In this paper, we establish new Lyapunov-type inequalities for a Hadamard fractional differential equation under Sturm-Liouville boundary conditions. Our conclusions cover many results in the literature.
Citation: Youyu Wang, Lu Zhang, Yang Zhang. Lyapunov-type inequalities for Hadamard fractional differential equation under Sturm-Liouville boundary conditions[J]. AIMS Mathematics, 2021, 6(3): 2981-2995. doi: 10.3934/math.2021181
In this paper, we establish new Lyapunov-type inequalities for a Hadamard fractional differential equation under Sturm-Liouville boundary conditions. Our conclusions cover many results in the literature.
[1] | A. M. Lyapunov, Probleme g$\rm\acute{e}$n$\rm\acute{e}$ral de la stabilit$\rm\acute{e}$ du mouvement, Ann. Fac. Sci. Univ., 2 (1907), 27–247. |
[2] | R. A. C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal., 16, (2013), 978–984. |
[3] | R. A. C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl., 412 (2014), 1058–1063. |
[4] | R. C. Brown, D. B. Hinton, Lyapunov inequalities and their applications, Dordrecht: Springer, 2000. |
[5] | S. K. Ntouyas, B. Ahmad, T. P. Horikis, Recent developments of Lyapunov-type inequalities for fractional differential equations, In: Differential and integral inequalities, Cham: Springer, 2019,619–686. |
[6] | S. Dhar, Q. Kong, Lyapunov-type inequalities for third-order half-linear equations and applications to boundary value problems, Nonlinear Anal., 110 (2014), 170–181. doi: 10.1016/j.na.2014.07.020 |
[7] | S. Dhar, Q. Kong, Lyapunov-type inequalities for higher order half-linear differential equations, Appl. Math. Comput., 273 (2016), 114–124. |
[8] | X. Meng, M. Stynes, Green's functions, positive solutions, and a Lyapunov inequality for a Caputo fractional-derivative boundary value problem, Fract. Calc. Appl. Anal., 22 (2019), 750–766. doi: 10.1515/fca-2019-0041 |
[9] | M. Jleli, B. Samet, Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions, Math. Inequal. Appl., 18 (2015), 443–451. |
[10] | M. Jleli, L. Ragoub, B. Samet, Lyapunov-type inequality for a fractional differential equation under a Robin boundary conditions, J. Funct. Space., 2015 (2015), 1–5. |
[11] | A. Tiryaki, Recent development of Lyapunov-type inequalities, Adv. Dyn. Syst. Appl., 5 (2010), 231–248. |
[12] | Y. Wang, S. Liang, C. Xia, A Lyapunov-type inequality for a fractional differential equation under Sturm-Liouville boundary conditions, Math. Inequal. Appl., 20 (2017), 139–148. |
[13] | Y. Wang, Q. Wang, Lyapunov-type inequalities for fractional differential equations under multi-point boundary conditions, J. Math. Inequal., 13 (2019), 611–619. |
[14] | Y. Wang, Q. Wang, Lyapunov-type inequalities for nonlinear differential equation with Hilfer fractional derivative operator, J. Math. Inequal., 12 (2018), 709–717. |
[15] | Y. Wang, Q. Wang, Lyapunov-type inequalities for nonlinear fractional differential equation with Hilfer fractional derivative under multi-point boundary conditions, Fract. Calc. Appl. Anal., 21 (2018), 833–843. doi: 10.1515/fca-2018-0044 |
[16] | J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpment de Taylor, J. Math. Pure Appl., 8 (1892), 101–186. |
[17] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. doi: 10.1016/S0022-247X(02)00049-5 |
[18] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27. doi: 10.1016/S0022-247X(02)00001-X |
[19] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15. doi: 10.1016/S0022-247X(02)00066-5 |
[20] | F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. doi: 10.1186/1687-1847-2012-142 |
[21] | A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204. |
[22] | A. A. Kilbas, J. J. Trujillo, Hadamard-type integrals as G-transforms, Integr. Transf. Spec. F., 14 (2003), 413–427. doi: 10.1080/1065246031000074443 |
[23] | Q. Ma, C. Ma, J. Wang, A Lyapunov-type inequality for a fractional differential equation with Hadamard derivative, J. Math. Inequal., 11 (2017), 135–141. |
[24] | S. Dhar, On linear and non-linear fractional Hadamard boundary value problems, Differ. Equ. Appl., 10 (2018), 329–339. |
[25] | Z. Laadjal, N. Adjeroud, Q. Ma, Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval $[a, b]$, J. Math. Inequal., 13 (2019), 789–799. |
[26] | J. Jonnalagadda, B. Debananda, Lyapunov-type inequalities for Hadamard type fractional boundary value problems, AIMS Mathematics, 5 (2020), 1127–1146. doi: 10.3934/math.2020078 |
[27] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |