In this paper, we propose a novel criterion on the partial synchronization in a generalized linearly coupled network by employing Lyapunov stability theory and linear matrix inequality. The obtained criterion is only dependent on intra-community connections, and the information of inter-community connections is not necessary. Therefore, it provides more convenience in reducing network sizes in practice. Compared with the previous classical criterion, the threshold derived from the obtained criterion is no less than the classical threshold. We give some particular cases in which the obtained threshold is equal to the classical threshold. Finally, we show numerical simulations to verify the validity of the proposed criteria and comparisons.
Citation: Jianbao Zhang, Xiangyong Chen, Jinde Cao, Jianlong Qiu. Partial synchronization in community networks based on the intra- community connections[J]. AIMS Mathematics, 2021, 6(6): 6542-6554. doi: 10.3934/math.2021385
In this paper, we propose a novel criterion on the partial synchronization in a generalized linearly coupled network by employing Lyapunov stability theory and linear matrix inequality. The obtained criterion is only dependent on intra-community connections, and the information of inter-community connections is not necessary. Therefore, it provides more convenience in reducing network sizes in practice. Compared with the previous classical criterion, the threshold derived from the obtained criterion is no less than the classical threshold. We give some particular cases in which the obtained threshold is equal to the classical threshold. Finally, we show numerical simulations to verify the validity of the proposed criteria and comparisons.
[1] | X. S. Yang, J. D. Cao, J. Q. Lu, Synchronization of randomly coupled neural networks with Markovian jumping and time-delay, IEEE T. Circuits-I, 60 (2013), 363–376. |
[2] | Y. Zhu, B. Xu, X. H. Shi, A survey of social-based routing in delay tolerant networks: positive and negative social effects, IEEE Commun. Surv. Tut., 15 (2013), 387–401. doi: 10.1109/SURV.2012.032612.00004 |
[3] | W. W. Yu, W. Ren, W. X. Zheng, G. R. Chen, J. H. Lv, Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics, Automatica, 49 (2013), 2107–2115. doi: 10.1016/j.automatica.2013.03.005 |
[4] | J. Gómez-Gardenes, Y. Moreno, A. Arenas, Paths to synchronization on complex networks, Phys. Rev. Lett., 98 (2007), 034101. doi: 10.1103/PhysRevLett.98.034101 |
[5] | T. F. Weng, H. J. Yang, C. G. Gu, J. Zhang, M. Small, Synchronization of chaotic systems and their machine-learning models, Phys. Rev. E, 99 (2019), 042203. doi: 10.1103/PhysRevE.99.042203 |
[6] | Z. Yao, J. Ma, Y. G. Yao, C. N. Wang, Synchronization realization between two nonlinear circuits via an induction coil coupling, Nonlinear Dynam., 96 (2019), 205–217. doi: 10.1007/s11071-019-04784-2 |
[7] | L. Pecora, T. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821–824. doi: 10.1103/PhysRevLett.64.821 |
[8] | J. B. Zhang, Z. J. Ma, G. R. Chen, Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance, Chaos, 24 (2014), 023111. doi: 10.1063/1.4873524 |
[9] | J. B. Zhang, A. C. Zhang, J. D. Cao, J. L. Qiu, F. E. Alsaadi, Adaptive outer synchronization between two delayed oscillator networks with cross couplings, Sci. China Inform. Sci., 63 (2020), 209204. doi: 10.1007/s11432-018-9843-x |
[10] | W. Wu, T. P. Chen, Partial synchronization in linearly and symmetrically coupled ordinary differential systems, Physica D, 238 (2009), 355–364. doi: 10.1016/j.physd.2008.10.012 |
[11] | L. Z. Zhang, Y. Q. Yang, F. Wang, X. Sui, Lag synchronization for fractional-order memristive neural networks with time delay via switching jumps mismatch, J. Franklin I., 355 (2018), 1217–1240. doi: 10.1016/j.jfranklin.2017.12.017 |
[12] | S. M. Cai, F. L. Zhou, Q. B. He, Fixed-time cluster lag synchronization in directed heterogeneous community networks, Physica A, 525 (2019), 128–142. doi: 10.1016/j.physa.2019.03.033 |
[13] | Q. T. Gan, Exponential synchronization of generalized neural networks with mixed time-varying delays and reaction-diffusion terms via aperiodically intermittent control, Chaos, 27 (2017), 013113. doi: 10.1063/1.4973976 |
[14] | C. Chen, K. Xie, F. L. Lewis, S. Xie, A. Davoudi, Fully distributed resilience for adaptive exponential synchronization of heterogeneous multiagent systems against actuator faults, IEEE T. Automat. Contr., 64 (2019), 3347–3354. doi: 10.1109/TAC.2018.2881148 |
[15] | W. G. Sun, Q. Y. Ding, J. B. Zhang, F. Y. Chen, Coherence in a family of tree networks with an application of Laplacian Spectrum, Chaos, 24 (2014), 043112. doi: 10.1063/1.4897568 |
[16] | J. K. Ni, P. Shi, Adaptive Neural Network Fixed-Time Leader-Follower Consensus for Multiagent Systems With Constraints and Disturbances, IEEE T. Cybernetics, 99 (2020), 1–14. |
[17] | C. W. Wu, L. O. Chua, On a conjecture regarding the synchronization in an array of linearly coupled dynamical systems, IEEE T. Circuits-I, 43 (1996), 161–165. doi: 10.1109/81.486440 |
[18] | K. Oooka, T. Oguchi, Estimation of synchronization patterns of chaotic systems in cartesian product networks with delay couplings, Int. J. Bifurcat. Chaos, 26 (2016), 1630028. doi: 10.1142/S0218127416300287 |
[19] | J. B. Zhang, Z. J. Ma, G. Zhang, Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings, Chaos, 23 (2013), 043128. doi: 10.1063/1.4836710 |
[20] | P. P. Zhou, S. M. Cai, J. W. Shen, Z. R. Liu, Adaptive exponential cluster synchronization in colored community networks via aperiodically intermittent pinning control, Nonlinear Dynam., 92 (2018), 905–921. doi: 10.1007/s11071-018-4099-z |
[21] | Z. J. Ma, Z. R. Liu, G. Zhang, A new method to realize cluster synchronization in connected chaotic networks, Chaos, 16 (2006), 023103. doi: 10.1063/1.2184948 |
[22] | E. Steur, T. Oguchi, C. Leeuwen, H. Nijmeijer, Partial synchronization in diffusively time-delay coupled oscillator networks, Chaos, 22 (2012), 043144. doi: 10.1063/1.4771665 |
[23] | C. B. Yu, J. H. Qin, H. J. Gao, Cluster synchronization in directed networks of partial-state coupled linear systems under pinning control, Automatica, 50 (2014), 2341–2349. doi: 10.1016/j.automatica.2014.07.013 |
[24] | S. M. Cai, Q. Jia, Z. R. Liu, Cluster synchronization for directed heterogeneous dynamical networks via decentralized adaptive intermittent pinning control, Nonlinear Dynam., 82 (2015), 689–702. doi: 10.1007/s11071-015-2187-x |
[25] | H. S. Su, Z. H. Rong, M. Z. Q. Chen, X. F. Wang, G. R. Chen, H. W. Wang, Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks, IEEE T. Cybernetics, 43 (2013), 394–399. doi: 10.1109/TSMCB.2012.2202647 |
[26] | F. D. Rossa, L. Pecora, K. Blaha, A. Shirin, I. Klickstein, F. Sorrentino, Symmetries and cluster synchronization in multilayer networks, Nat. Commun., 11 (2020), 3179. doi: 10.1038/s41467-020-16343-0 |
[27] | L. V. Gambuzza, M. Frasca, A criterion for stability of cluster synchronization in networks with external equitable partitions, Automatica, 100 (2019), 212–218. doi: 10.1016/j.automatica.2018.11.026 |
[28] | H. B. Chen, P. Shi, C. C. Lim, Cluster Synchronization for Neutral Stochastic Delay Networks via Intermittent Adaptive Control, IEEE T. Neur. Net. Lear., 30 (2019), 3246–3259. doi: 10.1109/TNNLS.2018.2890269 |