The existence of positive periodic solutions of the Rayleigh equations $ x''+f(x')+g(x) = e(t) $ with singularities is investigated in this paper. Based on the continuation theorem of coincidence degree theory and the method of upper and lower solutions, the multiple periodic solutions of the singular Rayleigh equations can be determined under the weak conditions of the term $ g $. We discuss both the repulsive singular case and the attractive singular case. Some results in the literature are generalized and improved. Moreover, some examples and numerical simulations are given to illustrate our theoretical analysis.
Citation: Zaitao Liang, Xuemeng Shan, Hui Wei. Multiplicity of positive periodic solutions of Rayleigh equations with singularities[J]. AIMS Mathematics, 2021, 6(6): 6422-6438. doi: 10.3934/math.2021377
The existence of positive periodic solutions of the Rayleigh equations $ x''+f(x')+g(x) = e(t) $ with singularities is investigated in this paper. Based on the continuation theorem of coincidence degree theory and the method of upper and lower solutions, the multiple periodic solutions of the singular Rayleigh equations can be determined under the weak conditions of the term $ g $. We discuss both the repulsive singular case and the attractive singular case. Some results in the literature are generalized and improved. Moreover, some examples and numerical simulations are given to illustrate our theoretical analysis.
[1] | A. Ambrosetti, V. Coti Zelati, Periodic solutions of singular Lagrangian systems, Birkhäuser, Boston, 1993. |
[2] | V. Bevc, J. L. Palmer, C. Süsskind, On the design of the transition region of axi-symmetric magnetically focused beam valves, J. Brit. Inst. Radio. Eng., 18 (1958), 696–708. |
[3] | L. Chen, S. Lu, A new result on the existence of periodic solutions for Rayleigh equations with a singularity of repulsive type, Adv. Difference Equ., 2017 (2017), 106. doi: 10.1186/s13662-017-1136-z |
[4] | Z. Cheng, Z. Bi, S. Yao, Periodic solution for $p$-Laplacian Rayleigh equation with attractive singularity andtime-dependent deviating argument, Bound. Value Probl., 2018 (2018), 20. doi: 10.1186/s13661-018-0938-6 |
[5] | J. Chu, P. J. Torres, M. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems, J. Differential Equations, 239 (2007), 196–212. doi: 10.1016/j.jde.2007.05.007 |
[6] | J. Chu, M. Li, Positive periodic solutions of Hill's equations with singular nonlinear perturbations, Nonlinear Anal., 69 (2008), 276–286. doi: 10.1016/j.na.2007.05.016 |
[7] | J. Chu, Z. Zhang, Periodic solutions of singular differential equations with sign-changing potential, Bull. Austral. Math. Soc., 82 (2010), 437–445. doi: 10.1017/S0004972710001607 |
[8] | J. Chu, N. Fan, P. J. Torres, Periodic solutions for second order singular damped differential equations, J. Math. Anal. Appl., 388 (2012), 665–675. doi: 10.1016/j.jmaa.2011.09.061 |
[9] | J. Chu, P. J. Torres, F. Wang, Twist periodic solutions for differential equations with a combined attractive-repulsive singularity, J. Math. Anal. Appl., 437 (2016), 1070–1083. doi: 10.1016/j.jmaa.2016.01.057 |
[10] | M. A. del Pino, R. F. Manásevich, Infinitely many $T$-periodic solutions for a problem arising in nonlinear elasticity, J. Differential Equations, 103 (1993), 260–277. doi: 10.1006/jdeq.1993.1050 |
[11] | C. De Coster, P. Habets, Two-point boundary value problems: lower and upper solutions, Mathematics in Science and Engineering, 205 Elsevier B. V., Amsterdam, 2006. |
[12] | A. Fonda, R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach, J. Differential Equations, 244 (2008), 3235–3264. doi: 10.1016/j.jde.2007.11.005 |
[13] | A. Fonda, Periodic solutions for a conservative system of differential equations with a singularity of repulsive type, Nonlinear Anal., 24 (1995), 667–676. doi: 10.1016/0362-546X(94)00118-2 |
[14] | A. Gutiérrez, P. J. Torres, Non-autonomous saddle-node bifurcation in a canonical electrostatic MEMS, Internal. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350088. doi: 10.1142/S0218127413500880 |
[15] | Y. Guo, Y. Wang, D. Zhou, A new result on the existence of periodic solutions for Rayleigh equation with a singularity, Adv. Difference Equ., 2017 (2017), 394. doi: 10.1186/s13662-017-1449-y |
[16] | W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113–135. doi: 10.1090/S0002-9947-1975-0377983-1 |
[17] | R. E. Gaines, J. L. Mawhin, Coincidence Degree and Non-linear Differential Equations, Springer-Verlag. Berlin. 1977. |
[18] | P. Habets, L. Sanchez, Periodic solution of some Li'enard equations with singularities, Proc. Amer. Math. Soc., 109 (1990), 1135–1144. doi: 10.1090/S0002-9939-1990-1009992-7 |
[19] | R. Hakl, P. J. Torres, On periodic solutions of second-order differential equations with attractive-repulsive singularities, J. Differential Equations, 248 (2010), 111–126. doi: 10.1016/j.jde.2009.07.008 |
[20] | R. Hakl, P. J. Torres, M. Zamora, Periodic solutions of singular second order differential equations: Upper and lower functions, Nonlinear Anal., 74 (2011), 7078–7093. doi: 10.1016/j.na.2011.07.029 |
[21] | J. K. Hale, J. Mawhin, Coincidence degree and periodic solutions of neutral equations, J. Adv. Difference Equ., 15 (1974), 295–307. doi: 10.1016/0022-0396(74)90081-3 |
[22] | D. Jiang, J. Chu, M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations, J. Differential Equations, 211 (2005), 282–302. doi: 10.1016/j.jde.2004.10.031 |
[23] | S. Lu, X. Jia, Existence and uniqueness of homoclinic solution for a Rayleigh equation with a singularity. Qual. Theory Dyn. Syst. 19 (2020), 1–17. |
[24] | S. Lu, Y. Guo, L. Chen, Periodic solutions for Liénard equation with an indefinite singularity, Nonlinear Anal. Real World Appl., 45 (2019), 542–556. doi: 10.1016/j.nonrwa.2018.07.024 |
[25] | A. C. Lazer, S. Solimini, On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc., 99 (1987), 109–114. doi: 10.1090/S0002-9939-1987-0866438-7 |
[26] | S. Ma, Z. Wang, J. Yu, Coincidence degree and periodic solutions of Duffing equations 1. Nonlinear Anal., 34 (1998), 443–460. |
[27] | R. F. Martins, Existence of periodic solutions for second-order differential equations with singularities and the strong force condition, J. Math. Anal. Appl., 317 (2006), 1–13. doi: 10.1016/j.jmaa.2004.07.016 |
[28] | R. E. Gaines, J. L. Mawhin, Coincidence degree, and Nonlinear Differential equation, Lecture notes in Mathematics, vol.568 Berlin: Springer-Verlag, 1977. |
[29] | D. O'Regan, Existence Theory for Nonlinear Ordinary Differential Equations. Kluwer Academic. Dordrecht. 1997 |
[30] | H. L. Smith, On the small oscillations of the periodic Rayleigh equation, Quart. Appl. Math., 44 (1986), 223–247. doi: 10.1090/qam/856177 |
[31] | P. J. Torres, Mathematical Models with Singularities-Zoo of singular Creatures, Atlantis Press, 2015. |
[32] | P. J. Torres, Weak singularities may help periodic solutions to exist, J. Differential Equations, 232 (2017), 277–284. |
[33] | P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixedpoint theorem, J. Differential Equations, 190 (2003), 643–662. doi: 10.1016/S0022-0396(02)00152-3 |
[34] | Z. Wang, T. Ma, Periodic solutions of Rayleigh equations with singularities, Bound. Value Probl., 2015 (2015), 154. doi: 10.1186/s13661-015-0427-0 |
[35] | Y. Xin, Z. Cheng, Study on a kind of neutral Rayleigh equation with singularity, Bound. Value Probl., 2017 (2017), 92. doi: 10.1186/s13661-017-0824-7 |
[36] | M. Zhang, Periodic solutions of equations of Emarkov-Pinney type, Adv. Nonlinear Stud., 6 (2006), 57–67. |
[37] | M. Zhang, Periodic solutions of damped differential systems with repulsive singular forces, Proc. Amer. Math. Soc., 127 (1999), 401–407. doi: 10.1090/S0002-9939-99-05120-5 |