Loading [MathJax]/jax/output/SVG/jax.js
Research article

Lyapunov-type inequalities for Hadamard fractional differential equation under Sturm-Liouville boundary conditions

  • Received: 02 December 2020 Accepted: 04 January 2021 Published: 08 January 2021
  • MSC : 26A33, 34A08, 34A40, 34B05

  • In this paper, we establish new Lyapunov-type inequalities for a Hadamard fractional differential equation under Sturm-Liouville boundary conditions. Our conclusions cover many results in the literature.

    Citation: Youyu Wang, Lu Zhang, Yang Zhang. Lyapunov-type inequalities for Hadamard fractional differential equation under Sturm-Liouville boundary conditions[J]. AIMS Mathematics, 2021, 6(3): 2981-2995. doi: 10.3934/math.2021181

    Related Papers:

    [1] Jaganmohan Jonnalagadda, Basua Debananda . Lyapunov-type inequalities for Hadamard type fractional boundary value problems. AIMS Mathematics, 2020, 5(2): 1127-1146. doi: 10.3934/math.2020078
    [2] Jagan Mohan Jonnalagadda . On a nabla fractional boundary value problem with general boundary conditions. AIMS Mathematics, 2020, 5(1): 204-215. doi: 10.3934/math.2020012
    [3] Rabah Khaldi, Assia Guezane-Lakoud . On a generalized Lyapunov inequality for a mixed fractional boundary value problem. AIMS Mathematics, 2019, 4(3): 506-515. doi: 10.3934/math.2019.3.506
    [4] Lakhdar Ragoub, J. F. Gómez-Aguilar, Eduardo Pérez-Careta, Dumitru Baleanu . On a class of Lyapunov's inequality involving λ-Hilfer Hadamard fractional derivative. AIMS Mathematics, 2024, 9(2): 4907-4924. doi: 10.3934/math.2024239
    [5] Wei Zhang, Jifeng Zhang, Jinbo Ni . New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer-Katugampola fractional derivative. AIMS Mathematics, 2022, 7(1): 1074-1094. doi: 10.3934/math.2022064
    [6] Youyu Wang, Xianfei Li, Yue Huang . The Green's function for Caputo fractional boundary value problem with a convection term. AIMS Mathematics, 2022, 7(4): 4887-4897. doi: 10.3934/math.2022272
    [7] Shuqin Zhang, Lei Hu . The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems of differential equations of variable order. AIMS Mathematics, 2020, 5(4): 2923-2943. doi: 10.3934/math.2020189
    [8] Mukhamed Aleroev, Hedi Aleroeva, Temirkhan Aleroev . Proof of the completeness of the system of eigenfunctions for one boundary-value problem for the fractional differential equation. AIMS Mathematics, 2019, 4(3): 714-720. doi: 10.3934/math.2019.3.714
    [9] Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599
    [10] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
  • In this paper, we establish new Lyapunov-type inequalities for a Hadamard fractional differential equation under Sturm-Liouville boundary conditions. Our conclusions cover many results in the literature.



    For the second order Hill's equation,

    u(t)+r(t)u(t)=0,t(a,b), (1.1)

    where r(t) is a positive continuous function on [a,b], Lyapunov [1] obtain the interesting following result.

    Theorem 1.1. If Eq (1.1) has a nontrivial solution u(t) satisfying u(a)=u(b)=0, then

    bar(t)dt>4ba. (1.2)

    Because of the importance of Lyapunov inequality (1.2) in application, Lyapunov inequality has been extended in many directions. In the last few decades, with the increasing enthusiasm for the study of fractional differential equations, a large number of Lyapunov inequalities for fractional differential equations have appeared. For example, Ferreira [2] first obtained a Lyapunov-type inequality for Riemann-Liouville fractional differential equation, in 2014, Ferreira [3] developed a Lyapunov-type inequality for the Caputo fractional differential equation. For more details on Lyapunov-type inequalities and their applications, we refer [4,5,6,7,8,9,10,11,12,13,14,15] and the references therein.

    Another kind of fractional derivatives that appears side by side to Riemann-Liouville and Caputo derivatives in the literature is the fractional derivative due to Hadamard [16]. Hadamard-type integrals arise in the formulation of many problems in mechanics such as in fracture analysis. For details and applications of Hadamard fractional derivative and integral, we refer the reader to the works in [17,18,19,20,21,22]. It must be noted that there are few papers studied Lyapunov-type inequality for Hadamard fractional differential equation. For instance, Ma et al. [23] developed a Lyapunov-type inequality for the Hadamard fractional boundary value problem in 2017.

    Theorem 1.2. If the Hadamard fractional boundary value problem

    (HDα1+u)(t)+q(t)u(t)=0,1<t<e, 1<α2, (1.3)
    u(1)=0=u(e), (1.4)

    has a nontrivial solution, where q:[1,e]R is a continuous function, then

    e1|q(s)|ds>Γ(α)λ1α(1λ)1αeλ, (1.5)

    where λ=2α1(2α2)2+12 and HDαa+ denotes the Hadamard fractional derivative of order α.

    Recently, Dhar [24] and Laadjal et al. [25] generalized the Lyapunov-type inequality in Theorem 1.2 by replacing the interval [1,e] with a general interval [a,b](1a<b),.

    Theorem 1.3. If the Hadamard fractional boundary value problem

    (HDαa+u)(t)+q(t)u(t)=0,1a<t<b, 1<α2, (1.6)
    u(a)=0=u(b), (1.7)

    has a nontrivial solution, where q:[a,b]R is a continuous function, then

    ba|q(s)|ds>4α1Γ(α)a(lnba)1α. (1.8)

    Theorem 1.4. If the Hadamard fractional boundary value problem

    (HDαa+u)(t)+q(t)u(t)=0,1a<t<b, 1<α2, (1.9)
    u(a)=0=u(b), (1.10)

    has a nontrivial solution, where q:[a,b]R is a continuous function, then

    ba|q(s)|ds>Γ(α)ξ1(lnξ1alnbξ1lnba)1α, (1.11)

    where

    ξ1=exp(12[[2(α1)+lnba]4(α1)2+ln2ba]).

    Very recently, J. Jonnalagadda and B. Debananda [26] obtained Lyapunov-type inequalities for Hadamard fractional boundary value problems associated with different sets of boundary conditions, the main results are as follows.

    Theorem 1.5. If the following fractional boundary value problem

    (HDαa+u)(t)+q(t)u(t)=0,0<a<t<b, 1<α2, (1.12)
    l(HI2αa+u)(a)m(HDα1a+u)(a)=0, (1.13)
    nu(b)+p(HDα1a+u)(b)=0, (1.14)

    has a nontrivial solution, then

    ba(lnsa)α2|q(s)|ds>AΓ(α)[n(lnba)α1+pΓ(α)][l(lnba)+m(α1)], (1.15)

    where l,p0;m,n>0 and

    A=ln(lnba)α1+mn(α1)(lnba)α2+lpΓ(α)>0.

    Theorem 1.6. If the following fractional boundary value problem

    (HDα1+u)(t)+q(t)u(t)=0,1<t<T, 1<α2, (1.16)
    (HI2α1+u)(1)+(HI2α1+u)(T)=0, (1.17)
    (HDα11+u)(1)+(HDα11+u)(T)=0, (1.18)

    has a nontrivial solution, then

    T1(lnsa)α2|q(s)|ds>4Γ(α)(3α)lnT. (1.19)

    Inspired by papers [24,25,26], in this paper, we establish a few Lyapunov-type inequalities for Hadamard fractional differential equations

    (HDαa+u)(t)+q(t)u(t)=0,0<a<t<b, 1<α2, (1.20)

    with the following Sturm-Liouville multi-point and integral boundary conditions,

    u(a)=0,γu(b)+δu(b)=m2i=1βiu(ξi), (1.21)
    u(a)=0,γu(b)+δu(b)=λbah(s)u(s)ds,λ0, (1.22)

    where γ0,δ0,γδ>0, a<ξ1<ξ2<<ξm2<b, βi0(i=1,2,,m2) and h:[a,b][0,) with hL1(a,b).

