Recently, the combined fractional operator (CFO) is introduced and discussed in Baleanu et al. [
Citation: Rabha W. Ibrahim, Dumitru Baleanu. On a combination of fractional differential and integral operators associated with a class of normalized functions[J]. AIMS Mathematics, 2021, 6(4): 4211-4226. doi: 10.3934/math.2021249
Recently, the combined fractional operator (CFO) is introduced and discussed in Baleanu et al. [
[1] | D. Baleanu, A. Fernandez, A. Akgul, On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2020), 360. doi: 10.3390/math8030360 |
[2] | X. Zheng, H. Wang, An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes, SIAM J. Numer. Anal., 58 (2020), 330–352. doi: 10.1137/19M1245621 |
[3] | W. Hong, X. Zheng, Wellposedness and regularity of the variable-order time-fractional diffusion equations, J. Math. Anal. Appl., 475 (2019), 1778–1802. doi: 10.1016/j.jmaa.2019.03.052 |
[4] | X. Zheng, H. Wang, An Error Estimate of a Numerical Approximation to a Hidden-Memory Variable-Order Space-Time Fractional Diffusion Equation, SIAM J. Numer. Anal., 58 (2020), 2492–2514. doi: 10.1137/20M132420X |
[5] | D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109–137. |
[6] | R. W. Ibrahim, J. M. Jahangiri, Conformable differential operator generalizes the Briot-Bouquet differential equation in a complex domain, AIMS Mathematics, 4 (2019), 1582–1595. |
[7] | G. S. Salagean, Subclasses of univalent functions, In: Complex Analysis-Fifth Romanian-Finnish Seminar, Springer, Berlin, 1983,362–372. |
[8] | H. A. Jalab, R. W. Ibrahim, Denoising algorithm based on generalized fractional integral operator with two parameters, Discrete Dyn. Nat. Soc., 2012 (2012), 1–14. |
[9] | H. A. Jalab, R. W. Ibrahim, Texture enhancement for medical images based on fractional differential masks, Discrete Dyn. Nat. Soc., 2013 (2013), 1–10. |
[10] | R. W. Ibrahim, R. M. Elobaid, S. J. Obaiys, A new model of economic order quantity associated with a generalized conformable differential-difference operator, Adv. Differ. Equ., 2020 (2020), 1–11. doi: 10.1186/s13662-019-2438-0 |
[11] | P. L. Duren, Univalent functions, In: Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York, 1983. |
[12] | H. M. Srivastava, S. Owa, Univalent functions, fractional calculus, and their applications, Ellis Horwood, 1989. |
[13] | N. E. Cho, V. Kumar, S. Sivaprasad Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, B. Iran. Math. Soc., 45 (2019), 213–232. doi: 10.1007/s41980-018-0127-5 |
[14] | K. Kanika, V. Ravichandran, S. Sivaprasad Kumar, Starlike functions associated with exponential function and the lemniscate of Bernoulli, RACSAM Rev. R. Acad. A, 113 (2019), 233–253. |
[15] | K. Virendra, N. Cho, V. Ravichandran, H. M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca, 69 (2019), 1053–1064. doi: 10.1515/ms-2017-0289 |
[16] | S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, CRC Press, 2000. |
[17] | W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis, Tianjin, China, 1992,157–169. |
[18] | J. E. Littlewood, On inequalities in the theory of functions, P. Lond. Math. Soc., 23 (1925), 481–519. |
[19] | B. C. Arnold, Majorization and the lorenz order: A brief introduction, Springer-Verlag, New York, 1987. |