Recently, the symmetric division deg (SDD) index is proven to be a potentially useful molecular descriptor in QSAR and QSPR (quantitative structure-activity and structure-property relationships) studies. And its predictive capability is better than that of some popular topological indices, such as the famous geometric-arithmetic index and the second Zagreb index. In this work, the maximum SDD indices of trees with given matching number or domination number or independence number or number of pendant vertices or segments or diameter or radius are presented. Furthermore, the corresponding extremal trees are identified.
Citation: Jianwei Du, Xiaoling Sun. On symmetric division deg index of trees with given parameters[J]. AIMS Mathematics, 2021, 6(6): 6528-6541. doi: 10.3934/math.2021384
[1] | Michael Damron, C. L. Winter . A non-Markovian model of rill erosion. Networks and Heterogeneous Media, 2009, 4(4): 731-753. doi: 10.3934/nhm.2009.4.731 |
[2] | Leda Bucciantini, Angiolo Farina, Antonio Fasano . Flows in porous media with erosion of the solid matrix. Networks and Heterogeneous Media, 2010, 5(1): 63-95. doi: 10.3934/nhm.2010.5.63 |
[3] | Alexandre Kawano, Antonino Morassi, Ramón Zaera . Recent results on prey detection in a spider orb web. Networks and Heterogeneous Media, 2025, 20(1): 286-323. doi: 10.3934/nhm.2025014 |
[4] | T. S. Evans, A. D. K. Plato . Network rewiring models. Networks and Heterogeneous Media, 2008, 3(2): 221-238. doi: 10.3934/nhm.2008.3.221 |
[5] | D. Alderson, H. Chang, M. Roughan, S. Uhlig, W. Willinger . The many facets of internet topology and traffic. Networks and Heterogeneous Media, 2006, 1(4): 569-600. doi: 10.3934/nhm.2006.1.569 |
[6] | Rossella Della Marca, Nadia Loy, Andrea Tosin . An SIR–like kinetic model tracking individuals' viral load. Networks and Heterogeneous Media, 2022, 17(3): 467-494. doi: 10.3934/nhm.2022017 |
[7] | Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli . A continuum-discrete model for supply chains dynamics. Networks and Heterogeneous Media, 2007, 2(4): 661-694. doi: 10.3934/nhm.2007.2.661 |
[8] | Wenlian Lu, Fatihcan M. Atay, Jürgen Jost . Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks and Heterogeneous Media, 2011, 6(2): 329-349. doi: 10.3934/nhm.2011.6.329 |
[9] | Simone Göttlich, Stephan Martin, Thorsten Sickenberger . Time-continuous production networks with random breakdowns. Networks and Heterogeneous Media, 2011, 6(4): 695-714. doi: 10.3934/nhm.2011.6.695 |
[10] | Pau Erola, Albert Díaz-Guilera, Sergio Gómez, Alex Arenas . Modeling international crisis synchronization in the world trade web. Networks and Heterogeneous Media, 2012, 7(3): 385-397. doi: 10.3934/nhm.2012.7.385 |
Recently, the symmetric division deg (SDD) index is proven to be a potentially useful molecular descriptor in QSAR and QSPR (quantitative structure-activity and structure-property relationships) studies. And its predictive capability is better than that of some popular topological indices, such as the famous geometric-arithmetic index and the second Zagreb index. In this work, the maximum SDD indices of trees with given matching number or domination number or independence number or number of pendant vertices or segments or diameter or radius are presented. Furthermore, the corresponding extremal trees are identified.
[1] | R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000. |
[2] | I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors - Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010. |
[3] | I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors - Theory and Applications II, Univ. Kragujevac, Kragujevac, 2010. |
[4] | D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta., 83 (2010), 243–260. |
[5] | A. Vasilyev, D. Vukičević, MathChem: a Python package for calculating topological indices, MATCH Commun. Math. Comput. Chem., 71 (2014), 657–680. |
[6] |
B. Furtula, K. C. Das, I. Gutman, Comparative analysis of symmetric division deg index as potentially useful molecular descriptor, Int. J. Quantum Chem., 118 (2018), e25659. doi: 10.1002/qua.25659
![]() |
[7] | C. K. Gupta, V. Lokesha, S. B. Shwetha, On the symmetric division deg index of graph, Southeast Asian Bull. Math., 40 (2016), 59–80. |
[8] | C. K. Gupta, V. Lokesha, S. B. Shwetha, P. S. Ranjini, Graph operations on the symmetric division deg index of graphs, Palest. J. Math., 6 (2017), 280–286. |
[9] | Y. Pan, J. Li, Graphs that minimizing symmetric division deg index, MATCH Commun. Math. Comput. Chem., 82 (2019), 43–55. |
[10] |
K. C. Das, M. Matejic, E. Milovanovic, Bounds for symmetric division deg index of graphs, Filomat, 33 (2019), 683–698. doi: 10.2298/FIL1903683D
![]() |
[11] |
M. Ghorbani, S. Zangi, N. Amraei, New results on symmetric division deg index, J. Appl. Math. Comput., 65 (2021), 161–176. doi: 10.1007/s12190-020-01386-9
![]() |
[12] | A. Ali, S. Elumalai, T. Mansour, On the symmetric division deg index of molecular graphs, MATCH Commun. Math. Comput. Chem., 83 (2020), 205–220. |
[13] | A. Vasilyev, Upper and lower bounds of symmetric division deg index, Iran. J. Math. Chem., 2 (2014), 91–98. |
[14] |
A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math., 66 (2001), 211–249. doi: 10.1023/A:1010767517079
![]() |
[15] | J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Elsevier, New York, 1976. |
[16] | L. Sun, R. Chen, The second Zagreb index of acyclic conjugated molecules, MATCH Commun. Math. Comput. Chem., 60 (2008), 57–64. |
[17] | O. Ore, Theory of Graphs, AMS, Providence, 1962. |
[18] |
J. F. Fink, M. S. Jacobson, L. F. Kinch, J. Roberts, On graphs having domination number half their order, Period. Math. Hungar, 16 (1985), 287–293. doi: 10.1007/BF01848079
![]() |
[19] | S. Noureen, A. Ali, A. A. Bhatti, On the extremal Zagreb indices of n-vertex chemical trees with fixed number of segments or branching vertices, MATCH Commun. Math. Comput. Chem., 84 (2020), 513–534. |
1. | Dan Jenkins, Superdiffusive and subdiffusive exceptional times in the dynamical discrete web, 2015, 125, 03044149, 3373, 10.1016/j.spa.2015.05.003 |