    The main difficulty of this paper is to express the solution for boundary value problems (1.20) and (1.21) with Green's function. We solve this problem by properly decomposing coefficients. For convenience, we shall adopt the following notations and assumptions

    σ=(α1)2+(lnba)2,ρ1=γ(lnba)α1+(α1)δb(lnba)α2>0,ρ2=γ(lnba)α1+(α1)δb(lnba)α2m2i=1βi(lnξia)α1>0,ρ3=γ(lnba)α1+(α1)δb(lnba)α2λba(lnta)α1h(t)dt>0.

    In this paper, we shall use the following notations, definitions and some lemmas from the theory of fractional calculus in the sense of Hadamard. For more details, we refer to [27].

    Definition 2.1. [27] The Hadamard fractional integral of order αR+ for a continuous function f:[a,b]R is defined by

    (HIαa+f)(t)=1Γ(α)ta(lnts)α1f(s)dss,α>0,t[a,b].

    Definition 2.2. [27] The Hadamard fractional derivative of order αR+ for a continuous function f:[a,b]R is defined by

    (HDαa+f)(t)=1Γ(nα)(tddt)nta(lnts)nα1f(s)dss,t[a,b],

    where n1<α<n,n=[α]+1.

    Lemma 2.3. [27] Let α>0,n=[α]+1 and 0<a<b<. if uL1(a,b) and (HInαa+u)(t)ACnδ[a,b], then

    (HIαa+HDαa+u)(t)=u(t)nk=1(δ(nk)(HInαa+u))(a)Γ(αk+1)(lnta)αk.

    where ACnδ[a,b]={φ:[a,b]C:δ(n1)φAC[a,b],δ=tddt}.

    Lemma 2.4. Assume that rC[a,b]. The Sturm-Liouville Hadamard fractional boundary value problem

    {(HDαa+u)(t)+r(t)=0,0<a<t<b, 1<α2,u(a)=0,γu(b)+δu(b)=m2i=1βiu(ξi),

    has the unique solution

    u(t)=baG(t,s)r(s)ds+1ρ2(lnta)α1m2i=1βibaG(ξi,s)r(s)ds,

    where G(t,s) is given by

    G(t,s)=1sρ1Γ(α){(lnta)α1(lnbs)α2[γlnbs+(α1)δb]ρ1(lnts)α1,astb,(lnta)α1(lnbs)α2[γlnbs+(α1)δb],atsb.

    Proof. Using Lemma 2.3, we have

    u(t)=c1(lnta)α1+c2(lnta)α21Γ(α)ta(lnts)α1r(s)dss,

    for some c1,c2R. Applying the boundary condition u(a)=0, we have c2=0, hence,

    u(t)=c1(lnta)α11Γ(α)ta(lnts)α1r(s)dss,

    it is easy to obtain

    u(t)=c1(α1)1t(lnta)α21Γ(α)ta(α1)1t(lnts)α2r(s)dss=α1t[c1(lnta)α21Γ(α)ta(lnts)α2r(s)dss],

    the boundary condition γu(b)+δu(b)=m2i=1βiu(ξi) imply that,

    γ[c1(lnba)α11Γ(α)ba(lnbs)α1r(s)dss]+(α1)δb[c1(lnba)α21Γ(α)ba(lnbs)α2r(s)dss]=m2i=1βi[c1(lnξia)α11Γ(α)ξia(lnξis)α1r(s)dss],

    we obtain

    c1=1ρ2Γ(α)ba(lnbs)α2[γlnbs+(α1)δb]r(s)dss1ρ2Γ(α)m2i=1βiξia(lnξis)α1r(s)dss,

    by the relation

    1ρ2=1ρ1+m2i=1βi(lnξia)α1ρ1ρ2,

    we have

    c1=1Γ(α)(1ρ1+m2i=1βi(lnξia)α1ρ1ρ2)ba(lnbs)α2[γlnbs+(α1)δb]r(s)dss1ρ2Γ(α)m2i=1βiξia(lnξis)α1r(s)dss=1ρ1Γ(α)ba(lnbs)α2[γlnbs+(α1)δb]r(s)dss+1ρ1ρ2Γ(α)m2i=1βiba(lnξia)α1(lnbs)α2[γlnbs+(α1)δb]r(s)dss1ρ2Γ(α)m2i=1βiξia(lnξis)α1r(s)dss=1ρ1Γ(α)ba(lnbs)α2[γlnbs+(α1)δb]r(s)dss+1ρ2m2i=1βibaG(ξi,s)r(s)ds,

    therefore,

    u(t)=c1(lnta)α11Γ(α)ta(lnts)α1r(s)dss=1ρ1Γ(α)ba(lnta)α1(lnbs)α2[γlnbs+(α1)δb]r(s)dss
    +1ρ2(lnta)α1m2i=1βibaG(ξi,s)h(s)ds1Γ(α)ta(lnts)α1r(s)dss=baG(t,s)h(s)ds+1ρ2(lnta)α1m2i=1βibaG(ξi,s)r(s)ds.

    The proof is complete.

    Lemma 2.5. Assume that gC[a,b]. The Sturm-Liouville Hadamard fractional boundary value problem

    {(HDαa+u)(t)+g(t)=0,0<a<t<b, 1<α2,u(a)=0,γu(b)+δu(b)=λbah(s)u(s)ds,λ0,

    has the unique solution

    u(t)=baG(t,s)g(s)ds+λρ3(lnta)α1ba(baG(t,s)g(s)ds)h(t)dt,

    where h:[a,b][0,) with hL1(a,b), G(t,s) is defined in Lemma 2.4.

    Proof. Using Lemma 2.3, we have

    u(t)=c1(lnta)α1+c2(lnta)α21Γ(α)ta(lnts)α1g(s)dss,

    for some c1,c2R. Using the boundary condition u(a)=0, we have c2=0, therefore,

    u(t)=c1(lnta)α11Γ(α)ta(lnts)α1g(s)dss,

    and

    u(t)=α1t[c1(lnta)α21Γ(α)ta(lnts)α2g(s)dss],

    the boundary condition γu(b)+δu(b)=λbah(t)u(t)dt imply that,

    γ[c1(lnba)α11Γ(α)ba(lnbs)α1g(s)dss]+(α1)δb[c1(lnba)α21Γ(α)ba(lnbs)α2g(s)dss]=λbah(t)u(t)dt,

    we obtain

    c1=1ρ1Γ(α)ba(lnbs)α2[γlnbs+(α1)δb]g(s)dss+λρ1bah(t)u(t)dt,

    therefore, the solution of the boundary value problem is

    u(t)= c1(lnta)α11Γ(α)ta(lnts)α1g(s)dss=1ρ1Γ(α)ba(lnta)α1(lnbs)α2[γlnbs+(α1)δb]h(s)dss+λρ1(lnta)α1bah(t)u(t)dt1Γ(α)ta(lnts)α1g(s)dss=baG(t,s)g(s)ds+λρ1(lnta)α1bah(t)u(t)dt.

    Multiplying both side of above equation by h(t) and integrating from a to b, we obtain

    bah(t)u(t)dt=ba(baG(t,s)g(s)ds)h(t)dt+λρ1bah(t)u(t)dtba(lnta)α1h(t)dt,

    and

    bah(t)u(t)dt=ρ1ρ3ba(baG(t,s)g(s)ds)h(t)dt,

    thus

    u(t)=baG(t,s)g(s)ds+λρ3(lnta)α1ba(baG(t,s)g(s)ds)h(t)dt,

    which concludes the proof.

    Lemma 2.6. The function G defined in Lemma 2.4 satisfies the following properties:

    1).G(t,s)0on[a,b]×[a,b],2).maxt[a,b]G(t,s)=G(s,s)=1sρ1Γ(α)(lnsa)α1(lnbs)α2[γlnbs+(α1)δb].

    Proof. (1). Firstly, we define two functions as follows

    g1(t,s)=1sρ1Γ(α)[(lnta)α1(lnbs)α2[γlnbs+(α1)δb]ρ1(lnts)α1],astb,g2(t,s)=1sρ1Γ(α)(lnta)α1(lnbs)α2[γlnbs+(α1)δb],atsb.

    Obviously, g2(t,s)0. Next, we consider function g1(t,s), differentiating g1(t,s) with respect to t, we get

    g1(t,s)t=α1stρ1Γ(α)[(lnta)α2(lnbs)α2[γlnbs+(α1)δb]ρ1(lnts)α2]=α1stρ1Γ(α){γ[(lnta)α2(lnbs)α1(lnts)α2(lnba)α1]+(α1)δb[(lnta)α2(lnbs)α2(lnts)α2(lnba)α2]},

    since astb, we have

    (lnta)α2<(lnts)α2,(lnbs)α1<(lnba)α1,

    which imply that

    (lnta)α2(lnbs)α1(lnts)α2(lnba)α1<0.

    The inequality

    lntalnbslntslnba=lntalnbslnts(lnbs+lnsa)=lnbs(lntalnts)lnsalnts=lnbslnsalnsalnts=lnsalnbt0,

    implying that

    (lnta)α2(lnbs)α2(lnts)α2(lnba)α2<0,

    so we have g1(t,s)t0, this means that g1(b,s)g1(t,s)g1(s,s). On the other hand,

    sρ1Γ(α)g1(b,s)=(lnba)α1(lnbs)α2[γlnbs+(α1)δb]ρ1(lnbs)α1=(α1)δb[(lnba)α1(lnbs)α2(lnbs)α1(lnba)α2]=(α1)δb(lnba)α2(lnbs)α2[lnbalnbs]=(α1)δb(lnba)α2(lnbs)α2lnsa0,

    hence, g1(t,s)g1(b,s)0 and G(t,s)0.

    (2). By the above discussion, for function g1(t,s) satisfy 0g1(t,s)g1(s,s)=G(s,s). It is easy to see that 0g2(t,s)g2(s,s)=g1(s,s)=G(s,s) for atsb.

    Lemma 2.7. Assume 0<asb and 1<α<2, then

    01s(lnsalnbs)α11ab(α1)α1(lnba)2(α1)eσ(2e)α1(α1+σ)α1.

    Proof. Let

    f(s)=1s(lnsalnbs)α1, s[a,b].

    Clearly f(a)=f(b)=0 and f(s)>0 on (a,b). By Rolle's Theorem, there exists s(a,b) such that f(s)=maxf(s) on (a,b), i.e., f(s)=0. Note that

    f(s)=1s2(lnsalnbs)α1[(α1)lnbslnsalnsalnbs1],

    denote x=lnbs, y=lnsa, let f(s)=0, we obtain (α1)(xy)=xy and x+y=lnba, by these two equalities, we get

    (xy)2=(α1)2(xy)2=(α1)2[(x+y)24xy]=(α1)2[(lnba)24xy],

    note the fact xy>0, we have

    xy=(α1)[2(α1)+4(α1)2+(lnba)2]=(α1)(lnba)22(α1)+4(α1)2+(lnba)2,

    and

    y=12(lnbaxyα1)=12(lnba+2(α1)4(α1)2+(lnba)2)=lnba+(α1)(α1)2+(lnba)2,

    so,

    s=aey=abeα1e(α1)2+(lnba)2,

    it is easy to show that s(a,b), thus

    maxf(s)=f(s)=1s(lnsalnbs)α1=1ab(α1)α1(lnba)2(α1)e(α1)2+(lnba)2(2e)α1(α1+(α1)2+(lnba)2)α1.

    which concludes the proof.

    We now present Lyapunov-type inequalities for the Sturm-Liouville Hadamard fractional boundary value problems (1.20) and (1.21).

    Theorem 3.1. If a nontrivial continuous solution of the Sturm-Liouville Hadamard fractional boundary value problem

    (HDαa+u)(t)+q(t)u(t)=0,0<a<t<b, 1<α2,u(a)=0,γu(b)+δu(b)=m2i=1βiu(ξi),

    exists, where q:[a,b]R is a continuous function, and γ0,δ0,γδ>0, a<ξ1<ξ2<<ξm2<b, βi0(i=1,2,,m2), then we have

    ba1s(lnsa)α1(lnbs)α2[γlnbs+(α1)δb]|q(s)|dsρ1ρ2ρ2+m2i=1βi(lnba)α1Γ(α). (3.1)

