Citation: Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif. On $ q $-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain[J]. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185
[1] | F. H. Jackson, On $q$-definite integrals, Q. J. Pure Appl. Math., 41 (1910), 193–203. |
[2] | A. Aral, V. Gupta, Generalized $q$-Baskakov operators, Math. Slovaca, 61 (2011), 619–634. |
[3] | A. Aral, V. Gupta, On $q$-Baskakov type operators, Demonstr. Math., 42 (2009), 109–122. |
[4] | A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals, J. Compu. Anal. Appl, 8 (2006), 249–261. |
[5] | G. A. Anastassiu, S. G. Gal, Geometric and approximation properties of generalized singular integrals, J. Korean Math. Soci., 23 (2006), 425–443. |
[6] | S. Kanas, D. Rǎducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. |
[7] | H. Aldweby, M. Darus, Some subordination results on $q$-analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., (2014), Article ID 958563. |
[8] | S. Mahmmod, J. Sokół, New subclass of analytic functions in conical domain associated with Ruscheweyh $q$-differential operator, Res. Math., 71 (2017), 1345–1357. doi: 10.1007/s00025-016-0592-1 |
[9] | T. M. Seoudy, M. K. Aouf, Convolution properties for certain classes of analytic functions defined by $q$-derivative operator, Abstr. Appl. Anal., (2014), Article ID 846719. |
[10] | T. M. Seoudy, M. K. Aouf, Coefficient estimates of new classes of $q$-starlike and $q$-convex functions of complex order, J. Math. Inequal., 10 (2016), 135–145. |
[11] | C. Ramachandran, T. Soupramanien, B. A. Frasin, New subclasses of analytic function associated with $q$-difference operator, Eur. J. Pure Appl. Math., 10 (2017), 348–362. |
[12] | S. Kavitha, N. E. Cho, G. Murugusundaramoorthy, On $(p, q)$-Quantum Calculus Involving Quasi-Subordination, Trend in mathematics, Advance in Algebra and Analysis International Conference on Advance in Mathematical Sciences, Vellore, India, December 2017, Vol. 1,215–223. |
[13] | B. A. Frasin, G. Murugusundaramoorthy, A subordination results for a class of analytic functions defined by $q$-differential operator, Ann. Univ. Paedagog. Crac. Stud. Math., 19 (2020), 53–64. |
[14] | B. Khan, Z. G. Liu, H. M. Serivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent q-starlike functions involving higher-order q-derivatives, Mathematics, 8 (2020), 1–12. |
[15] | H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad, S. Hussain, Fekete-Szego type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points, Mathematics, 8 (2020), 1–18. |
[16] | M. Shafiq, H. M. Srivastava, N. Khan, Q. Z. Ahmad, M. Darus, S. Kiran, An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-Fibonacci numbers, Symmetry, 12 (2020), 1–17. |
[17] | M. G. Khan, B. Ahmad, B. A. Frasin, J. Abdel, On Janowski analytic (p; q)-starlike functions in symmetric circular domain, J. Funct. Spaces, (2020), Article ID 4257907. |
[18] | M. Arif, O. Barkub, H. M. Srivastava, S. Abdullah, A. Khan, Some Janowski type Harmonic $q$-starlike functions associated with symmetric points, Mathematics, 8 (2020), Article ID 629. doi: 10.3390/math8040629 |
[19] | H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of $q$-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1 (2017), 61–69. |
[20] | H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of $q$-starlike functions associated with the Janowski functions, Filomat., 33 (2019), 2613–2626. doi: 10.2298/FIL1909613S |
[21] | M. Shafiq, N. Khan, H. M. Srivastava, B. Khan, Q. Z. Ahmad, M. Tahir, Generalization of close to convex functions associated with Janowski functions, Maejo Int. J. Sci. Technol., 14 (2020), 141–155. |
[22] | L. Shi, M. G. Khan, B. Ahmad, Some geometric properties of a family of analytic functions involving a generalised $q$-operator, Symmetry, 12 (2020), 1–11. |
[23] | S. Islam, M. G. Khan, B. Ahmad, M. Arif, R. Chinram, Q-Extension of starlike functions subordinated with a trignometric sine function, Mathematics, 8 (2020), Article ID 1676. doi: 10.3390/math8101676 |
[24] | J. Sokól, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zesz. Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101–105. |
[25] | J. Sokól, Radius problem in the class $\mathcal {SL}^{\ast }$, Appl. Math. Comput., 214 (2009), 569–573. |
[26] | S. A. Halim, R. Omar, Applications of certain functions associated with lemniscate Bernoulli, J. Indones. Math. Soc., 18 (2012), 93–99. |
[27] | R. M. Ali, N. E. Chu, V. Ravichandran, S. S. Kumar, First order differential subordination for functions associated with the lemniscate of Bernoulli, Taiwan. J. Math., 16 (2012), 1017–1026. doi: 10.11650/twjm/1500406676 |
[28] | J. Sokól, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J., 49 (2009), 349–353. doi: 10.5666/KMJ.2009.49.2.349 |
[29] | M, Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc., 8 (1933), 85–89. |
[30] | A. Pfluger, The Fekete-Szegö inequality for complex parameters, Complex Var. Theory Appl., 7 (1986), 149–160. |
[31] | F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Am. Math. Soc., 20 (1969), 8–12. doi: 10.1090/S0002-9939-1969-0232926-9 |
[32] | W. Ma, D. Minda, An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Sklodowska, Sect. A., 45 (1991), 89–97. |
[33] | W. Ma, D. Minda, Coefficient inequalities for strongly close-to-convex functions, J. Math. Anal. Appl., 205, 537–553. |
[34] | W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23 (1970), 159–177. doi: 10.4064/ap-23-2-159-177 |
[35] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Z. Li, F. Ren, L. Yang, S. Zhang (eds.), Proceeding of the conference on Complex Analysis, (Tianjin, $1992$), Int. Press, Cambridge, 1994,157–169. |
[36] | K. Ademogullari, Y. Kahramaner, q-harmonic mappings for which analytic part is $q$-convex functions, Nonlinear Anal. Di. Eqns., 4 (2016), 283–293. |