We prove that, for a Finsler manifold with the weighted Ricci curvature bounded below by a positive number, it is a Finsler sphere if and only if the diam attains its maximal value, if and only if the volume attains its maximal value, and if and only if the first closed eigenvalue of the Finsler-Laplacian attains its lower bound. These generalize some rigidity theorems in Riemannian geometry to the Finsler setting.
Citation: Songting Yin. Some rigidity theorems on Finsler manifolds[J]. AIMS Mathematics, 2021, 6(3): 3025-3036. doi: 10.3934/math.2021184
We prove that, for a Finsler manifold with the weighted Ricci curvature bounded below by a positive number, it is a Finsler sphere if and only if the diam attains its maximal value, if and only if the volume attains its maximal value, and if and only if the first closed eigenvalue of the Finsler-Laplacian attains its lower bound. These generalize some rigidity theorems in Riemannian geometry to the Finsler setting.
[1] | D. Bao, Z. Shen, Finsler metrics of constant cuevature on the Lie group $\mathbb{S}^3$, J. Lond. Math. Soc., 66 (2002), 453–467. doi: 10.1112/S0024610702003344 |
[2] | C. Kim, J. Yim, Finsler manifolds with positive constant flag curvature, Geometriae Dedicata, 98 (2003), 47–56. doi: 10.1023/A:1024034012734 |
[3] | S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Dif., 36 (2009), 211–249. doi: 10.1007/s00526-009-0227-4 |
[4] | S. Ohta, K. T. Sturm, Heat Flow on Finsler Manifolds, Commun. Pur. Appl. Math., 62 (2009), 1386–1433. doi: 10.1002/cpa.20273 |
[5] | Z. Shen, Lectures on Finsler geometry, World Scientific Publishing Company, 2001. |
[6] | Z. Shen, Volume compasion and its applications in Riemann-Finaler geometry, Adv. Math., 128 (1997), 306–328. doi: 10.1006/aima.1997.1630 |
[7] | B. Wu, Y. Xin, Comparison theorems in Finsler geometry and their applications, Math. Ann., 337 (2007), 177–196. |
[8] | S. Yin, Q. He, Y. Shen, On lower bounds of the first eigenvalue of Finsler-Laplacian, Publ. Math. Debrecen, 83 (2013), 385–405. doi: 10.5486/PMD.2013.5532 |
[9] | S. Yin, Q. He, The first eigenvalue of Finsler p-Laplacian, Differ. Geom. Appl., 35 (2014), 30–49. doi: 10.1016/j.difgeo.2014.04.009 |
[10] | S. Yin, Q. He, The maximum diam theorem on Finsler manifolds, arXiv: 1801.04527v1. |
[11] | W. Zhao, Y. Shen, A universal volume comparison theorem for Finsler manifolds and related results, Can. J. Math., 65 (2013), 1401–1435. doi: 10.4153/CJM-2012-053-4 |