subclass of $q$-starlike functions associated with the $q$-exponential function, Bull. Sci. Math., 167 (2021), 1–16. |
[53] | H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables Theory Appl., 44 (2001), 145–163. doi: 10.1080/17476930108815351 |
[54] | H. M. Srivastava, A. O. Mostafa, M. K. Aouf, H. M. Zayed, Basic and fractional $q$-calculus and associated Fekete-Szegö problem for $p$-valently $q$-starlike functions and $p$-valently $q$-convex functions of complex order, Miskolc Math. Notes, 20 (2019), 489–509. doi: 10.18514/MMN.2019.2405 |
[55] | H. M. Srivastava, G. Murugusundaramoorthy, S. M. El-Deeb, Faber polynomial coefficient estmates of bi-close-to-convex functions connected with the Borel distribution of the Mittag-Leffler type, J. Nonlinear Var. Anal., 5 (2021), 103–118. doi: 10.23952/jnva.5.2021.1.07 |
[56] | H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad, Fekete-Szegö inequality for classes of $(p, q)$-starlike and $(p, q)$-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. $($RACSAM$)$, 113 (2019), 3563–3584. |
[57] | H. Tang, Q. Khan, M. Arif, M. Raza, G. Srivastava, S. U. Rehman, et al. Some applications of a new integral operator in $q$-analog for multivalent functions, Mathematics, 7 (2019), 1–13. |
[58] | H. E. Ö. Uçar, Coefficient inequality for $q$-starlike functions, Appl. Math. Comput., 276 (2016), 122–126. |
[59] | H. M. Zayed, M. K. Aouf, Subclasses of analytic functions of complex order associated with $q$-Mittag-Leffler function, J. Egyptian Math. Soc., 26 (2018), 278–286. doi: 10.21608/joems.2018.2640.1015 |
[60] | X. L. Zhang, S. Khan, S. Hussain, H. Tang, Z. Shareef, New subclass of $q$-starlike functions associated with generalized conic domain, AIMS Mathematics, 5 (2020), 4830–4848. doi: 10.3934/math.2020308 |