Solutions of similarity-type for a nonlinear non-classical Stefan problem with temperature-dependent thermal conductivity and a Robin boundary condition are obtained. The analysis of several particular cases are given when the thermal conductivity $ L(f) $ and specific heat $ N(f) $ are linear in temperature such that $ L(f) = \alpha +\delta f $ with $ N(f) = \beta+\gamma f. $ Existence of a similarity type solution also obtained for the general problem by proving the lower and upper bounds of the solution.
Citation: Lazhar Bougoffa, Ammar Khanfer. Solutions of a non-classical Stefan problem with nonlinear thermal coefficients and a Robin boundary condition[J]. AIMS Mathematics, 2021, 6(6): 6569-6579. doi: 10.3934/math.2021387
Solutions of similarity-type for a nonlinear non-classical Stefan problem with temperature-dependent thermal conductivity and a Robin boundary condition are obtained. The analysis of several particular cases are given when the thermal conductivity $ L(f) $ and specific heat $ N(f) $ are linear in temperature such that $ L(f) = \alpha +\delta f $ with $ N(f) = \beta+\gamma f. $ Existence of a similarity type solution also obtained for the general problem by proving the lower and upper bounds of the solution.
[1] | A. C. Briozzo, M. F. Natale, Non-classical Stefan problem with nonlinear thermal coefficients and a Robin boundary condition, Nonlinear Anal. Real, 49 (2019), 159–168. doi: 10.1016/j.nonrwa.2019.03.002 |
[2] | D. L. R. Oliver, J. E. Sunderland, A phase-change problem with temperature dependent thermal conductivity and specific heat, Int. J. Heat Mass Tran., 30 (1987), 2657–2661. doi: 10.1016/0017-9310(87)90147-5 |
[3] | M. J. Huntul, D. Lesnic, An inverse problem of finding the time-dependent thermal conductivity from boundary data, Int. Commun. Heat Mass, 85 (2017), 147–154. doi: 10.1016/j.icheatmasstransfer.2017.05.009 |
[4] | N. N. Salva, D. A. Tarzia, Simultaneous determination of unknown coefficients through a phase-change process with temperature-dependent thermal conductivity, JP J. Heat Mass Transfer, 5 (2011), 11–39. |
[5] | A. Ceretania, N. Salva, D. Tarzia, An exact solution to a Stefan problem with variable thermal conductivity and a Robin boundary condition, Nonlinear Anal. Real, 40 (2018), 243–259. doi: 10.1016/j.nonrwa.2017.09.002 |
[6] | V. Alexiades, A. D. Solomon, Mathematical modeling of melting and freezing processes, Washington: Hemisphere Publishing Corp., 1993. |
[7] | S. H. Cho, J. E. Sunderland, Phase-change problems with temperature-dependent thermal conductivity, J. Heat Transfer, 96 (1984), 214–217. |
[8] | A. N. Ceretani, N. N. Salva, D. A. Tarzia, An exact solution to a Stefan problem with variable thermal conductivity and a Robin boundary condition, Nonlinear Anal. Real, 40 (2018), 243259. |
[9] | L. Bougoffa, A note on the existence and uniqueness solutions of the modified error function, Math. Method. Appl. Sci., 41 (2018), 5526–5534. doi: 10.1002/mma.5095 |
[10] | M. Natale, D. Tarzia, Explicit solutions to the one-phase Stefan problem with temperature-dependent thermal conductivity and a convective term, Int. J. Eng. Sci., 41 (2003), 1685–1698. doi: 10.1016/S0020-7225(03)00067-3 |