    Proof. Let B=C[a,b] be the Banach space endowed with norm x=supt[a,b]|x(t)|. From Lemma 2.4, for all t[a,b], we have

    u(t)=baG(t,s)q(s)u(s)ds+1ρ2(lnta)α1m2i=1βibaG(ξi,s)q(s)u(s)ds,

    Now, an application of Lemma 2.6 yields

    uu(baG(s,s)|q(s)|ds+1ρ2m2i=1βi(lnba)α1baG(s,s)|q(s)|ds)=u(1+1ρ2m2i=1βi(lnba)α1)baG(s,s)|q(s)|ds,

    Since u is non trivial, then u0, so

    ba1s(lnsa)α1(lnbs)α2[γlnbs+(α1)δb]|q(s)|dsρ1ρ2ρ2+m2i=1βi(lnba)α1Γ(α).

    from which inequality in (3.1) follows.

    Let βi=0(i=1,2,,m2) in Theorem 3.1, we have

    Corollary 3.2. If a nontrivial continuous solution of the Sturm-Liouville Hadamard fractional boundary value problem

    (HDαa+u)(t)+q(t)u(t)=0,0<a<t<b, 1<α2,u(a)=0,γu(b)+δu(b)=0,

    exists, where q:[a,b]R is a continuous function, and γ0,δ0,γδ>0, then we have

    ba1s(lnsa)α1(lnbs)α2[γlnbs+(α1)δb]|q(s)|dsΓ(α)(lnba)α2[γlnba+(α1)δb]. (3.2)

    Let γ=1,δ=0 or γ=0,δ=1 in Corollary 3.2, we can obtain the following Lyapunov-type inequalities.

    Corollary 3.3. If a nontrivial continuous solution of the Hadamard fractional boundary value problem

    (HDαa+u)(t)+q(t)u(t)=0,0<a<t<b, 1<α2,u(a)=0,u(b)=0,

    exists, where q:[a,b]R is a continuous function, then we have

    ba1s(lnsa)α1(lnbs)α1|q(s)|dsΓ(α)(lnba)α1. (3.3)

    This is Theorem 1 in [25].

    Corollary 3.4. If a nontrivial continuous solution of the Hadamard fractional boundary value problem

    (HDαa+u)(t)+q(t)u(t)=0,0<a<t<b, 1<α2,u(a)=0,u(b)=0,

    exists, where q:[a,b]R is a continuous function, then we have

    ba1s(lnsa)α1(lnbs)α2|q(s)|dsΓ(α)(lnba)α2. (3.4)

    Let γ=1,δ=0 in Theorem 3.1, we have the following Lyapunov-type inequality.

    Corollary 3.5. If a nontrivial continuous solution of the Hadamard fractional multi-point boundary value problem

    (HDαa+u)(t)+q(t)u(t)=0,0<a<t<b, 1<α2,u(a)=0,u(b)=m2i=1βiu(ξi),

    exists, where q:[a,b]R is a continuous function, a<ξ1<ξ2<<ξm2<b, βi0(i=1,2,,m2) with 0m2i=1βi<1, then we have

    ba1s(lnsa)α1(lnbs)α1|q(s)|ds(lnba)α1[(lnba)α1m2i=1βi(lnξia)α1)](lnba)α1m2i=1βi(lnξia)α1+m2i=1βi(lnba)α1Γ(α). (3.5)

    Let γ=0,δ=1 in Theorem 3.1, we have the following Lyapunov-type inequality.

    Corollary 3.6. If a nontrivial continuous solution of the Hadamard fractional multi-point boundary value problem

    (HDαa+u)(t)+q(t)u(t)=0,0<a<t<b, 1<α2,u(a)=0,u(b)=m2i=1βiu(ξi),

    exists, where q:[a,b]R is a continuous function, a<ξ1<ξ2<<ξm2<b, βi0(i=1,2,,m2) with 0m2i=1βi<1, then we have

    ba1s(lnsa)α1(lnbs)α2|q(s)|ds(lnba)α2[α1b(lnba)α2m2i=1βi(lnξia)α1)]α1b(lnba)α2m2i=1βi(lnξia)α1+m2i=1βi(lnba)α1Γ(α). (3.6)

    Let β=β10,β2=β3==βm2=0,ξ=ξ1 in Corollary 3.5, we obtain three-point Lyapunov-type inequality.

    Corollary 3.7. If a nontrivial continuous solution of the Hadamard fractional three-point boundary value problem

    (HDαa+u)(t)+q(t)u(t)=0,0<a<t<b, 1<α2,u(a)=0,u(b)=βu(ξ),

    exists, where q:[a,b]R is a continuous function, a<ξ<b, 0β<1, then we have

    ba1s(lnsa)α1(lnbs)α1|q(s)|ds(lnba)α1[(lnba)α1β(lnξa)α1)](lnba)α1+β[(lnba)α1(lnξa)α1]Γ(α). (3.7)

    By the relation

    1s(lnsa)α1(lnbs)α2[γlnbs+(α1)δb]=1s(lnsa)α1(lnbs)α1γlnbs+(α1)δblnbs,

    and applying Theorem 3.1 and Lemma 2.7, we easily get the following results.

    Theorem 3.8. If a nontrivial continuous solution of the Sturm-Liouville Hadamard fractional boundary value problem

    (HDαa+u)(t)+q(t)u(t)=0,0<a<t<b, 1<α2,u(a)=0,γu(b)+δu(b)=m2i=1βiu(ξi),

    exists, where q:[a,b]R is a continuous function, and γ0,δ0,γδ>0, a<ξ1<ξ2<<ξm2<b, βi0(i=1,2,,m2), then we have

    baγlnbs+(α1)δblnbs|q(s)|dsabρ1ρ2Γ(α)ρ2+m2i=1βi(lnba)α1(2e)α1(α1+σ)α1(α1)α1(lnba)2(α1)eσ. (3.8)

    A similar discussion can be made for Theorem 3.8. We omit the details here.

    Next we give Lyapunov-type inequalities for Sturm-Liouville Hadamard fractional boundary value problems (1.20)–(1.22). The proof is essentially the same as that of Theorem 3.1 and Theorem 3.8. Therefore, we omit the proof.

    Theorem 3.9. If a nontrivial continuous solution of the Sturm-Liouville Hadamard fractional boundary value problem

    (HDαa+u)(t)+q(t)u(t)=0,0<a<t<b, 1<α2,u(a)=0,γu(b)+δu(b)=λbah(s)u(s)ds,λ0,

    exists, where q:[a,b]R is a continuous function and h:[a,b][0,) with hL1(a,b), γ0,δ0,γδ>0, then we have

    ba1s(lnsa)α1(lnbs)α2[γlnbs+(α1)δb]|q(s)|dsρ1ρ3ρ3+λ(lnba)α1bah(t)dtΓ(α). (3.9)

    Theorem 3.10. If a nontrivial continuous solution of the Sturm-Liouville Hadamard fractional boundary value problem

    (HDαa+u)(t)+q(t)u(t)=0,0<a<t<b, 1<α2,u(a)=0,γu(b)+δu(b)=λbah(s)u(s)ds,λ0,

    exists, where q:[a,b]R is a continuous function and h:[a,b][0,) with hL1(a,b), γ0,δ0,γδ>0, then we have

    baγlnbs+(α1)δblnbs|q(s)|dsabρ1ρ3Γ(α)ρ3+λ(lnba)α1bah(t)dt(2e)α1(α1+σ)α1(α1)α1(lnba)2(α1)eσ. (3.10)

    Remark 3.11. The similar discussion can be made for Theorem 3.9 and Theorem 3.10. We omit the details here.

    Remark 3.12. Comparisons with previous literatures, the conclusion of this paper has the following characteristics. Firstly, our results are new and include all the conclusions of [23,24,25]. Secondly, the result of Lemma 2.7 is better than that of Lemma 5 in [25].

    The authors would like to thank the referees for their helpful comments and suggestions. This work is supported by the Tianjin Natural Science Foundation (grant no. 20JCYBJC00210).

    The authors declare no conflict of interest.



    [1] A. M. Lyapunov, Probleme gˊenˊeral de la stabilitˊe du mouvement, Ann. Fac. Sci. Univ., 2 (1907), 27–247.
    [2] R. A. C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal., 16, (2013), 978–984.
    [3] R. A. C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl., 412 (2014), 1058–1063.
    [4] R. C. Brown, D. B. Hinton, Lyapunov inequalities and their applications, Dordrecht: Springer, 2000.
    [5] S. K. Ntouyas, B. Ahmad, T. P. Horikis, Recent developments of Lyapunov-type inequalities for fractional differential equations, In: Differential and integral inequalities, Cham: Springer, 2019,619–686.
    [6] S. Dhar, Q. Kong, Lyapunov-type inequalities for third-order half-linear equations and applications to boundary value problems, Nonlinear Anal., 110 (2014), 170–181. doi: 10.1016/j.na.2014.07.020
    [7] S. Dhar, Q. Kong, Lyapunov-type inequalities for higher order half-linear differential equations, Appl. Math. Comput., 273 (2016), 114–124.
    [8] X. Meng, M. Stynes, Green's functions, positive solutions, and a Lyapunov inequality for a Caputo fractional-derivative boundary value problem, Fract. Calc. Appl. Anal., 22 (2019), 750–766. doi: 10.1515/fca-2019-0041
    [9] M. Jleli, B. Samet, Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions, Math. Inequal. Appl., 18 (2015), 443–451.
    [10] M. Jleli, L. Ragoub, B. Samet, Lyapunov-type inequality for a fractional differential equation under a Robin boundary conditions, J. Funct. Space., 2015 (2015), 1–5.
    [11] A. Tiryaki, Recent development of Lyapunov-type inequalities, Adv. Dyn. Syst. Appl., 5 (2010), 231–248.
    [12] Y. Wang, S. Liang, C. Xia, A Lyapunov-type inequality for a fractional differential equation under Sturm-Liouville boundary conditions, Math. Inequal. Appl., 20 (2017), 139–148.
    [13] Y. Wang, Q. Wang, Lyapunov-type inequalities for fractional differential equations under multi-point boundary conditions, J. Math. Inequal., 13 (2019), 611–619.
    [14] Y. Wang, Q. Wang, Lyapunov-type inequalities for nonlinear differential equation with Hilfer fractional derivative operator, J. Math. Inequal., 12 (2018), 709–717.
    [15] Y. Wang, Q. Wang, Lyapunov-type inequalities for nonlinear fractional differential equation with Hilfer fractional derivative under multi-point boundary conditions, Fract. Calc. Appl. Anal., 21 (2018), 833–843. doi: 10.1515/fca-2018-0044
    [16] J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpment de Taylor, J. Math. Pure Appl., 8 (1892), 101–186.
    [17] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. doi: 10.1016/S0022-247X(02)00049-5
    [18] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27. doi: 10.1016/S0022-247X(02)00001-X
    [19] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15. doi: 10.1016/S0022-247X(02)00066-5
    [20] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. doi: 10.1186/1687-1847-2012-142
    [21] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204.
    [22] A. A. Kilbas, J. J. Trujillo, Hadamard-type integrals as G-transforms, Integr. Transf. Spec. F., 14 (2003), 413–427. doi: 10.1080/1065246031000074443
    [23] Q. Ma, C. Ma, J. Wang, A Lyapunov-type inequality for a fractional differential equation with Hadamard derivative, J. Math. Inequal., 11 (2017), 135–141.
    [24] S. Dhar, On linear and non-linear fractional Hadamard boundary value problems, Differ. Equ. Appl., 10 (2018), 329–339.
    [25] Z. Laadjal, N. Adjeroud, Q. Ma, Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a,b], J. Math. Inequal., 13 (2019), 789–799.
    [26] J. Jonnalagadda, B. Debananda, Lyapunov-type inequalities for Hadamard type fractional boundary value problems, AIMS Mathematics, 5 (2020), 1127–1146. doi: 10.3934/math.2020078
    [27] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
  • This article has been cited by:

    1. Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon, A Survey on Recent Results on Lyapunov-Type Inequalities for Fractional Differential Equations, 2022, 6, 2504-3110, 273, 10.3390/fractalfract6050273
    2. Sabri T. M. Thabet, Imed Kedim, An investigation of a new Lyapunov-type inequality for Katugampola–Hilfer fractional BVP with nonlocal and integral boundary conditions, 2023, 2023, 1029-242X, 10.1186/s13660-023-03070-5
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1670) PDF downloads(64) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog