Research article

Some rigidity theorems on Finsler manifolds

  • Received: 30 October 2020 Accepted: 05 January 2021 Published: 11 January 2021
  • MSC : 53C24, 53C60

  • We prove that, for a Finsler manifold with the weighted Ricci curvature bounded below by a positive number, it is a Finsler sphere if and only if the diam attains its maximal value, if and only if the volume attains its maximal value, and if and only if the first closed eigenvalue of the Finsler-Laplacian attains its lower bound. These generalize some rigidity theorems in Riemannian geometry to the Finsler setting.

    Citation: Songting Yin. Some rigidity theorems on Finsler manifolds[J]. AIMS Mathematics, 2021, 6(3): 3025-3036. doi: 10.3934/math.2021184

    Related Papers:

  • We prove that, for a Finsler manifold with the weighted Ricci curvature bounded below by a positive number, it is a Finsler sphere if and only if the diam attains its maximal value, if and only if the volume attains its maximal value, and if and only if the first closed eigenvalue of the Finsler-Laplacian attains its lower bound. These generalize some rigidity theorems in Riemannian geometry to the Finsler setting.



    加载中


    [1] D. Bao, Z. Shen, Finsler metrics of constant cuevature on the Lie group $\mathbb{S}^3$, J. Lond. Math. Soc., 66 (2002), 453–467. doi: 10.1112/S0024610702003344
    [2] C. Kim, J. Yim, Finsler manifolds with positive constant flag curvature, Geometriae Dedicata, 98 (2003), 47–56. doi: 10.1023/A:1024034012734
    [3] S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Dif., 36 (2009), 211–249. doi: 10.1007/s00526-009-0227-4
    [4] S. Ohta, K. T. Sturm, Heat Flow on Finsler Manifolds, Commun. Pur. Appl. Math., 62 (2009), 1386–1433. doi: 10.1002/cpa.20273
    [5] Z. Shen, Lectures on Finsler geometry, World Scientific Publishing Company, 2001.
    [6] Z. Shen, Volume compasion and its applications in Riemann-Finaler geometry, Adv. Math., 128 (1997), 306–328. doi: 10.1006/aima.1997.1630
    [7] B. Wu, Y. Xin, Comparison theorems in Finsler geometry and their applications, Math. Ann., 337 (2007), 177–196.
    [8] S. Yin, Q. He, Y. Shen, On lower bounds of the first eigenvalue of Finsler-Laplacian, Publ. Math. Debrecen, 83 (2013), 385–405. doi: 10.5486/PMD.2013.5532
    [9] S. Yin, Q. He, The first eigenvalue of Finsler p-Laplacian, Differ. Geom. Appl., 35 (2014), 30–49. doi: 10.1016/j.difgeo.2014.04.009
    [10] S. Yin, Q. He, The maximum diam theorem on Finsler manifolds, arXiv: 1801.04527v1.
    [11] W. Zhao, Y. Shen, A universal volume comparison theorem for Finsler manifolds and related results, Can. J. Math., 65 (2013), 1401–1435. doi: 10.4153/CJM-2012-053-4
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1206) PDF downloads(31) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog