Research article

Cartan-Eilenberg Gorenstein-injective $ m $-complexes

  • Received: 30 October 2020 Accepted: 01 February 2021 Published: 08 February 2021
  • MSC : 18E10, 18G25, 18G35

  • We study the notion of Cartan-Eilenberg Gorenstein-injective $ m $-complexes. We show that a $ m $-complex $ G $ is Cartan-Eilenberg Gorenstein-injective if and only if $ G_n $, $ \mathrm{Z}_n^{t}(G) $, $ \mathrm{B}_n^{t}(G) $ and $ \mathrm{H}_n^{t}(G) $ are Gorenstein-injective modules for each $ n\in\mathbb{Z} $ and $ t = 1, 2, \ldots, m $. As an application, we show that an iteration of the procedure used to define the Cartan-Eilenberg Gorenstein-injective $ m $-complexes yields exactly the Cartan-Eilenberg Gorenstein-injective $ m $-complexes. Specifically, given a Cartan-Eilenberg exact sequence of Cartan-Eilenberg Gorenstein-injective $ m $-complexes

    $ \mathbb{G} = \cdots\rightarrow G^{-1}\rightarrow G^0\rightarrow G^1\rightarrow \cdots $

    such that the functor $ \mathrm{Hom}_{\mathcal{C}_m({R})}(H, -) $ leave $ \mathbb{G} $ exact for each Cartan-Eilenberg Gorenstein-injective $ m $-complex $ H $, then $ \mathrm{Ker}(G^0\rightarrow G^1) $ is a Cartan-Eilenberg Gorenstein-injective $ m $-complex.

    Citation: Bo Lu, Angmao Daiqing. Cartan-Eilenberg Gorenstein-injective $ m $-complexes[J]. AIMS Mathematics, 2021, 6(5): 4306-4318. doi: 10.3934/math.2021255

    Related Papers:

  • We study the notion of Cartan-Eilenberg Gorenstein-injective $ m $-complexes. We show that a $ m $-complex $ G $ is Cartan-Eilenberg Gorenstein-injective if and only if $ G_n $, $ \mathrm{Z}_n^{t}(G) $, $ \mathrm{B}_n^{t}(G) $ and $ \mathrm{H}_n^{t}(G) $ are Gorenstein-injective modules for each $ n\in\mathbb{Z} $ and $ t = 1, 2, \ldots, m $. As an application, we show that an iteration of the procedure used to define the Cartan-Eilenberg Gorenstein-injective $ m $-complexes yields exactly the Cartan-Eilenberg Gorenstein-injective $ m $-complexes. Specifically, given a Cartan-Eilenberg exact sequence of Cartan-Eilenberg Gorenstein-injective $ m $-complexes

    $ \mathbb{G} = \cdots\rightarrow G^{-1}\rightarrow G^0\rightarrow G^1\rightarrow \cdots $

    such that the functor $ \mathrm{Hom}_{\mathcal{C}_m({R})}(H, -) $ leave $ \mathbb{G} $ exact for each Cartan-Eilenberg Gorenstein-injective $ m $-complex $ H $, then $ \mathrm{Ker}(G^0\rightarrow G^1) $ is a Cartan-Eilenberg Gorenstein-injective $ m $-complex.



    加载中


    [1] P. Bahiraei, R. Hafezi, A. Nematbakhsh, Homotopy category of $N$-complexes of projective modules, J. Pure Appl. Algebra, 220 (2016), 2414–2433. doi: 10.1016/j.jpaa.2015.11.012
    [2] A. Beligiannis, Relative homological algebra and purity in triangulated categories, J. Algebra, 227 (2000), 268–361 doi: 10.1006/jabr.1999.8237
    [3] D. Bennis, N. Mahdou, Strongly Gorenstein projective, injective and flat modules, J. Pure Appl. Algebra, 210 (2007), 437–445. doi: 10.1016/j.jpaa.2006.10.010
    [4] E. E. Enochs, Cartan-Eilenberg complexes and resolutions, J. Algebra, 342 (2011), 16–39. doi: 10.1016/j.jalgebra.2011.05.011
    [5] E. E. Enochs, J. R. García Rozas, Gorenstein injective and projective complexes, Commun. Algebra, 26 (1998), 1657–1674. doi: 10.1080/00927879808826229
    [6] E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, Berlin, New York: De Gruyter, 2000.
    [7] S. Estrada, Monomial algebras over infinite quivers. Applications to $N$-complexes of modules, Commun. Algebra, 35 (2007), 3214–3225. doi: 10.1080/00914030701410211
    [8] J. R. García Rozas, Covers and envelopes in the category of complexes, Chapman & Hall/CRC, 1999.
    [9] J. Gillespie, The homotopy category of $N$-complexes is a homotopy category, J. Homotopy Relat. Str., 10 (2015), 93–106. doi: 10.1007/s40062-013-0043-6
    [10] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167–193. doi: 10.1016/j.jpaa.2003.11.007
    [11] O. Iyama, K. Kato, J. I. Miyachi, Derived categories of $N$-complexes, J. Lond. Math. Soc., 96 (2017), 687–716. doi: 10.1112/jlms.12084
    [12] Z. K. Liu, C. X. Zhang, Gorenstein injective complexes of modules over Noetherian rings, J. Algebra, 342 (2009), 1546–1554.
    [13] B. Lu, Gorenstein objects in the category of $N$-complexes, J. Algebra Appl., https://doi.org/10.1142/S0219498821501747.
    [14] B. Lu, Z. X. Di, Gorenstein cohomology of $N$-complexes, J. Algebra Appl., 19 (2020), 2050174. doi: 10.1142/S0219498820501741
    [15] B. Lu, J. Q. Wei, Z. X. Di, $\mathscr{W}$-Gorenstein $N$-complexes, Rocky MT. J. Math., 49 (2019), 1973–1992. doi: 10.1216/RMJ-2019-49-6-1973
    [16] B. Lu, Z. X. Di, Y. F. Liu, Cartan-Eilenberg $N$-complexes with respect to self-orthogonal subcategories, Front. Math. China, 15 (2020), 351–365. doi: 10.1007/s11464-020-0828-y
    [17] B. Lu, W. Ren, Z. K. Liu, A note on Cartan-Eilenberg Gorenstein categories, Kodai Math. J., 38 (2015), 209–227. doi: 10.2996/kmj/1426684451
    [18] S. Sather-Wagstaff, T. Sharif, D. White, Stability of Gorenstein categories, J. Lond. Math. Soc., 77 (2008), 481–502. doi: 10.1112/jlms/jdm124
    [19] Z. Y. Xie, X. Y. Yang, The homotopy categories of $N$-complexes of injectives and projectives, J. Korean Math. Soc., 56 (2019), 623–644.
    [20] D. W. Xin, J. L. Chen, X. X. Zhang, Completely $\mathscr{W}$-resolved complexes, Commun. Algebra, 41 (2013), 1094–1106. doi: 10.1080/00927872.2011.630707
    [21] A. M. Xu, N. Q. Ding, On stability of Gorenstein categories, Commun. Algebra, 41 (2013), 3793–3804. doi: 10.1080/00927872.2012.677892
    [22] G. Yang, Gorenstein projective, injective and flat complexes, Acta Math. Sin. (Chinese Series), 54 (2011), 451–460.
    [23] G. Yang, L. Liang, Cartan-Eilenberg Gorenstein projective complexes, J. Algebra Appl., 13 (2014), 1350068. doi: 10.1142/S0219498813500680
    [24] G. Yang, L. Liang, Cartan-Eilenberg Gorenstein flat complexes, Math. Scand., 114 (2014), 5–25. doi: 10.7146/math.scand.a-16637
    [25] X. Y. Yang, T. Y. Cao, Cotorsion pairs in $\mathcal{C}_N(\mathcal{A})$, Algebra Colloq., 24 (2017), 577–602. doi: 10.1142/S1005386717000384
    [26] X. Y. Yang, N. Q. Ding, The homotopy category and derived category of $N$-complexes, J. Algebra, 426 (2015), 430–476. doi: 10.1016/j.jalgebra.2014.10.053
    [27] X. Y. Yang, Z. K. Liu, Gorenstein projective, injective, and flat complexes, Commun. Algebra, 39 (2011), 1705–1721.
    [28] X. Y. Yang, J. P. Wang, The existence of homotopy resolutions of $N$-complexes, Homol. Homotopy Appl., 17 (2015), 291–316. doi: 10.4310/HHA.2015.v17.n2.a14
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2160) PDF downloads(151) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog