We study the dynamical behavior of the solutions of stochastic discrete long wave-short wave resonance equations driven by fractional Brownian motions with Hurst parameter $ H\in(\frac{1}{2}, 1) $. And then we prove that the random dynamical system has a unique random equilibrium, which constitutes a singleton sets random attractor.
Citation: Ranran Liu, Hui Liu, Jie Xin. Random attractors for stochastic discrete long wave-short wave resonance equations driven by fractional Brownian motions[J]. AIMS Mathematics, 2021, 6(3): 2900-2911. doi: 10.3934/math.2021175
We study the dynamical behavior of the solutions of stochastic discrete long wave-short wave resonance equations driven by fractional Brownian motions with Hurst parameter $ H\in(\frac{1}{2}, 1) $. And then we prove that the random dynamical system has a unique random equilibrium, which constitutes a singleton sets random attractor.
[1] | L. Arnold, Random dynamical systems, Berlin: Springer-Verlag, 1998. |
[2] | P. Bates, X. Chen, A. Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35 (2003), 520–546. doi: 10.1137/S0036141000374002 |
[3] | P. Bates, K. Lu, B. Wang, Attractors for lattice dynamical systems, Int. J. Bifurcat. Chaos, 11 (2001), 143–153. doi: 10.1142/S0218127401002031 |
[4] | P. Bates, H. Lisei, K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1–21. doi: 10.1142/S0219493706001621 |
[5] | Z. Brzeźniak, M. Capiński, F. Flandoli, Pathwise global attractors for stationary random dynamical systems, Probab. Theory Relat. Fields, 95 (1993), 87–102. doi: 10.1007/BF01197339 |
[6] | S. Chow, Lattice dynamical systems, Berlin, Heidelberg: Springer, 2003. |
[7] | H. Crauel, A. Debussche, F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307–341. doi: 10.1007/BF02219225 |
[8] | H. Crauel, F. Flandoli, Attractors for randomdynamical systems, Probab. Theory Relat. Fields, 100 (1994), 365–393. doi: 10.1007/BF01193705 |
[9] | M. Garrrido-Atienza, P. Kloeden, A. Neuenkirch, Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion, Appl. Math. Optim., 60 (2009), 151–172. doi: 10.1007/s00245-008-9062-9 |
[10] | M. Garrrido-Atienza, K. Lu, B. Schmalfuss, Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion, Discrete Contin. Dyn. B, 14 (2010), 473–493. |
[11] | H. Gao, M. Garrrido-Atienza, B. Schmalfuss, Random attractors for stochastic evolution equations driven by fractional Brownian motion, SIAM. J. Math. Anal., 46 (2014), 2281–2309. doi: 10.1137/130930662 |
[12] | A. Gu, Y. Li, Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions, Commun. Nonlinear Sci., 19 (2014), 3929–3937. doi: 10.1016/j.cnsns.2014.04.005 |
[13] | B. Guo, L. Chen, Orbital stability of solitary waves of the long wave-short wave resonance equations, Math. Method. Appl. Sci., 21 (1998), 883–894. doi: 10.1002/(SICI)1099-1476(19980710)21:10<883::AID-MMA974>3.0.CO;2-B |
[14] | M. Hairer, A. Ohashi, Ergodic theory for SDEs with extrinsic memory, Ann. Probab., 35 (2007), 1950–1977. |
[15] | C. Ji, H. Liu, J. Xin, Random attractors of the stochastic extended Brusselator system with a multiplicative noise, AIMS Mathematics, 5 (2020), 3584–3611. doi: 10.3934/math.2020233 |
[16] | H. Kunita, Stochastic flows and stochastic differential equations, Cambridge: Cambridge University Press, 1990. |
[17] | Y. Li, Long time behavior for the weakly damped driven long-wave-short-wave resonance equations, J. Differ. Equations, 223 (2006), 261–289. doi: 10.1016/j.jde.2005.07.006 |
[18] | H. Liu, H. Gao, Ergodicity and dynamics for the stochastic 3D Navier-Stokes equations with damping, Commun. Math. Sci., 16 (2018), 97–122. doi: 10.4310/CMS.2018.v16.n1.a5 |
[19] | H. Liu, C. Sun, J. Xin, Attractors of the 3D Magnetohydrodynamics equations with damping, B. Malays. Math. Sci. Soc., 44 (2021), 337–351. doi: 10.1007/s40840-020-00949-0 |
[20] | R. Liu, H. Liu, J. Xin, Attractor for the non-autonomous long wave-short wave resonance interaction equation with damping, J. Appl. Anal. Comput., 10 (2020), 1149–1169. |
[21] | B. Maslowski, B. Schmalfuss, Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion, Stoch. Anal. Appl., 22 (2004), 1577–1607. doi: 10.1081/SAP-200029498 |
[22] | J. Shu, Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions, Discrete Contin. Dyn. B, 22 (2017), 1587–1599. |
[23] | R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, New York: Springer-Verlag, 1997. |
[24] | S. Tindel, C. Tudor, F. Viens, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Relat. Fields, 127 (2003), 186–204. doi: 10.1007/s00440-003-0282-2 |
[25] | M. Tsutsumi, S. Hatano, Well-posedness of the Cauchy problem for the long wave-short wave resonance equations, Nonlinear Anal., 22 (1994), 155–171. doi: 10.1016/0362-546X(94)90032-9 |
[26] | B. Wang, Dynamics of systems on infinite lattices, J. Differ. Equations, 221 (2006), 224–245. doi: 10.1016/j.jde.2005.01.003 |
[27] | C. Wang, G. Xue, C. Zhao, Invariant Borel probability measures for discrete long-wave-short-wave resonance equations, Appl. Math. Comput., 339 (2018), 853–865. |
[28] | J. Xin, H. Lu, Random attractors for the stochastic discrete long wave-short wave resonance equations, J. Appl. Math., 2011 (2011), 1–13. |
[29] | C. Zhao, S. Zhou, Compact kernel sections of long-wave-short-wave resonance equations on infinite lattices, Nonlinear Anal., 68 (2008), 652–670. doi: 10.1016/j.na.2006.11.027 |
[30] | S. Zhou, W. Shi, Attractors and dimension of dissipative lattice systems, J. Differ. Equations, 224 (2006), 172–204. doi: 10.1016/j.jde.2005.06.024 |