In this paper, the authors study a initial boundary value problems (IBVP) for space-time fractional conformable partial differential equation (PDE). Several inequalities of fractional conformable derivatives at extremum points are presented and proved. Based on these inequalities at extremum points, a new maximum principle for the space-time fractional conformable PDE is demonstrated. Moreover, the maximum principle is employed to prove a new comparison principle and estimation of solutions. Beside that, the uniqueness and continuous dependence of the solution of the space-time fractional conformable PDE are demonstrated.
Citation: Tingting Guan, Guotao Wang, Haiyong Xu. Initial boundary value problems for space-time fractional conformable differential equation[J]. AIMS Mathematics, 2021, 6(5): 5275-5291. doi: 10.3934/math.2021312
[1] | Muhammad Imran Liaqat, Fahim Ud Din, Wedad Albalawi, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives. AIMS Mathematics, 2024, 9(5): 11194-11211. doi: 10.3934/math.2024549 |
[2] | Xinwei Su, Shuqin Zhang, Lixin Zhang . Periodic boundary value problem involving sequential fractional derivatives in Banach space. AIMS Mathematics, 2020, 5(6): 7510-7530. doi: 10.3934/math.2020481 |
[3] | Mohammed Al-Refai, Dumitru Baleanu . Comparison principles of fractional differential equations with non-local derivative and their applications. AIMS Mathematics, 2021, 6(2): 1443-1451. doi: 10.3934/math.2021088 |
[4] | Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Well-posedness and Ulam-Hyers stability results of solutions to pantograph fractional stochastic differential equations in the sense of conformable derivatives. AIMS Mathematics, 2024, 9(5): 12375-12398. doi: 10.3934/math.2024605 |
[5] | Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176 |
[6] | Snezhana Hristova, Antonia Dobreva . Existence, continuous dependence and finite time stability for Riemann-Liouville fractional differential equations with a constant delay. AIMS Mathematics, 2020, 5(4): 3809-3824. doi: 10.3934/math.2020247 |
[7] | Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394 |
[8] | Tareq Eriqat, Rania Saadeh, Ahmad El-Ajou, Ahmad Qazza, Moa'ath N. Oqielat, Ahmad Ghazal . A new analytical algorithm for uncertain fractional differential equations in the fuzzy conformable sense. AIMS Mathematics, 2024, 9(4): 9641-9681. doi: 10.3934/math.2024472 |
[9] | Mohammed A. Almalahi, Mohammed S. Abdo, Satish K. Panchal . On the theory of fractional terminal value problem with ψ-Hilfer fractional derivative. AIMS Mathematics, 2020, 5(5): 4889-4908. doi: 10.3934/math.2020312 |
[10] | Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299 |
In this paper, the authors study a initial boundary value problems (IBVP) for space-time fractional conformable partial differential equation (PDE). Several inequalities of fractional conformable derivatives at extremum points are presented and proved. Based on these inequalities at extremum points, a new maximum principle for the space-time fractional conformable PDE is demonstrated. Moreover, the maximum principle is employed to prove a new comparison principle and estimation of solutions. Beside that, the uniqueness and continuous dependence of the solution of the space-time fractional conformable PDE are demonstrated.
Maximum principle, one of the most useful tools, is applied to study of complex dynamic systems without knowing explicit form of solutions [1,2,3,4,5,6,7]. In 2009, maximum principle for a fractional partial differential equation (PDE) was formulated in explicit form by Luchko [3]. In addition, he and his partners [1,2,3,4,5] proved the maximum principle for the generalized time-fractional and multi-terms time-fractional diffusion equations. By using the maximum principle, they also obtained the uniqueness and continuous dependence of solutions for the the generalized time-fractional and multi-terms time-fractional diffusion equations on the initial and boundary conditions. In 2019, Wang, Ren and Baleanu [8] applied maximum principle to investigating initial boundary value problems (IBVP) for Hadamard fractional differential equations involving fractional Laplace operator and got some existence and uniqueness results. In 2020, Mokhtar and Berikbol [9] proposed maximum principle for the space-time fractional diffusion and pseudo-parabolic equations with Caputo and Riemann-Liouville time-fractional derivatives. Based on the maximum principle, it is proved that the uniqueness and continuous dependence of the solution of IBVP for the nonlinear space-time fractional diffusion and pseudo-parabolic equations. It is provided that maximum principle for time-fractional diffusion equations with singular kernel fractional derivatives [10,11], non-singular kernel fractional derivatives [6,7,12,13,14] or fractional Laplace operators [8,15,16,17,18,19]. Extremum principles for fractional differential equations have huge potential application and attract the attention for more and more scholars [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39].
Jarad et al. [40] introduced the fractional conformable derivatives in the sense of Caputo and Riemann-Liouville and stated their properties. To the best of our knowledge, the mathematical literature on the maximum principles and their applications for Caputo fractional conformable derivatives is rarely mentioned. Inspired by the above works, in this paper we investigate a IBVP for space-time Caputo fractional conformable PDE. First, we present several inequalities of Caputo fractional conformable derivatives at extremum points and give detailed proof of two inequalities. After that, by using these inequalities, a new maximum principle is established. The maximum principle is employed to show that estimation of solutions, comparison principle and the uniqueness and continuous dependence of solutions on the initial and boundary conditions.
The rest of this article is organized as follows: In Section 2, we introduce some definitions about Caputo fractional conformable derivatives and establish several extremum principles. In Section 3, these extremum principles are employed to derive maximum principle. Finally, the maximum principle is applied to obtain estimation of solutions, comparison principle and the properties of the solution of the space-time fractional conformable differential equations in Section 4.
In this paper, we shall investigate the following space-time Caputo fractional conformable PDE
CβTDϵtz(x,t)−[CγaDϵxz(x,t)+CγDϵbxz(x,t)]−a(x,t)z(x,t)=g(x,t),(x,t)∈(a,b)×(T,T1]. | (2.1) |
Here x and t are the space and time variables, a(x,t)∈C1,1([a,b]×[T,T1]), and 0<ϵ,β<1, 1<γ<2. CβTDϵt is the left Caputo fractional conformable derivative of order β. CγaDϵx and CγDϵbx are the left and right Caputo fractional conformable derivatives of order γ. For f∈Cnϵ,T([T,T1]), the left Caputo fractional conformable derivative of order β is defined by
CβTDϵtf(t)=1Γ(n−β)∫tT((t−T)ϵ−(s−T)ϵϵ)n−β−1nTTϵf(s)(s−T)1−ϵds. | (2.2) |
For f∈Cmϵ,a([a,b])(f∈Cmϵ,b([a,b])), the left (right) Caputo fractional conformable derivatives of order γ can be written, respectively, as
CγaDϵxf(t)=1Γ(m−γ)∫xa((x−a)ϵ−(s−a)ϵϵ)m−γ−1maTϵf(s)(s−a)1−ϵds, | (2.3) |
and
CγDϵbxf(t)=(−1)mΓ(m−γ)∫bx((b−x)ϵ−(b−s)ϵϵ)m−γ−1mTϵbf(s)(b−s)1−ϵds, | (2.4) |
with n=[β]+1, m=[γ]+1, aTϵf(t)=(t−a)1−ϵf′(t), Tϵbf(t)=(b−t)1−ϵf′(t), naTϵ=aTϵaTϵ⋯aTϵ⏟ntimes, mTϵb=TϵbTϵb⋯Tϵb⏟mtimes, Cnϵ,T[T,T1]={f:[T,T1]→R|n−1TTϵf∈Iϵ[T,T1]}, Cmϵ,a[a,b]={f:[a,b]→R|m−1aTϵf∈Iϵ[a,b]} and Cmϵ,b[a,b]={f:[a,b]→R|m−1Tϵbf∈ϵI[a,b]} (where Iϵ[T,T1], Iϵ[a,b] and ϵI[a,b] are defined in Definition 3.1 in [41]). The detailed information of Caputo fractional conformable derivative, see [40].
Denote
H(ˉU)={z(x,t)|z(x,t)∈ C2,1((a,b)×(T,T1)),z(x,t)∈C([a,b]×[T,T1])}. | (2.5) |
For our maximum principle, we make use of the following three Caputo fractional conformable extremum principles.
Lemma 2.1. If f∈C2ϵ,a([a,b]) reaches its maximum at a point x0∈(a,b). Then the inequality
CγaDϵx0f(x0)≤0 | (2.6) |
holds.
Proof. Let
g(x)=f(x0)−f(x)≥0,x∈[a,b]. | (2.7) |
Concurrently, g(x)∈C2ϵ,a([a,b]), g(x0)=0 and CγaDϵxg(x)=−CγaDϵxf(x).
By calculation, we notice that
CγaDϵx0g(x0)=1Γ(2−γ)∫x0a((x0−a)ϵ−(s−a)ϵϵ)1−γ((s−a)1−ϵg′(s))′ds=1Γ(2−γ)((x0−a)ϵ−(s−a)ϵϵ)1−γ(s−a)1−ϵg′(s)|x0a+1−γΓ(2−γ)∫x0a((x0−a)ϵ−(s−a)ϵϵ)−γg′(s)ds. | (2.8) |
Since
lims→x01Γ(2−γ)((x0−a)ϵ−(s−a)ϵϵ)1−γ(s−a)1−ϵg′(s)=1Γ(2−γ)lims→x0g″(s)(s−a)1−ϵ+g′(s)(1−ϵ)(s−a)−ϵ(1−γ)((x0−a)ϵ−(s−a)ϵϵ)γ−2(s−a)1−ϵ=0. | (2.9) |
Therefore, the formula (2.8) becomes
CγaDϵx0g(x0)=1−γΓ(2−γ)∫x0a((x0−a)ϵ−(s−a)ϵϵ)−γg′(s)ds=1−γΓ(2−γ)((x0−a)ϵ−(s−a)ϵϵ)−γg(s)|x0a−γ(1−γ)Γ(2−γ)∫x0a((x0−a)ϵ−(s−a)ϵϵ)−γ−1(s−a)ϵ−1g(s)ds. | (2.10) |
Since
lims→x01−γΓ(2−γ)((x0−a)ϵ−(s−a)ϵϵ)−γg(s)=−1−γγΓ(2−γ)lims→x0g′(s)(s−a)1−ϵ((x0−a)ϵ−(s−a)ϵϵ)γ−1=0. | (2.11) |
Therefore, the formula (2.10) becomes
CγaDϵx0g(x0)=γ−1Γ(2−γ)((x0−a)ϵϵ)−γg(a)+γ(γ−1)Γ(2−γ)∫x0a((x0−a)ϵ−(s−a)ϵϵ)−γ−1(s−a)ϵ−1g(s)ds≥0. | (2.12) |
We can obtain CγaDϵx0f(x0)≤0.
The lemma is proved.
Lemma 2.2. If f∈C2ϵ,b([a,b]) reaches its maximum at a point x0∈(a,b). Then the inequality
CγDϵbx0f(x0)≤0 | (2.13) |
holds.
Proof. Let
g(x)=f(x0)−f(x)≥0,x∈[a,b]. | (2.14) |
Concurrently, g(x)∈C2ϵ,b([a,b]), g(x0)=0 and CγDϵbxg(x)=−CγDϵbxf(x).
By calculation, we notice that
CγDϵbx0g(x0)=1Γ(2−γ)∫bx0((b−x0)ϵ−(b−s)ϵϵ)1−γ((b−s)1−ϵg′(s))′ds=1Γ(2−γ)((b−x0)ϵ−(b−s)ϵϵ)1−γ(b−s)1−ϵg′(s)|bx0−1−γΓ(2−γ)∫bx0((b−x0)ϵ−(b−s)ϵϵ)−γg′(s)ds. | (2.15) |
Since
lims→x01Γ(2−γ)((b−x0)ϵ−(b−s)ϵϵ)1−γ(b−s)1−ϵg′(s)=1Γ(2−γ)lims→x0g″(s)(b−s)1−ϵ−g′(s)(1−ϵ)(b−s)−ϵ(γ−1)((b−x0)ϵ−(b−s)ϵϵ)γ−2(b−s)ϵ−1=0. | (2.16) |
Therefore, the formula (2.15) becomes
CγDϵbx0g(x0)=−1−γΓ(2−γ)∫bx0((b−x0)ϵ−(b−s)ϵϵ)−γg′(s)ds.=−1−γΓ(2−γ)((b−x0)ϵ−(b−s)ϵϵ)−γg(s)|bx0−γ(1−γ)Γ(2−γ)∫bx0((b−x0)ϵ−(b−s)ϵϵ)−γ−1(b−s)ϵ−1g(s)ds. | (2.17) |
Since
lims→x0−1−γΓ(2−γ)((b−x0)ϵ−(b−s)ϵϵ)−γg(s)=−1−γγΓ(2−γ)lims→x0g′(s)(b−s)1−ϵ((b−x0)ϵ−(b−s)ϵϵ)γ−1=0. | (2.18) |
Therefore, the formula (2.17) becomes
CγDϵbx0g(x0)=γ−1Γ(2−γ)((b−x0)ϵϵ)−γg(b)+γ(γ−1)Γ(2−γ)∫bx0((b−x0)ϵ−(b−s)ϵϵ)−γ−1(b−s)ϵ−1g(s)ds≥0. | (2.19) |
We can obtain CγDϵbx0f(x0)≤0.
The lemma is proved.
Using the same method, it is easy to obtain the following lemmas.
Lemma 2.3. If f∈C1ϵ,T([T,T1]) reaches its maximum at a point t0∈(T,T1]. Then the inequality
CβTDϵt0f(t0)≥0 | (2.20) |
holds.
Lemma 2.4. If f∈C1ϵ,T([T,T1]) reaches its minimum at a point t0∈(T,T1]. Then the inequality
CβTDϵt0f(t0)≤0 | (2.21) |
holds.
Lemma 2.5. If f∈C2ϵ,a([a,b]) reaches its minimum at a point x0∈(a,b). Then the inequality
CγaDϵx0f(x0)≥0 | (2.22) |
holds.
Lemma 2.6. If f∈C2ϵ,b([a,b]) reaches its minimum at a point x0∈(a,b). Then the inequality
CγDϵbx0f(x0)≥0 | (2.23) |
holds.
Example 2.1
If f(x)=−(x−b+a2)2, Lemma 2.1 and 2.2 hold.
If f(t)=−(t−T1+T2)2, Lemma 2.3 holds.
If f(t)=(t−T1+T2)2, Lemma 2.4 holds.
If f(x)=(x−b+a2)2, Lemma 2.5 and 2.6 hold.
In this section, we shall consider the linear space-time Caputo fractional conformable PDE (2.1) on the initial-boundary conditions:
z(x,T)=φ(x),x∈[a,b], | (3.1) |
z(a,t)=μ1(t),zx(b,t)+hz(b,t)=μ2(t)t∈[T,T1], | (3.2) |
where h is a given positive constant, U=(a,b)×(T,T1], ˉU=[a,b]×[T,T1] and S=([a,b]×{T}⋃{a}×[a,b]⋃{b}×[a,b]).
Theorem 3.1. Assume g(x,t)≤0, ∀(x,t)∈U. If z∈H(ˉU) satisfies the linear space-time Caputo fractional conformable PDE (2.1), (3.1) and (3.2), then
z(x,t)≤max{maxx∈[a,b]φ(x),maxt∈[T,T1]μ1(t),1hmaxt∈[T,T1]μ2(t),0},∀(x,t)∈ˉU | (3.3) |
holds.
Proof. Arguing by contradiction, assume that there exists a point (x0,t0)∈U satisfies
z(x0,t0)>max{maxx∈[a,b]φ(x),maxt∈[T,T1]μ1(t),1hmaxt∈[T,T1]μ2(t),0}=M>0. |
Denote ε=z(x0,t0)−M>0 and
w(x,t)=z(x,t)+ε2T1−(t−T)T1,(x,t)∈ˉU. | (3.4) |
According to the definition of w, we have
w(x,t)≤z(x,t)+ε2,(x,t)∈ˉU,w(x0,t0)≥z(x0,t0)=ε+M≥ε+z(x,t)≥ε+w(x,t)−ε2≥ε2+w(x,t),(x,t)∈S. |
The latter property implies that the maximum of w cannot be attained on S. Let w(x1,t1)=max(x,t)∈ˉUw(x,t), then
w(x1,t1)≥w(x0,t0)≥ε+M>ε. |
By Lemma 2.1, 2.2 and 2.3, we know
{CβTDϵtw(x,t)|(x1,t1)≥0,0<ϵ<1,0<β<1,CγaDϵxw(x,t)|(x1,t1)≤0,0<ϵ<1,1<γ<2,CγDϵbxw(x,t)|(x1,t1)≤0,0<ϵ<1,1<γ<2. | (3.5) |
By calculation, we can show
CβTDϵt(ε2T1−(t−T)T1)=−1Γ(1−β)ε2T1∫tT((t−T)ϵ−(s−T)ϵϵ)−βds. | (3.6) |
Assume u=(s−Tt−T)ϵ, substituting into the formula (3.6), we get
CβTDϵt(ε2T1−(t−T)T1)=−1Γ(1−β)ε2T1ϵβ−1∫10(t−T)1−ϵβ(1−u)−βu1−ϵdu=−ϵβ−1(t−T)1−ϵβε2T1Γ(2−ϵ)Γ(3−ϵ−β). | (3.7) |
Applying (3.5)−(3.7), it holds
CβTDϵtz(x,t)|(x1,t1)−[CγaDϵxz(x,t)+CγDϵbxz(x,t)]|(x1,t1)−a(x1,t1)z(x1,t1)−g(x1,t1)=CβTDϵtw(x,t)|(x1,t1)−CβTDϵt(ε2T1−(t1−T)T1)−[CγaDϵxw(x,t)+CγDϵbxw(x,t)]|(x1,t1)−a(x1,t1)(w(x1,t1)−ε2T1−(t1−T)T1)−g(x1,t1)≥ϵβ−1(t1−T)1−ϵβε2T1Γ(2−ϵ)Γ(3−ϵ−β)−a(x1,t1)ε(1−T1−(t1−T)2T1)>0, | (3.8) |
which is in contradiction with (2.1).
This completes the proof of the theorem.
Similarly, the following minimum principle can be obtained by substituting −z for z in the Theorem 3.1.
Theorem 3.2. Assume g(x,t)≥0, ∀(x,t)∈U. If z∈H(ˉU) satisfies the linear space-time Caputo fractional conformable PDE (2.1), (3.1) and (3.2), then
z(x,t)≥min{minx∈[a,b]φ(x),mint∈[T,T1]μ1(t),1hmint∈[T,T1]μ2(t),0},∀(x,t)∈ˉU | (3.9) |
holds.
Theorem 4.1. If z(x,t)∈H(ˉU) is a solution of the Eq (2.1) on initial boundary conditions (3.1) and (3.2), then the inequality
‖z‖C(ˉU)≤max{maxx∈[a,b]‖φ(x)‖,maxt∈[T,T1]‖μ1(t)‖,1hmaxt∈[T,T1]‖μ2(t)‖}+2MΓ(2+ϵβ−ϵ−β)βϵβΓ(1+ϵβ−ϵ)(T1−T)ϵβ | (4.1) |
holds, where
M=‖g‖C(ˉU). | (4.2) |
Proof. Let
w(x,t)=z(x,t)−MΓ(2+ϵβ−ϵ−β)βϵβΓ(1+ϵβ−ϵ)(t−T)ϵβ,(x,t)∈ˉU. |
If z(x,t) is a solution of the Eqs (2.1), (3.1) and (3.2), then w(x,t) is a solution of the problem (2.1) with
g∗(x,t)=g(x,t)−MΓ(2+ϵβ−ϵ−β)βϵβΓ(1+ϵβ−ϵ)CβTDϵt(t−T)ϵβ=g(x,t)−M,μ∗1(t)=μ1(t)−MΓ(2+ϵβ−ϵ−β)βϵβΓ(1+ϵβ−ϵ)(t−T)ϵβ,μ∗2(t)=μ2(t)−hMΓ(2+ϵβ−ϵ−β)βϵβΓ(1+ϵβ−ϵ)(t−T)ϵβ. |
g∗(x,t), μ∗1(t) and μ∗2(t) replace g(x,t), μ1(t) and μ2(t), respectively. Due to g∗(x,t)≤0, by using Theorem 3.1 (Maximum principle), we have
z(x,t)≤max{maxx∈[a,b]‖φ(x)‖,maxt∈[T,T1]‖μ1(t)‖+MΓ(2+ϵβ−ϵ−β)βϵβΓ(1+ϵβ−ϵ)(T1−T)ϵβ,1hmaxt∈[T,T1]‖μ2(t)‖+MΓ(2+ϵβ−ϵ−β)βϵβΓ(1+ϵβ−ϵ)(T1−T)ϵβ}. |
Therefore,
z(x,t)≤max{maxx∈[a,b]‖φ(x)‖,maxt∈[T,T1]‖μ1(t)‖,1hmaxt∈[T,T1]‖μ2(t)‖}+2MΓ(2+ϵβ−ϵ−β)βϵβΓ(1+ϵβ−ϵ)(T1−T)ϵβ. | (4.3) |
In a similar fashion, we get
z(x,t)≥−max{maxx∈[a,b]‖φ(x)‖,maxt∈[T,T1]‖μ1(t)‖,1hmaxt∈[T,T1]‖μ2(t)‖}+2MΓ(2+ϵβ−ϵ−β)βϵβΓ(1+ϵβ−ϵ)(T1−T)ϵβ. | (4.4) |
Combining (4.3) and (4.4), the theorem is proved.
Theorem 4.2. If z(x,t) is a solution of the IBVP (2.1),(3.1) and (3.2). z(x,t) continuously depends on the data given in the problem in the sense that if
‖g−g∗‖C(ˉU)≤ε,‖φ(x)−φ∗(x)‖C([a,b])≤ε0,‖μ1(t)−μ∗1(t)‖C([T,T1])≤ε1,‖μ2(t)−μ∗2(t)‖C([T,T1])≤ε2, |
then, the estimate
‖z−z∗‖C(ˉU)≤max{ε0,ε1,ε2}+2Γ(2+ϵβ−ϵ−β)βϵβΓ(1+ϵβ−ϵ)(T1−T)ϵβε |
for the corresponding classical solution z(x,t) and z∗(x,t) true.
The demonstrate process is similar to Theorem 4.1.
Theorem 4.3. Assume g(x,t)≤0, a(x,t)≤0 for (x,t)∈U, φ(x)≤0 for x∈(a,b) and μ1(t)≤0, μ2(t)≤0 for t∈(T,T1]. If z∈H(ˉU) is a solution of the IBVP (2.1),(3.1) and (3.2), then
z(x,t)≤0,(x,t)∈ˉU |
holds.
Theorem 4.4. Assume g(x,t)≥0, a(x,t)≥0 for (x,t)∈U, φ(x)≥0 for x∈(a,b) and μ1(t)≥0, μ2(t)≥0 for t∈(T,T1]. If z∈H(ˉU) satisfy the IBVP (2.1),(3.1) and (3.2), then
z(x,t)≥0,(x,t)∈ˉU |
holds.
The conclusion of Theorem 4.3 and Theorem 4.4 can be obtained by Theorem 3.1.
Remark 4.1. Assume g(x,t)=a(x,t)=0 for (x,t)∈U, φ(x)=0 for x∈(a,b) and μ1(t)=μ2(t)≥0 for t∈(T,T1]. If z∈H(ˉU) satisfies the IBVP (2.1),(3.1) and (3.2), then
z(x,t)=0,∀(x,t)∈ˉU, |
holds.
Theorem 4.5. Assume ∂G∂z+a(x,t)≤0, ∀(x,t)∈U, then IBVP of the following nonlinear space-time fractional conformable PDE
{CβTDϵtz(x,t)−[CγaDϵxz(x,t)+CγDϵbxz(x,t)]−a(x,t)z(x,t)=G(x,t,z),(x,t)∈Uz(x,T)=φ(x),x∈[a,b],z(a,t)=μ1(t),t∈[T,T1],zx(b,t)+hz(b,t)=μ2(t),t∈[T,T1], | (4.5) |
has a unique solution on H(ˉU).
Proof. Suppose z1,z2 are two solutions of IBVP (4.5). Let
z(x,t)=z1(x,t)−z2(x,t),∀(x,t)∈ˉU, |
satisfy the equation
{CβTDϵtz(x,t)−[CγaDϵxz(x,t)+CγDϵbxz(x,t)]−a(x,t)z(x,t)=G(x,t,z1−G(x,t,z2),(x,t)∈U,z(x,T)=0,x∈[a,b],z(a,t)=0,t∈[T,T1],zx(b,t)+hz(b,t)=0,t∈[T,T1]. | (4.6) |
In view of
G(x,t,z1)−G(x,t,z2)=∂G∂z(z∗)(z1−z2), | (4.7) |
where z∗=(1−λ)z1+λz2,0<λ<1.
Using (4.6) and (4.7), we have that
{CβTDϵtz(x,t)−[CγaDϵxz(x,t)+CγDϵbxz(x,t)]=(∂G∂z(z∗)+a(x,t))z(x,t),(x,t)∈Uz(x,T)=0,x∈[a,b],z(a,t)=0,t∈[T,T1],zx(b,t)+hz(b,t)=0,t∈[T,T1]. | (4.8) |
Since ∂G∂z+a(x,t)≤0, applying Theorem 4.3, we have
z(x,t)≤0,(x,t)∈ˉU. | (4.9) |
By the same way, using Theorem 4.4 to −z(x,t) we have
z(x,t)≥0,(x,t)∈ˉU. | (4.10) |
Combining (4.9) and (4.10), we can get
z(x,t)=0,∀(x,t)∈ˉU. |
Thus, the theorem holds.
Example 4.1
Consider the following space-time Caputo fractional conformable PDE:
{CβTDϵtz(x,t)−[CγaDϵxz(x,t)+CγDϵbxz(x,t)]−a(x,t)z(x,t)=G(x,t,z),(x,t)∈Uz(x,T)=φ(x),x∈[a,b],z(a,t)=μ1(t),t∈[T,T1],zx(b,t)+hz(b,t)=μ2(t),t∈[T,T1], | (4.11) |
where 0<λ<1, α,β∈(0,1), γ∈(1,2).
If G(x,t,z)=−x2, a(x,t)=−x2t2, φ(x)=−x2, μ1(t)=0 and μ2(t)=0, Theorem 3.1, 4.1, 4.2 and 4.3 hold.
If G(x,t,z)=x2, a(x,t)=x2t2, φ(x)=x2, μ1(t)=0 and μ2(t)=0, Theorem 3.2, 4.1, 4.2 and 4.4 hold.
If a(x,t)=−t2 and G(x,t,z)=x2z. We have ∂G∂u+a(x,t)=−x2z2−t2≤0, then Theorem 4.5 holds.
Theorem 4.6. (Comparison Theorem) Assume c(x,t)≥0, d(x,t)≥0 and d(x,t)≥c(x,t) for (x,t)∈U. If (z1,z2)∈H(ˉU)×H(ˉU) satisfies
{CβTDϵtz1(x,t)−[CγaDϵxz1(x,t)+CγDϵbxz1(x,t)]−c(x,t)z2(x,t)−d(x,t)z1(x,t)≥0,(x,t)∈U,CβTDϵtz2(x,t)−[CγaDϵxz2(x,t)+CγDϵbxz2(x,t)]−c(x,t)z1(x,t)−d(x,t)z2(x,t)≥0,(x,t)∈U,z1(x,T)≥0,z2(x,T)≥0,x∈[a,b],z1(a,t)≥0,z2(a,t)≥0,t∈[T,T1],(z1)x(b,t)+hz1(b,t)≥0,(z2)x(b,t)+hz2(b,t)≥0,t∈[T,T1], | (4.12) |
then
z1(x,t)≥0,z2(x,t)≥0,(x,t)∈ˉU, |
hold.
Proof. Denote ξ(x,t)=z1(x,t)+z2(x,t),∀(x,t)∈ˉU. Then, by (4.12), we have
{CβTDϵtξ(x,t)−[CγaDϵxξ(x,t)+CγDϵbxξ(x,t)]−c(x,t)ξ(x,t)−d(x,t)ξ(x,t)≥0,(x,t)∈U,ξ(x,T)≥0,x∈[a.b],ξ(a,t)≥0,t∈[T,T1],ξx(b,t)+hξ(b,t)≥0,t∈[T,T1]. | (4.13) |
Thus, by (4.13) and Theorem 4.4, we obtain
ξ(x,t)≥0,∀(x,t)∈ˉU, |
that is
z1(x,t)+z2(x,t)≥0,(x,t)∈ˉU. | (4.14) |
Using (4.13) and (4.14), we have that
{CβTDϵtz1(x,t)−[CγaDϵxz1(x,t)+CγDϵbxz1(x,t)]−(d(x,t)−c(x,t))z1(x,t)≥0,(x,t)∈U,z1(x,T)≥0,x∈[a.b],z1(a,t)≥0,t∈[T,T1],(z1)x(b,t)+hz1(b,t)≥0,t∈[T,T1], | (4.15) |
and
{CβTDϵtz2(x,t)−[CγaDϵxz2(x,t)+CγDϵbxz2(x,t)]−(d(x,t)−c(x,t))z2(x,t)≥0,(x,t)∈U,z2(x,T)≥0,x∈[a.b],z2(a,t)≥0,t∈[T,T1],(z2)x(b,t)+hz2(b,t)≥0,t∈[T,T1]. | (4.16) |
Applying Theorem 4.4 to (4.15) and (4.16), we get
z1(x,t)≥0,z2(x,t)≥0,(x,t)∈ˉU. |
Thus, the Theorem holds.
Using the same way, the following Theorem holds.
Theorem 4.7. Assume c(x,t)≤0, d(x,t)≤0 and c(x,t)≥d(x,t) for (x,t)∈U. If (z1,z2)∈H(ˉU)×H(ˉU) satisfies
{CβTDϵtz1(x,t)−[CγaDϵxz1(x,t)+CγDϵbxz1(x,t)]−c(x,t)z2(x,t)−d(x,t)z1(x,t)≤0,(x,t)∈U,CβTDϵtz2(x,t)−[CγaDϵxz2(x,t)+CγDϵbxz2(x,t)]−c(x,t)z1(x,t)−d(x,t)z2(x,t)≤0,(x,t)∈U,z1(x,T)≤0,z2(x,T)≤0,x∈[a,b],z1(a,t)≤0,z2(a,t)≤0,t∈[T,T1],(z1)x(b,t)+hz1(b,t)≤0,(z2)x(b,t)+hz2(b,t)≤0,t∈[T,T1], | (4.17) |
then
z1(x,t)≤0,z2(x,t)≤0,(x,t)∈ˉU, |
hold.
Remark 4.2. Assume c(x,t)=d(x,t)=0 for (x,t)∈U, φ(x)=φ∗(x)=0 for x∈(a,b) and μ1(t)=μ∗1(t)=μ2(t)=μ∗2(t)=0 for t∈(T,T1]. If (z1,z2)∈H(ˉU)×H(ˉU) satisfies
{CβTDϵtz1(x,t)−[CγaDϵxz1(x,t)+CγDϵbxz1(x,t)]−c(x,t)z2(x,t)−d(x,t)z1(x,t)=0,(x,t)∈U,CβaDϵtz2(x,t)−[CγaDϵxz2(x,t)+CγDϵbxz2(x,t)]−c(x,t)z1(x,t)−d(x,t)z2(x,t)=0,(x,t)∈U,z1(x,T)=φ(x),z2(x,T)=φ∗(x),x∈[a,b],z1(a,t)=μ1(t),z2(a,t)=μ∗1(t),t∈[T,T1],(z1)x(b,t)+hz1(b,t)=μ2(t),(z2)x(b,t)+hz2(b,t)=μ∗2(t),t∈[T,T1], | (4.18) |
then
z1(x,t)=0,z2(x,t)=0,∀(x,t)∈ˉU, |
hold.
Next, we consider the following linear space-time fractional conformable PDE
{CβTDϵtz1(x,t)−[CγaDϵxz1(x,t)+CγDϵbxz1(x,t)]−c(x,t)z2(x,t)−d(x,t)z1(x,t)=g1(x,t),(x,t)∈U,CβTDϵtz2(x,t)−[CγaDϵxz2(x,t)+CγDϵbxz2(x,t)]−c(x,t)z1(x,t)−d(x,t)z2(x,t)=g2(x,t),(x,t)∈U,z1(x,T)=φ(x),z2(x,T)=φ∗(x),x∈[a,b],z1(a,t)=μ1(t),z2(a,t)=μ∗1(t),t∈[T,T1],(z1)x(b,t)+hz1(b,t)=μ2(t),(z2)x(b,t)+hz2(b,t)=μ∗2(t),t∈[T,T1]. | (4.19) |
Theorem 4.8. If (z1,z2)∈H(ˉU)×H(ˉU) is a solution of the linear space-time fractional conformable PDE (4.19), then
‖z1‖≤12(M1+M2+M3+M4),‖z2‖≤12(M1+M2+M3+M4),(x,t)∈ˉU, |
hold, where
M1=max{maxx∈[a,b]‖φ(x)+φ∗(x)‖,maxt∈[T,T1]‖μ1(t)+μ∗1(t)‖,1hmaxt∈[T,T1]‖μ2(t)+μ∗2(t)‖} |
M2=max{maxx∈[a,b]‖φ(x)−φ∗(x)‖,maxt∈[T,T1]‖μ1(t)−μ∗1(t)‖,1hmaxt∈[T,T1]‖μ2(t)−μ∗2(t)‖} |
M3=2‖g1+g2‖C(ˉU)Γ(2+ϵβ−ϵ−β)βϵβΓ(1+ϵβ−ϵ)(T1−T)ϵβ, |
M4=2‖g1−g2‖C(ˉU)Γ(2+ϵβ−ϵ−β)βϵβΓ(1+ϵβ−ϵ)(T1−T)ϵβ. |
Proof. Let ξ(x,t)=z1(x,t)+z2(x,t),η(x,t)=z1(x,t)−z2(x,t),∀(x,t)∈ˉU. Then, by (4.19), we have
{CβTDϵtξ(x,t)−[CγaDϵxξ(x,t)+CγDϵbxξ(x,t)]−(c(x,t)+d(x,t))ξ(x,t)=g1(x,t)+g2(x,t),(x,t)∈U,CβTDϵtη(x,t)−[CγaDϵxη(x,t)+CγDϵbxη(x,t)]−(d(x,t)−c(x,t))η(x,t)=g1(x,t)−g2(x,t),(x,t)∈U,ξ(x,T)=φ(x)+φ∗(x),η(x,T)=φ(x)−φ∗(x)x∈[a.b],ξ(a,t)=μ1(t)+μ∗1(t),η(a,t)=μ1(t)−μ∗1(t)t∈[T,T1],ξx(b,t)+hξ(b,t)=μ2(t)+μ∗2(t),ηx(b,t)+hη(b,t)=μ2(t)−μ∗2(t)t∈[T,T1]. | (4.20) |
Thus, by (4.20) and Theorem 4.1, we obtain
‖ξ‖C(ˉU)≤M1+M3, | (4.21) |
and
‖η‖C(ˉU)≤M2+M4. | (4.22) |
Using (4.21) and (4.22), we have that
‖z1‖C(ˉU)≤12(M1+M2+M3+M4), |
and
‖z2‖C(ˉU)≤12(M1+M2+M3+M4). |
Thus, the Theorem holds.
Theorem 4.9. Assume c(x,t)≤0, d(x,t)≤0, d(x,t)<c(x,t), g1(x,t)≤0 and g2(x,t)≤0 for (x,t)∈U, then IBVP (4.19) has a unique solution on H(ˉU)×H(ˉU).
Proof. Suppose (z11,z21),(z12,z22) are two solutions of IBVP (4.19). Let
z1(x,t)=z11(x,t)−z12(x,t),v(x,t)=z21(x,t)−z22(x,t),∀(x,t)∈ˉU, |
satisfy the equation
{CβTDϵtz1(x,t)−[CγaDϵxz1(x,t)+CγDϵbxz1(x,t)]−c(x,t)z2(x,t)−d(x,t)z1(x,t)=0,(x,t)∈U,CβTDϵtz2(x,t)−[CγaDϵxz2(x,t)+CγDϵbxz2(x,t)]−c(x,t)z1(x,t)−d(x,t)z2(x,t)=0,(x,t)∈U,z1(x,T)=0,z2(x,T)=0,x∈[a,b],z1(a,t)=0,z2(a,t)=0,t∈[T,T1],(z1)x(b,t)+hz1(b,t)=0,(z2)x(b,t)+hz2(b,t)=0,t∈[T,T1]. | (4.23) |
Applying Theorem 4.7, we get
z1(x,t)≤0,z2(x,t)≤0,(x,t)∈ˉU. | (4.24) |
Similarly, employing Theorem 4.7 to −z1(x,t) and −z2(x,t) we get
z1(x,t)≥0,z2(x,t)≥0,(x,t)∈ˉU. | (4.25) |
Combining (4.24) and (4.25), we have
z1(x,t)=0,z2(x,t)=0,∀(x,t)∈ˉU. |
Thus, the Theorem holds.
Example 4.2
Consider the linear space-time Caputo fractional conformable PDE (4.19), if g1(x,t)=x2t2, g2(x,t)=x4, c(x,t)=t22, d(x,t)=t2, φ(x)=x2, μ1(t)=0 and μ2(t)=0, Theorem 4.6 and 4.8 hold.
If g1(x,t)=−x2t2, g2(x,t)=−x4, c(x,t)=−t22, d(x,t)=−t2, φ(x)=−x2, μ1(t)=0 and μ2(t)=0, Theorem 4.7, 4.8 and 4.9 hold.
In this paper, we have proved two extreme principles for the Caputo fractional conformable derivatives. Based on these extreme principles, a maximum principle for the space-time fractional conformable diffusion equation is established. Furthermore, the maximum principle is applied to show a new comparison principle, estimation of solutions and the uniqueness and continuous dependence of the solution for the IBVP to the space-time Caputo fractional conformable equations. Our results are new and contribute significantly to the literature on the topic.
We would like to express our gratitude to the anonymous reviewers and editors for their valuable comments and suggestions which led to the improvement of the original manuscript.
The authors declare no conflict of interest.
[1] | Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Frac. Calc. Appl. Anal., 15 (2012), 141-160. |
[2] |
Y. Luchko, Initial-boundary-value problem for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538-548. doi: 10.1016/j.jmaa.2010.08.048
![]() |
[3] |
Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351 (2009), 218-223. doi: 10.1016/j.jmaa.2008.10.018
![]() |
[4] | Y. Luchko, Maximum principle and its application for time-fractional diffusion equations, Frac. Calc. Appl. Anal., 14 (2011), 110-124. |
[5] |
Y. Luchko, M. Yamamoto, On the maximum principle for a time-fractional diffusion equations, Frac. Calc. Appl. Anal., 20 (2017), 1131-1145. doi: 10.1515/fca-2017-0060
![]() |
[6] |
M. Al-Refai, T. Abdeljawad, Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel, Adv. Diff. Equ., 2017 (2017), 1-12. doi: 10.1186/s13662-016-1057-2
![]() |
[7] |
M. Al-Refai, Comparison principle for differential equations involving Caputo fractional derivative with Mittag-Leffler non-singular kernel, Electron. J. Differ. Eq., 2018 (2018), 1-10. doi: 10.1186/s13662-017-1452-3
![]() |
[8] | G. Wang, X. Ren, D. Baleanu, Maximum principle for Hadamard fractional differential equations involving fractional Laplace operator, Math. Meth. Appl. Sci., 2019 (2019), 1-10. |
[9] | M. Kirane, B. Torebek, Maximum principle for space and time-space fractional partial differential equations, Mahtematic, 2020 (2020), 1-24. |
[10] |
L. Cao, H. Kong, S. Zeng, Maximum principles for time-fractional Caputo-Katugampola diffusion equations, J. Nonlinear Sci. Appl., 10 (2017), 2257-2267. doi: 10.22436/jnsa.010.04.75
![]() |
[11] |
M. Kirane, B. Torebek, Extremum principle for Hadamard derivatives and its application to nonlinear fractional partial differential equations, Frac. Calc. Appl. Anal., 22 (2019), 358-378. doi: 10.1515/fca-2019-0022
![]() |
[12] |
M. Borikhanov, M. Kirane, B. Torebek, Maximum principle and its applications for the nonlinear time-fractional diffusion equations with Cauchy-Dirichlet conditions, Appl. Math. Lett., 81 (2018), 14-20. doi: 10.1016/j.aml.2018.01.012
![]() |
[13] | M. Borikhanov, B. Torebek, Maximum principle and its applications for the subdiffusion equations with Caputo-Fabrizio fractional derivative, Mate. Zhur., 18 (2018), 43-52. |
[14] | L. Zhang, B. Ahmad, G. Wang, Analysis and application for diffusion equations with a new fractional derivative without singular kernel, Elec. J. Diff. Equa., 289 (2017), 1-6. |
[15] | X. Cabrˊe, Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principle and Hamiltonian estimates, Anal. l'Ins. Henr. Poin. C, Anal. Line., 31 (2014), 23-53. |
[16] | T. Guan, G. Wang, Maximum principles for the space-time fractional conformable differential system involving the fractional laplace opeartor, J. Math., 2020 (2020), 1-8. |
[17] |
A. Capella, J. Dˊavila, L. Dupaigne, Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Part. Diff. Equa., 36 (2011), 1353-1384. doi: 10.1080/03605302.2011.562954
![]() |
[18] | T. Cheng, C. Huang, C. Li, The maximum principles for fractional Laplacian equations and their applications, Comm. Cont. Math., 19 (2017), 1-12. |
[19] |
