Recently, the symmetric division deg ($ SDD $) index is proven to be a potentially useful molecular descriptor in QSAR and QSPR (quantitative structure-activity and structure-property relationships) studies. And its predictive capability is better than that of some popular topological indices, such as the famous geometric-arithmetic index and the second Zagreb index. In this work, the maximum $ SDD $ indices of trees with given matching number or domination number or independence number or number of pendant vertices or segments or diameter or radius are presented. Furthermore, the corresponding extremal trees are identified.
Citation: Jianwei Du, Xiaoling Sun. On symmetric division deg index of trees with given parameters[J]. AIMS Mathematics, 2021, 6(6): 6528-6541. doi: 10.3934/math.2021384
Recently, the symmetric division deg ($ SDD $) index is proven to be a potentially useful molecular descriptor in QSAR and QSPR (quantitative structure-activity and structure-property relationships) studies. And its predictive capability is better than that of some popular topological indices, such as the famous geometric-arithmetic index and the second Zagreb index. In this work, the maximum $ SDD $ indices of trees with given matching number or domination number or independence number or number of pendant vertices or segments or diameter or radius are presented. Furthermore, the corresponding extremal trees are identified.
[1] | R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000. |
[2] | I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors - Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010. |
[3] | I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors - Theory and Applications II, Univ. Kragujevac, Kragujevac, 2010. |
[4] | D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta., 83 (2010), 243–260. |
[5] | A. Vasilyev, D. Vukičević, MathChem: a Python package for calculating topological indices, MATCH Commun. Math. Comput. Chem., 71 (2014), 657–680. |
[6] | B. Furtula, K. C. Das, I. Gutman, Comparative analysis of symmetric division deg index as potentially useful molecular descriptor, Int. J. Quantum Chem., 118 (2018), e25659. doi: 10.1002/qua.25659 |
[7] | C. K. Gupta, V. Lokesha, S. B. Shwetha, On the symmetric division deg index of graph, Southeast Asian Bull. Math., 40 (2016), 59–80. |
[8] | C. K. Gupta, V. Lokesha, S. B. Shwetha, P. S. Ranjini, Graph operations on the symmetric division deg index of graphs, Palest. J. Math., 6 (2017), 280–286. |
[9] | Y. Pan, J. Li, Graphs that minimizing symmetric division deg index, MATCH Commun. Math. Comput. Chem., 82 (2019), 43–55. |
[10] | K. C. Das, M. Matejic, E. Milovanovic, Bounds for symmetric division deg index of graphs, Filomat, 33 (2019), 683–698. doi: 10.2298/FIL1903683D |
[11] | M. Ghorbani, S. Zangi, N. Amraei, New results on symmetric division deg index, J. Appl. Math. Comput., 65 (2021), 161–176. doi: 10.1007/s12190-020-01386-9 |
[12] | A. Ali, S. Elumalai, T. Mansour, On the symmetric division deg index of molecular graphs, MATCH Commun. Math. Comput. Chem., 83 (2020), 205–220. |
[13] | A. Vasilyev, Upper and lower bounds of symmetric division deg index, Iran. J. Math. Chem., 2 (2014), 91–98. |
[14] | A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math., 66 (2001), 211–249. doi: 10.1023/A:1010767517079 |
[15] | J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Elsevier, New York, 1976. |
[16] | L. Sun, R. Chen, The second Zagreb index of acyclic conjugated molecules, MATCH Commun. Math. Comput. Chem., 60 (2008), 57–64. |
[17] | O. Ore, Theory of Graphs, AMS, Providence, 1962. |
[18] | J. F. Fink, M. S. Jacobson, L. F. Kinch, J. Roberts, On graphs having domination number half their order, Period. Math. Hungar, 16 (1985), 287–293. doi: 10.1007/BF01848079 |
[19] | S. Noureen, A. Ali, A. A. Bhatti, On the extremal Zagreb indices of n-vertex chemical trees with fixed number of segments or branching vertices, MATCH Commun. Math. Comput. Chem., 84 (2020), 513–534. |