This paper is devoted to the controlled drift estimation of the mixed fractional Ornstein-Uhlenbeck process. We will consider two models: one is the optimal input where we will find the controlled function which maximize the Fisher information for the unknown parameter and the other one with a constant as the controlled function. Large sample asymptotical properties of the Maximum Likelihood Estimator (MLE) is deduced using the Laplace transform computations or the Cameron-Martin formula with extra part from [
Citation: Chunhao Cai, Min Zhang. A note on inference for the mixed fractional Ornstein-Uhlenbeck process with drift[J]. AIMS Mathematics, 2021, 6(6): 6439-6453. doi: 10.3934/math.2021378
This paper is devoted to the controlled drift estimation of the mixed fractional Ornstein-Uhlenbeck process. We will consider two models: one is the optimal input where we will find the controlled function which maximize the Fisher information for the unknown parameter and the other one with a constant as the controlled function. Large sample asymptotical properties of the Maximum Likelihood Estimator (MLE) is deduced using the Laplace transform computations or the Cameron-Martin formula with extra part from [
[1] | A. Brouste, C. Cai, Controlled drift estimation in fractional diffusion linear systems, Stoch. Dynam., 13 (2013), 1250025. doi: 10.1142/S0219493712500256 |
[2] | A. Brouste, M. Kleptsyna, Asymptotic properties of MLE for partially observed fractional diffusion system, Stat. Inference Stoch. Process., 13 (2010), 1–13. doi: 10.1007/s11203-009-9035-x |
[3] | A. Brouste, M. Kleptsyna, A. Popier, Fractional diffusion with partial observations, Commun. Stat. Theor. M., 40 (2011), 3479–3491. doi: 10.1080/03610926.2011.581173 |
[4] | A. Brouste, M. Kleptsyna, A. Popier, Design for estimation of drift parameter in fractional diffusion system, Stat. Inference Stoch. Process., 15 (2012), 133–149. doi: 10.1007/s11203-012-9067-5 |
[5] | C. Bender, T. Sottinen, E. Vlakeila, Franctional processes as models in stochastic finance, In: Advanced Mathematical Methods for Finance, Springer, Heidelberg, 2011, 75–103. |
[6] | C. Cai, P. Chigansky, M. Kleptsyna, Mixed gaussian processes: a filtering approach, Ann. Probab., 44 (2016), 3032–3075. |
[7] | C. Cai, Y. Huang, W. Xiao, Maximum Likelihood Estimation for Mixed Vasicek Processes, 2020, arXiv 2003.13351. |
[8] | C. Cai, W. Lv, Adaptative design for estimation of parameter of second order differential equation in fractional diffusion system, Physica A, 541 (2020), 123544. doi: 10.1016/j.physa.2019.123544 |
[9] | P. Cheridito, Mixed fractional Brownian motion, Bernoulli, 7 (2001), 913–934. |
[10] | P. Cheridito, Representation of Gaussian measures that are equivalent to Wiener measure, In: Séminaire de Probabilité XXXVII, Springer, Berlin, Heidelberg, 2003, 81–89. |
[11] | P. Chigansky, M. Kleptsyna, Exact asymptotic in eigenproblems for fractional Brownian motion covariance operators, Stoch. Proc. Appl., 128 (2018), 2007–2059. doi: 10.1016/j.spa.2017.08.019 |
[12] | P. Chigansky, M. Kleptsyna, Statistical analysis of the mixed fractional Ornstein-Uhlenbeck process, Theor. Probab. Appl., 63 (2019), 408–425. doi: 10.1137/S0040585X97T989143 |
[13] | I. Ibragimov, R. Khasminskii, Statistical estimation: Asymptotic theory, Springer Science & Business Media, 1981. |
[14] | M. Kleptsyna, A. Le Breton, Optimal linear filtering of general multidimensinal Gaussian processes and its application to Laplace transforms of quadratic functionals, J. Appl. Math. Stoch. Anal., 14 (2001), 215–226. |
[15] | M. Kleptsyna, A. Le Breton, Statistical Analysis of the Fractional Ornstein-Uhlenbeck type Process, Statist. Inference Stoch. Process., 5 (2002), 229–241. |
[16] | M. Kleptsyna, A. Le Breton, Extension of the Kalman-Bucy filter to elementary linear systems with fractional Brownian noises, Statist. Inference Stoch. Process., 5 (2002), 249–271. |
[17] | Y. A. Kutoyants, Statistical inference for ergodic diffusion processes, Springer-Verlag, London, 2004. |
[18] | R. Liptser, A. Shiryaev, Statistics of Random Processes, Springer-Verlag Berlin Heidelberg, New York, 2001. |
[19] | D. Marushkevych, Large deviations for drift parameter estimator of mixed fractional Ornstein-Uhlenbeck process, Mod. Stoch. Theory Appl., 3 (2016), 107–117. doi: 10.15559/16-VMSTA54 |
[20] | A. Ovseevich, R. Khasminskii, P. Chow, Adaptative design for estimation of unknown parameters in linear systems, Probl. Inform. Transm., 36 (2000), 38–68. |
[21] | B. L. Rozovsky, S. V. Lototsky, Stochastic Evolution System, Kluwer, Dordrecht, 1990. |