L. Del Pezzo, A. Quaas, A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian, J. Differ. Equations, 263 (2017), 765-778. doi: 10.1016/j.jde.2017.02.051
![]() |
[20] |
R. Agarwal, D. Baleanu, J. Nieto, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comp. Appl. Math., 339 (2018), 3-29. doi: 10.1016/j.cam.2017.09.039
![]() |
[21] |
J. Nieto, Maximum principles for fractional differential equations derived form Mittag-Leffler functions, Appl. Math. Lett., 23 (2010), 1248-1251. doi: 10.1016/j.aml.2010.06.007
![]() |
[22] |
H. Ye, F. Liu, V. Anh, I. Turner, Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations, Appl. Math. Comp., 227 (2014), 531-540. doi: 10.1016/j.amc.2013.11.015
![]() |
[23] | Z. Liu, S. Zeng, Y. Bai, Maximum principles for the multi-term space-time variable-order fractional diffusion equations and their applications, Frac. Calc. Appl. Anal., 19 (2016), 188-211. |
[24] |
G. Wang, X. Ren, Z. Bai, W. Hou, Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation, Appl. Math. Lett., 96 (2019), 131-137. doi: 10.1016/j.aml.2019.04.024
![]() |
[25] |
G. Wang, Twin iterative positive solutions of fractional q-difference Schrödinger equations, Appl. Math. Lett., 76 (2018), 103-109. doi: 10.1016/j.aml.2017.08.008
![]() |
[26] |
L. Zhang, W. Hou, Standing waves of nonlinear fractional p-Laplacian Schrödinger equation involving logarithmic nonlinearity, Appl. Math. Lett., 102 (2020), 106149. doi: 10.1016/j.aml.2019.106149
![]() |
[27] |
G. Wang, X. Ren, Radial symmetry of standing waves for nonlinear fractional Laplacian Hardy-Schrödinger systems, Appl. Math. Lett., 110 (2020), 106560. doi: 10.1016/j.aml.2020.106560
![]() |
[28] | L. Zhang, W. Hou, B. Ahmad, G. Wang, Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional p-Laplacian, Discrete Contin. Dyn. Syst. Ser. S, 2018. |
[29] |
L. Zhang, X. Nie, A direct method of moving planes for the Logarithmic Laplacian, Appl. Math. Lett., 118 (2021), 107141. doi: 10.1016/j.aml.2021.107141
![]() |
[30] |
L. Zhang, B. Ahmad, G. Wang, X. Ren, Radial symmetry of solution for fractional p−Laplacian system, Nonl. Anal., 196 (2020), 111801. doi: 10.1016/j.na.2020.111801
![]() |
[31] | J. Korbel, Y. Luchko, Modeling of financial processes with a space-time fractional diffusion equation of varying order, Frac. Calc. Appl. Anal., 19 (2016), 1414-1433. |
[32] |
M. Alquran, F. Yousef, F. Alquran, T. Sulaiman, A. Yusuf, Dual-wave solutions for the quadratic-cubic conformable-Caputo time-fractional Klein-Fock-Gordon equation, Math. Comput. Simulat., 185 (2021), 62-76. doi: 10.1016/j.matcom.2020.12.014
![]() |
[33] |
I. Jaradat, M. Alquran, Q. Katatbeh, F. Yousef, S. Momani, D. Baleanu, An avant-garde handling of temporal-spatial fractional physical models, Int. J. Nonl. Sci. Numer. Simu., 21 (2020), 183-194. doi: 10.1515/ijnsns-2018-0363
![]() |
[34] |
I. Jaradat, M. Alquran, F. Yousef, S. Momani, D. Baleanu, On (2+1)-dimensional physical models endowed with decoupled spatial and temporal memory indices, Eur. Phys. J. Plus., 134 (2019), 360. doi: 10.1140/epjp/i2019-12769-8
![]() |
[35] |
H. Khan, T. Abdeljawad, C. Tunc, A. Alkhazzan, A. Khan, Minkowski's inequality for the AB-fractional integral operator, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
![]() |
[36] | H. Khan, C. Tunc, A. Khan, Green functions properties and existence theorems for nonlinear singular-delay-fractional differential equations with p-Laplacian, Disc. Cont. Dyna. Syst. S., 13 (2020), 2475-2487. |
[37] |
H. Khan, C. Tunc, D. Baleanu, A. Khan, A. Alkhazzan, Inequalities for n- class of functions using the Saigo fractional integral operator, Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemticas, 113 (2019), 2407-2420. doi: 10.1007/s13398-019-00624-5
![]() |
[38] | H. Khan, C. Tunc, W. Chen, A. Khan, Existence theorems and Hyers-Ulam stability for a class of Hybrid fractional differential equations with p-Laplacian operator, J. Appl. Anal. Comput., 8 (2018), 1211-1226. |
[39] |
S. Zeng, S. Migˊorski, V. Nguyen, Y. Bai, Maximum principles for a class of generalized time-fractional diffusion equations, Frac. Calc. Appl. Anal., 23 (2020), 822-835. doi: 10.1515/fca-2020-0041
![]() |
[40] |
F. Jarad, E. Uˇgurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1-16. doi: 10.1186/s13662-016-1057-2
![]() |
[41] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016
![]() |
1. | Fidel Meléndez-Vázquez, Guillermo Fernández-Anaya, Aldo Jonathan Muñóz-Vázquez, Eduardo Gamaliel Hernández-Martínez, Generalized conformable operators: Application to the design of nonlinear observers, 2021, 6, 2473-6988, 12952, 10.3934/math.2021749 | |
2. | Manzoor Ahmad, Akbar Zada, Mehran Ghaderi, Reny George, Shahram Rezapour, On the Existence and Stability of a Neutral Stochastic Fractional Differential System, 2022, 6, 2504-3110, 203, 10.3390/fractalfract6040203 | |
3. | Tingting Guan, Lihong Zhang, Maximum Principle for Variable-Order Fractional Conformable Differential Equation with a Generalized Tempered Fractional Laplace Operator, 2023, 7, 2504-3110, 798, 10.3390/fractalfract7110798 |