Research article

A note on inference for the mixed fractional Ornstein-Uhlenbeck process with drift

  • Received: 08 February 2021 Accepted: 08 April 2021 Published: 14 April 2021
  • MSC : 60G22, 62F10

  • This paper is devoted to the controlled drift estimation of the mixed fractional Ornstein-Uhlenbeck process. We will consider two models: one is the optimal input where we will find the controlled function which maximize the Fisher information for the unknown parameter and the other one with a constant as the controlled function. Large sample asymptotical properties of the Maximum Likelihood Estimator (MLE) is deduced using the Laplace transform computations or the Cameron-Martin formula with extra part from [12]. As a a supplement of [12] we will also prove that the MLE is strongly consistent.

    Citation: Chunhao Cai, Min Zhang. A note on inference for the mixed fractional Ornstein-Uhlenbeck process with drift[J]. AIMS Mathematics, 2021, 6(6): 6439-6453. doi: 10.3934/math.2021378

    Related Papers:

  • This paper is devoted to the controlled drift estimation of the mixed fractional Ornstein-Uhlenbeck process. We will consider two models: one is the optimal input where we will find the controlled function which maximize the Fisher information for the unknown parameter and the other one with a constant as the controlled function. Large sample asymptotical properties of the Maximum Likelihood Estimator (MLE) is deduced using the Laplace transform computations or the Cameron-Martin formula with extra part from [12]. As a a supplement of [12] we will also prove that the MLE is strongly consistent.



    加载中


    [1] A. Brouste, C. Cai, Controlled drift estimation in fractional diffusion linear systems, Stoch. Dynam., 13 (2013), 1250025. doi: 10.1142/S0219493712500256
    [2] A. Brouste, M. Kleptsyna, Asymptotic properties of MLE for partially observed fractional diffusion system, Stat. Inference Stoch. Process., 13 (2010), 1–13. doi: 10.1007/s11203-009-9035-x
    [3] A. Brouste, M. Kleptsyna, A. Popier, Fractional diffusion with partial observations, Commun. Stat. Theor. M., 40 (2011), 3479–3491. doi: 10.1080/03610926.2011.581173
    [4] A. Brouste, M. Kleptsyna, A. Popier, Design for estimation of drift parameter in fractional diffusion system, Stat. Inference Stoch. Process., 15 (2012), 133–149. doi: 10.1007/s11203-012-9067-5
    [5] C. Bender, T. Sottinen, E. Vlakeila, Franctional processes as models in stochastic finance, In: Advanced Mathematical Methods for Finance, Springer, Heidelberg, 2011, 75–103.
    [6] C. Cai, P. Chigansky, M. Kleptsyna, Mixed gaussian processes: a filtering approach, Ann. Probab., 44 (2016), 3032–3075.
    [7] C. Cai, Y. Huang, W. Xiao, Maximum Likelihood Estimation for Mixed Vasicek Processes, 2020, arXiv 2003.13351.
    [8] C. Cai, W. Lv, Adaptative design for estimation of parameter of second order differential equation in fractional diffusion system, Physica A, 541 (2020), 123544. doi: 10.1016/j.physa.2019.123544
    [9] P. Cheridito, Mixed fractional Brownian motion, Bernoulli, 7 (2001), 913–934.
    [10] P. Cheridito, Representation of Gaussian measures that are equivalent to Wiener measure, In: Séminaire de Probabilité XXXVII, Springer, Berlin, Heidelberg, 2003, 81–89.
    [11] P. Chigansky, M. Kleptsyna, Exact asymptotic in eigenproblems for fractional Brownian motion covariance operators, Stoch. Proc. Appl., 128 (2018), 2007–2059. doi: 10.1016/j.spa.2017.08.019
    [12] P. Chigansky, M. Kleptsyna, Statistical analysis of the mixed fractional Ornstein-Uhlenbeck process, Theor. Probab. Appl., 63 (2019), 408–425. doi: 10.1137/S0040585X97T989143
    [13] I. Ibragimov, R. Khasminskii, Statistical estimation: Asymptotic theory, Springer Science & Business Media, 1981.
    [14] M. Kleptsyna, A. Le Breton, Optimal linear filtering of general multidimensinal Gaussian processes and its application to Laplace transforms of quadratic functionals, J. Appl. Math. Stoch. Anal., 14 (2001), 215–226.
    [15] M. Kleptsyna, A. Le Breton, Statistical Analysis of the Fractional Ornstein-Uhlenbeck type Process, Statist. Inference Stoch. Process., 5 (2002), 229–241.
    [16] M. Kleptsyna, A. Le Breton, Extension of the Kalman-Bucy filter to elementary linear systems with fractional Brownian noises, Statist. Inference Stoch. Process., 5 (2002), 249–271.
    [17] Y. A. Kutoyants, Statistical inference for ergodic diffusion processes, Springer-Verlag, London, 2004.
    [18] R. Liptser, A. Shiryaev, Statistics of Random Processes, Springer-Verlag Berlin Heidelberg, New York, 2001.
    [19] D. Marushkevych, Large deviations for drift parameter estimator of mixed fractional Ornstein-Uhlenbeck process, Mod. Stoch. Theory Appl., 3 (2016), 107–117. doi: 10.15559/16-VMSTA54
    [20] A. Ovseevich, R. Khasminskii, P. Chow, Adaptative design for estimation of unknown parameters in linear systems, Probl. Inform. Transm., 36 (2000), 38–68.
    [21] B. L. Rozovsky, S. V. Lototsky, Stochastic Evolution System, Kluwer, Dordrecht, 1990.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1907) PDF downloads(86) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog