Citation: Liu Yang, Ruishen Qian. Power bounded and power bounded below composition operators on Dirichlet Type spaces[J]. AIMS Mathematics, 2021, 6(2): 2018-2030. doi: 10.3934/math.2021123
[1] | Ruishen Qian, Xiangling Zhu . Invertible weighted composition operators preserve frames on Dirichlet type spaces. AIMS Mathematics, 2020, 5(5): 4285-4296. doi: 10.3934/math.2020273 |
[2] | Liu Yang, Ruishen Qian . Volterra integral operator and essential norm on Dirichlet type spaces. AIMS Mathematics, 2021, 6(9): 10092-10104. doi: 10.3934/math.2021586 |
[3] | Dagmar Medková . Classical solutions of the Dirichlet problem for the Darcy-Forchheimer-Brinkman system. AIMS Mathematics, 2019, 4(6): 1540-1553. doi: 10.3934/math.2019.6.1540 |
[4] | Munirah Aljuaid, Mahmoud Ali Bakhit . Composition operators from harmonic H∞ space into harmonic Zygmund space. AIMS Mathematics, 2023, 8(10): 23087-23107. doi: 10.3934/math.20231175 |
[5] | Aydah Mohammed Ayed Al-Ahmadi . Differences weighted composition operators acting between kind of weighted Bergman-type spaces and the Bers-type space -I-. AIMS Mathematics, 2023, 8(7): 16240-16251. doi: 10.3934/math.2023831 |
[6] | Li He . Composition operators on Hardy-Sobolev spaces with bounded reproducing kernels. AIMS Mathematics, 2023, 8(2): 2708-2719. doi: 10.3934/math.2023142 |
[7] | Suixin He, Shuangping Tao . Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces. AIMS Mathematics, 2022, 7(1): 1000-1014. doi: 10.3934/math.2022060 |
[8] | Chun Wang . The coefficient multipliers on H2 and D2 with Hyers–Ulam stability. AIMS Mathematics, 2024, 9(5): 12550-12569. doi: 10.3934/math.2024614 |
[9] | Peiying Huang, Yiyuan Zhang . H-Toeplitz operators on the Dirichlet type space. AIMS Mathematics, 2024, 9(7): 17847-17870. doi: 10.3934/math.2024868 |
[10] | Keun Young Lee, Gwanghyun Jo . The dual of a space of compact operators. AIMS Mathematics, 2024, 9(4): 9682-9691. doi: 10.3934/math.2024473 |
As usual, let D be the unit disk in the complex plane C, ∂D be the boundary of D, H(D) be the class of functions analytic in D and H∞ be the set of bounded analytic functions in D. Let 0<p<∞. The Hardy space Hp (see [5]) is the sets of f∈H(D) with
‖f‖pHp=sup0<r<112π∫2π0|f(reiθ)|pdθ<∞. |
Suppose that K:[0,∞)→[0,∞) is a right-continuous and nondecreasing function with K(0)=0. The Dirichlet Type spaces DK, consists of those functions f∈H(D), such that
‖f‖2DK=|f(0)|2+∫D|f′(z)|2K(1−|z|2)dA(z)<∞. |
The space DK has been extensively studied. Note that K(t)=t, it is Hardy spaces H2. When K(t)=tα, 0≤α<1, it give the classical weighted Dirichlet spaces Dα. For more information on DK, we refer to [3,7,8,9,10,14,15,16,19,23].
Let ϕ be a holomorphic self-map of D. The composition operator Cϕ on H(D) is defined by
Cϕ(f)=f∘ϕ, f∈H(D). |
It is an interesting problem to studying the properties related to composition operator acting on analytic function spaces. For example: Shapiro [17] introduced Nevanlinna counting functions studied the compactness of composition operator acting on Hardy spaces. Zorboska [23] studied the boundedness and compactness of composition operator on weighted Dirichlet spaces Dα. El-Fallah, Kellay, Shabankhah and Youssfi [7] studied composition operator acting on Dirichlet type spaces Dpα by level set and capacity. For general weighted function ω, Kellay and Lefèvre [9] using Nevanlinna type counting functions studied the boundedness and compactness of composition spaces on weighted Hilbert spaces Hω. After Kellay and Lefèvre's work, Pau and Pérez investigate more properties of composition operators on weighted Dirichlet spaces Dα in [14]. For more information on composition operator, we refer to [4,18].
We assume that H is a separable Hilbert space of analytic functions in the unit disc. Composition operator Cϕ is called power bounded on H if Cϕn is bounded on H for all n∈N.
Since power bounded composition operators is closely related to mean ergodic and some special properties (such as: stable orbits) of ϕ, it has attracted the attention of many scholars. Wolf [20,21] studied power bounded composition operators acting on weighted type spaces H∞υ. Bonet and Domański [1,2] proved that Cϕ is power bounded if and only if Cϕ is (uniformly) mean ergodic in real analytic manifold (or a connected domain of holomorphy in Cd). Keshavarzi and Khani-Robati [11] studied power bounded of composition operator acting on weighted Dirichlet spaces Dα. Keshavarzi [12] investigated the power bounded below of composition operator acting on weighted Dirichlet spaces Dα later. For more results related to power bounded composition operators acting on other function spaces, we refer to the paper cited and referin [1,2,11,12,20,21].
We always assume that K(0)=0, otherwise, DK is the Dirichlet space D. The following conditions play a crucial role in the study of weighted function K during the last few years (see [22]):
∫10φK(s)sds<∞ | (1.1) |
and
∫∞1φK(s)s2ds<∞, | (1.2) |
where
φK(s)=sup0≤t≤1K(st)/K(t),0<s<∞. |
Note that the weighted function K satisfies (1.1) and (1.2), it included many special case, such as K(t)=tp, 0<p<1, K(t)=loget and so on. Some special skills are needed in dealing with certain problems. Motivated by [11,12], using several estimates on the weight function K, we studying power bounded composition operators acting on DK. In this paper, the symbol a≈b means that a≲. We say that a\lesssim b if there exists a constant C such that a\leq Cb , where a, b > 0 .
We assume that {\mathcal H} is a separable Hilbert space of analytic functions in the unit disc. Let R\in H({\mathbb{D}}) and \{R_\zeta: \zeta\in {\mathbb{D}}\} be an independent collection of reproducing kernels for {\mathcal H} . Here R_\zeta(z) = R(\bar{\zeta}z) . The reproducing kernels mean that f(\zeta) = \langle f, R_\zeta\rangle for any f\in {\mathcal H} . Let R_{K, z} be the reproducing kernels for {\mathcal{D}_{K}} . By [3], we see that if K satisfy (1.1) and (1.2), we have \|R_{K, z}\|_{{\mathcal{D}_{K}}}\approx\frac{1}{\sqrt{K(1-|z|^2)}} . Before we go into further, we need the following lemma.
Lemma 1. Let K satisfies (1.1) and (1.2). Then
1+\sum\limits_{n = 1}^\infty \frac{t^n}{K(\frac{1}{n+1})}\approx\frac{1}{(1-t)K(1-t)} |
for all 0\leq t < 1 .
Proof. Without loss of generality, we can assume 4/5 < t < 1 . Since K is nondecreasing, we have
\begin{eqnarray*} \sum\limits_{n = 1}^\infty \frac{t^n}{K(\frac{1}{n+1})} &\approx&\frac{1}{(\ln\frac{1}{t})K(\ln\frac{1}{t})}\int_{- \ln t}^\infty\frac{\gamma e^{-\gamma}K(\ln\frac{1}{t})}{K(\frac{1}{\gamma}\ln\frac{1}{t})}d\gamma\\ &\gtrsim& \frac{1}{(1-t)K(1-t)}\int_{ \ln2}^\infty\frac{\gamma e^{-\gamma}K(\ln\frac{1}{t})}{K(\frac{1}{\gamma}\ln\frac{1}{t})}d\gamma\\ &\gtrsim& \frac{1}{(1-t)K(1-t)}\int_{ \ln2}^\infty \gamma e^{-\gamma}d\gamma\\ &\approx& \frac{1}{(1-t)K(1-t)}. \end{eqnarray*} |
Conversely, make change of variables y = \frac{1}{x} , an easy computation gives
\begin{equation} \nonumber \begin{split} \sum\limits_{n = 1}^\infty \frac{t^n}{K(\frac{1}{n+1})}\approx&\sum\limits_{n = 1}^\infty \int_{\frac{1}{n+1}}^{\frac{1}{n}}\frac{t^{\frac{1}{x}}}{x^2K(x)}dx \\\approx&\int_0^1\frac{t^{\frac{1}{x}}}{x^2K(x)}dx\approx\int_1^\infty\frac{t^y}{K(\frac{1}{y})}dy. \end{split} \end{equation} |
Let y = \frac{\gamma}{- \ln t} . We can deduce that
\begin{eqnarray*} \sum\limits_{n = 1}^\infty \frac{t^n}{K(\frac{1}{n+1})}&\approx&\frac{1}{(\ln\frac{1}{t})}\int_{- \ln t}^\infty\frac{\gamma e^{-\gamma}}{K(\frac{1}{\gamma}\ln\frac{1}{t})}d\gamma\\ & = &\frac{1}{(\ln\frac{1}{t})K(\ln\frac{1}{t})}\int_{- \ln t}^\infty\frac{\gamma e^{-\gamma}K(\ln\frac{1}{t})}{K(\frac{1}{\gamma}\ln\frac{1}{t})}d\gamma\\ &\lesssim&\frac{1}{(1-t)K(1-t)}\int_{- \ln t}^\infty \gamma e^{-\gamma}\varphi_K(\gamma)d\gamma. \end{eqnarray*} |
By [6], under conditions (1.1) and (1.2), there exists an enough small c > 0 only depending on K such that
\varphi_{K}(s)\lesssim s^c, \ 0 \lt s\leq1 |
and
\varphi_{K}(s)\lesssim s^{1-c}, \ s\geq1. |
Therefore,
\begin{eqnarray*} \sum\limits_{n = 1}^\infty \frac{t^n}{K(\frac{1}{n+1})} &\lesssim&\frac{1}{(1-t)K(1-t)}\int_{- \ln t}^\infty \gamma e^{-\gamma}\varphi_K(\gamma)d\gamma\\ &\lesssim&\frac{1}{(1-t)K(1-t)}\left(\int_0^\infty e^{-\gamma}{\gamma}^{2-c}d\gamma+\int_0^\infty e^{-\gamma}{\gamma}^{1+c}d\gamma\right)\\ &\approx&\frac{1}{(1-t)K(1-t)}\left(\Gamma(3-c)+\Gamma(2+c)\right), \end{eqnarray*} |
where \Gamma(.) is the Gamma function. It follows that
1+\sum\limits_{n = 1}^\infty \frac{t^n}{K(\frac{1}{n+1})}\lesssim \frac{1}{(1-t)K(1-t)}. |
The proof is completed.
Theorem 1. Let K satisfy (1.1) and (1.2). Suppose that {\phi} is an analytic selt-map of unit disk which is not the identity or an elliptic automorphism. Then C_{{\phi}} is power bounded on {\mathcal{D}_{K}} if and only if {\phi} has its Denjoy-Wolff point in {\mathbb{D}} and for every 0 < r < 1 , we have
\sup\limits_{n\in\mathbb{N},a\in{\mathbb{D}}}\frac{\int_{D(a,r)}N_{{\phi}_n,K}(z)dA(z)}{(1-|a|^2)^2K(1-|a|^2)} \lt \infty, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(A) |
where
D(a,r) = \left\{z:\left|\frac{a-z}{1-\overline{a}z}\right| \lt r\right\}, \ \ 0 \lt r \lt 1 |
and
N_{{\phi}_n,K}(z) = \sum\limits_{{\phi}_n(z_j) = w}K(1-|z_j(w)|^2). |
Proof. Suppose that w\in{\mathbb{D}} is the Denjoy-Wolff point of {\phi} and (A) holds. Then \lim_{n\rightarrow\infty}{\phi}_n(0) = w . Hence, there is some 0 < r < 1 such that \{{\phi}_n(0)\}_{n\in\mathbb{N}}\subseteq r{\mathbb{D}} . Thus,
|f({\phi}_n(0))|^2\lesssim\|R_{K,{\phi}_n(0)}\|^2_{{\mathcal{D}_{K}}}\lesssim\|R_{K,r}\|^2_{{\mathcal{D}_{K}}}, \ \ f\in{\mathcal{D}_{K}}. |
From [24], we see that
1-|a|\approx1-|z|\approx|1-\overline{a}z|, \ \ z\in D(a,r). \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(B) |
Let \{a_i\} be a r-lattice. By sub-mean properties of |f'| , combine with (B), we deduce
\begin{align*} &\int_{{\mathbb{D}}}|f'(z)|^2N_{\phi_n,K}dA(z)\lesssim\sum\limits_{i = 1}^\infty\int_{D(a_i,r)}|f'(z)|^2N_{\phi_n,K}(z)dA(z)\\ \lesssim&\sum\limits_{i = 1}^\infty\int_{D(a_i,r)}\frac{1}{(1-|a_i|)^2}\int_{D(a_i,l)}|f'(w)|^2dA(w)N_{\phi_n,K}(z)dA(z)\\ \lesssim&\sum\limits_{i = 1}^\infty\int_{D(a_i,l)}|f'(w)|^2\left(\int_{D(a_i,r)}\frac{N_{\phi_n,K}(z)dA(z)}{(1-|a_i|)^2K(1-|a_i|^2)}\right)K(1-|w|^2)dA(w)\\ \lesssim&\sum\limits_{i = 1}^\infty\int_{D(a_i,l)}|f'(w)|^2K(1-|w|^2)dA(w) \lt \infty.\\ \end{align*} |
Thus,
\|f\circ\phi_n\|_{{\mathcal{D}_{K}}}^2 = |f(\phi_n(0))|^2+\int_{{\mathbb{D}}}|f'(z)|^2N_{\phi_n,K}dA(z) \lt \infty. |
On the other hand. Suppose that C_{{\phi}} is power bounded on {\mathcal{D}_{K}} . Hence, for any f\in{\mathcal{D}_{K}} and any n\in\mathbb{N} , we have |f({\phi}_n(0))|\lesssim 1. Hence, by [3], it is easily to see that \|R_{K, {\phi}_{n}(0)}\|_{{\mathcal{D}_{K}}}\approx\frac{1}{\sqrt{K(1-|{\phi}_n(0)|^2)}}\lesssim 1 . Note that
\lim\limits_{|z|\rightarrow 1}\|R_{K,z}\|_{{\mathcal{D}_{K}}}\approx\lim\limits_{|z|\rightarrow 1}\frac{1}{\sqrt{K(1-|z|)}} = \infty. |
Therefore, we deduce that {\phi}_{n}(0)\in r{\mathbb{D}} , where 0 < r < 1 and n\in\mathbb{N} . Also note that if w\in\overline{{\mathbb{D}}} is the Denjoy-Wolff point of {\phi} , we have \lim_{n\rightarrow\infty}{\phi}_n(0) = w . Thus, w\in{\mathbb{D}} . Let
f_a(z) = \frac{1-|a|^2}{\overline{a}\sqrt{K(1-|a|^2)}(1-\overline{a}z)}. |
It is easily to verify that f_a\in{\mathcal{D}_{K}} and f_a'(z) = \frac{1-|a|^2}{\sqrt{K(1-|a|^2)}(1-\overline{a}z)^2} . Thus, combine with (B), we have
\begin{align*} \frac{\int_{D(a,r)}N_{{\phi}_n,K}(z)dA(z)}{(1-|a|^2)^2K(1-|a|^2)}\lesssim&\int_{D(a,r)}\frac{(1-|a|^2)^2}{K(1-|a|^2)|1-\overline{a}z|^4}N_{{\phi}_n,K}(z)dA(z)\\ \leq&\int_{{\mathbb{D}}}\frac{(1-|a|^2)^2}{K(1-|a|^2)|1-\overline{a}z|^4}N_{{\phi}_n,K}(z)dA(z)\\ \lesssim&\|f_a\circ{\phi}_n\|_{{\mathcal{D}_{K}}}^2 \lt \infty. \end{align*} |
Thus, (A) hold. The proof is completed.
Theorem 2. Let K satisfy (1.1) and (1.2). Suppose that {\phi} is an analytic selt-map of unit disk which is not the identity or an elliptic automorphism with w as its Denjoy-wolff point. Then C_{{\phi}} is power bounded on {\mathcal{D}_{K}} if and only if
(1). w\in{\mathbb{D}}.
(2). \{{\phi}_n\} is a bounded sequence in {\mathcal{D}_{K}} .
(3). If n\in\mathbb{N} and |a|\geq\frac{1+|{\phi}_n(0)|}{2} , then \frac{N_{{\phi}_n, K}(a)}{K(1-|a|^2)}\lesssim 1.
Proof. Suppose that C_{{\phi}} is power bounded on {\mathcal{D}_{K}} . By Theorem 1, we see that w\in{\mathbb{D}} . Note that z\in{\mathcal{D}_{K}} and {\phi}_n = C_{{\phi}_n}z , we have (2) hold. Now, we are going to show (3) hold. Let |a|\geq\frac{1+|{\phi}_n(0)|}{2} and \Delta(a) = \{z:|z-a| < \frac{1}{2}(1-|a|)\} . Thus,
|{\phi}_n(0)| \lt |z|,\ \ z\in \Delta(a). |
If K satisfy (1.1) and (1.2). By [9], N_{\phi_n, K} has sub-mean properties. Thus,
\begin{align*} &\frac{N_{{\phi}_n,K}(a)}{K(1-|a|^2)}\lesssim\frac{\int_{\Delta(a)}N_{\phi_n,K}(z)dA(z)}{(1-|a|^2)^2K(1-|a|^2)}\\ \lesssim&\int_{\Delta(a)}\frac{(1-|a|^2)^2}{K(1-|a|^2)|1-\overline{a}z|^4}N_{\phi_n,K}(z)dA(z)\\ \lesssim&\int_{{\mathbb{D}}}\frac{(1-|a|^2)^2}{K(1-|a|^2)|1-\overline{a}z|^4}N_{\phi_n,K}(z)dA(z)\\ \lesssim&\|f\circ\phi_n\|_{{\mathcal{D}_{K}}}^2 \lt \infty.\\ \end{align*} |
Conversely. Suppose that (1)–(3) holds. Let f\in{\mathcal{D}_{K}} . Note that z\in{\mathcal{D}_{K}} , z' = 1 and \frac{1+|{\phi}_n(0)|}{2} < 1 . By Lemma 1, we see that
\|R'_{K,\frac{1+|{\phi}_n(0)|}{2}}\|_{{\mathcal{D}_{K}}}^2\approx\frac{1}{(1-\frac{1+|{\phi}_n(0)|}{2})K(1-\frac{1+|{\phi}_n(0)|}{2})} \lt \infty. |
Thus,
\begin{align*} &\int_{{\mathbb{D}}}|f'(z)|^2N_{\phi_n,K}(z)dA(z)\\ = &\int_{|z|\geq\frac{1+|{\phi}_n(0)|}{2}}|f'(z)|^2N_{\phi_n,K}(z)dA(z)+\int_{|z| \lt \frac{1+|{\phi}_n(0)|}{2}}|f'(z)|^2N_{\phi_n,K}(z)dA(z)\\ \lesssim&\int_{|z|\geq\frac{1+|{\phi}_n(0)|}{2}}|f'(z)|^2K(1-|z|^2)dA(z)+\|R'_{K,\frac{1+|{\phi}_n(0)|}{2}}\|_{{\mathcal{D}_{K}}}^2\int_{|z| \lt \frac{1+|{\phi}_n(0)|}{2}}N_{\phi_n,K}(z)dA(z)\\ \lesssim&\|f\|_{{\mathcal{D}_{K}}}^2+\|R'_{K,\frac{1+|{\phi}_n(0)|}{2}}\|_{{\mathcal{D}_{K}}}^2\|{\phi}_n\|_{{\mathcal{D}_{K}}}^2 \lt \infty. \end{align*} |
The proof is completed.
Theorem 3. Let K satisfy (1.1) and (1.2). Suppose that {\phi} is an analytic selt-map of {\mathbb{D}} with Denjoy-Wolff point w and C_{{\phi}} is power bounded on {\mathcal{D}_{K}} . Then f\in{\Gamma_{c, K}({\phi})} if and only if for any \epsilon > 0 ,
\lim\limits_{n\rightarrow\infty}\int_{{\Omega_{\epsilon}(f)}}\frac{N_{{\phi}_n,K}(z)dA(z)}{(1-|z|^2)^2K(1-|z|^2)} = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(C) |
where {\Gamma_{c, K}({\phi})} = \{f\in{\mathcal{D}_{K}}: \ C_{{\phi}_n}f \ is\ convergent\} and {\Omega_{\epsilon}(f)} = \{z:(1-|z|^2)^2K(1-|z|^2)|f'(z)|^2\geq\epsilon\} .
Proof. Let f\in{\mathcal{D}_{K}} and (C) hold. For any \delta > 0 , we choose 0 < \epsilon < \delta and \epsilon is small enough such that
\int_{{\Omega_{\epsilon}(f)}^c}|f'(z)|^2K(1-|z|^2)dA(z) \lt \delta. |
By our assumption, we also know that for this \epsilon , there is some N\in\mathbb{N} such that for each n\geq N , we have
\int_{{\Omega_{\epsilon}(f)}}\frac{N_{{\phi}_n,K}(z)}{(1-|z|^2)^2K(1-|z|^2)}dA(z) \lt \delta. |
Since
|f'(z)|\lesssim\frac{\|f\|_{{\mathcal{D}_{K}}}}{(1-|z|^2)\sqrt{K(1-|z|^2)}}, \ f\in{\mathcal{D}_{K}}. |
We obtain
\begin{align*} &\int_{{\Omega_{\epsilon}(f)}}|f'(z)|^2N_{\phi_n,K}(z)dA(z)\\ \lesssim&\|f\|_{{\mathcal{D}_{K}}}^2\int_{{\Omega_{\epsilon}(f)}}\frac{N_{\phi_n,K}(z)}{(1-|z|^2)^2K(1-|z|^2)}dA(z) \lt \delta\|f\|_{{\mathcal{D}_{K}}}^2 \end{align*} |
and
\begin{align*} &\int_{{\Omega_{\epsilon}(f)}^c}|f'(z)|^2N_{\phi_n,K}(z)dA(z)\\ = &\int_{{\Omega_{\epsilon}(f)}^c\cap r{\mathbb{D}}}|f'(z)|^2N_{\phi_n,K}(z)dA(z)+\int_{{\Omega_{\epsilon}(f)}^c\setminus r{\mathbb{D}}}|f'(z)|^2N_{\phi_n,K}(z)dA(z)\\ \lesssim&\epsilon\int_{{\Omega_{\epsilon}(f)}^c\cap r{\mathbb{D}}}\frac{N_{\phi_n,K}(z)}{(1-|z|^2)^2K(1-|z|^2)}dA(z)+\int_{{\Omega_{\epsilon}(f)}^c\setminus r{\mathbb{D}}}|f'(z)|^2K(1-|z|^2)dA(z)\\ \lesssim&\epsilon\int_{{\Omega_{\epsilon}(f)}^c\cap r{\mathbb{D}}}\frac{N_{\phi_n,K}(z)}{(1-r^2)^2K(1-r^2)}dA(z)+\int_{{\Omega_{\epsilon}(f)}^c}|f'(z)|^2K(1-|z|^2)dA(z)\\ \lt &\delta\frac{\|{\phi}_n\|^2_{{\mathcal{D}_{K}}}}{(1-r^2)^2K(1-r^2)}+\delta. \end{align*} |
Thus,
\begin{align*} &\int_{{\mathbb{D}}}|f'(z)|^2N_{\phi_n,K}(z)dA(z)\\ = &\int_{{\Omega_{\epsilon}(f)}}|f'(z)|^2N_{\phi_n,K}(z)dA(z)+\int_{{\Omega_{\epsilon}(f)}^c}|f'(z)|^2N_{\phi_n,K}(z)dA(z)\\ \lesssim&\left(\|f\|_{{\mathcal{D}_{K}}}^2+\frac{\|{\phi}_n\|^2_{{\mathcal{D}_{K}}}}{(1-r^2)^2K(1-r^2)}+1\right)\delta. \end{align*} |
Conversely. Suppose that f\in{\mathcal{D}_{K}} and w is the Denjoy-Wolff point of {\phi} . Thus, f\circ{\phi}_n\rightarrow f(w) uniform convergent and f\in{\Gamma_{c, K}({\phi})} if and only if
\lim\limits_{n\rightarrow\infty}\int_{{\mathbb{D}}}|f'(z)|^2N_{{\phi}_n,K}(z)dA(z) = 0. |
Suppose there exist \epsilon > 0 such that (C) dose not hold. There is a sequence \{n_k\}\subseteq\mathbb{N} and some \eta > 0 such that for any k\in\mathbb{N} , we have
\int_{{\Omega_{\epsilon}(f)}}\frac{N_{{\phi}_n,K}(z)dA(z)}{(1-|z|^2)^2K(1-|z|^2)} \gt \eta. |
Hence,
\begin{align*} &\int_{{\mathbb{D}}}|f'(z)|^2N_{\phi_n,K}(z)dA(z)\\ \geq&\int_{{\Omega_{\epsilon}(f)}}|f'(z)|^2N_{\phi_n,K}(z)dA(z)\\ \geq&\epsilon\int_{{\Omega_{\epsilon}(f)}}\frac{N_{\phi_n,K}(z)}{(1-|z|^2)^2K(1-|z|^2)}dA(z) \gt \eta\epsilon. \end{align*} |
That is a contradiction. The proof is completed.
The composition operator C_{{\phi}} is called power bounded below if there exists some C > 0 such that \|C_{{\phi}_n}f\|_{{\mathcal H}}\geq C\|f\|_{{\mathcal H}} , for all f\in{\mathcal H} and n\in\mathbb{N} .
In this section, we are going to show the equivalent characterizations of composition operator C_{{\phi}} power bounded below on {\mathcal{D}_{K}} . Before we get into prove, let us recall some notions.
(1) We say that \{G_n\} , a sequence of Borel subsets of {\mathbb{D}} satisfies the reverse Carleson condition on {\mathcal{D}_{K}} if there exists some positive constant \delta such that for each f\in{\mathcal{D}_{K}} ,
\delta\int_{G_n}|f'(z)|^2K(1-|z|^2)dA(z)\geq\int_{{\mathbb{D}}}|f'(z)|^2K(1-|z|^2)dA(z). |
(2) We say that \{\mu_n\} , a sequence of Carleson measure on {\mathbb{D}} satisfies the reverse Carleson condition, if there exists some positive constant \delta and 0 < r < 1 such that
\mu_n(D(a,r)) \gt \delta|D(a,r)| |
for each a\in{\mathbb{D}} and n\in\mathbb{N} .
Theorem 4. Let K satisfy (1.1) and (1.2). Suppose that {\phi} is an analytic selt-map of {\mathbb{D}} and C_{{\phi}} is power bounded on {\mathcal{D}_{K}} . Then the following are equivalent.
(1). C_{{\phi}} is power bounded below.
(2). There exists some \delta > 0 such that \|C_{{\phi}_n}f_a\|\geq\delta for all a\in{\mathbb{D}} and n\in\mathbb{N} .
(3). There exists some \delta > 0 and \epsilon > 0 such that for all a\in{\mathbb{D}} and n\in\mathbb{N} ,
\int_{G_{\epsilon}(n)}|f_a'(z)|^2K(1-|z|^2)dA(z) \gt \delta, |
where G_{\epsilon}(n) = \{z\in{\mathbb{D}}:\frac{N_{{\phi}_n, K}(z)}{K(1-|z|^2)}\geq\epsilon\} .
(4). There is some \epsilon > 0 such that the sequence of measures \{\chi_{G_{\epsilon}(n)}dA\} satisfies the reverse Carleson condition.
(5). The sequence of measures \{\frac{N_{{\phi}_n, K}(z)}{K(1-|z|^2)}dA\} satisfies the reverse Carleson condition.
(6). There is some \epsilon > 0 such that the sequence of Borel sets \{{G_{\epsilon}(n)}\} satisfies the reverse Carleson condition.
Proof. Suppose that w is the Denjoy-Wolff point of {\phi} . By Theorem 2, w\in{\mathbb{D}} . Without loss of generality, we use \varphi_w\circ{\phi}\circ\varphi_w instead of {\phi} .
(1)\Rightarrow(2) . It is obvious.
(3)\Rightarrow(4) . By [6], there exist a small c > 0 such that \frac{K(t)}{t^c} is nondecreasing (0 < t < 1) . Thus, the proof is similar to [18,page 5]. Let 0 < r < 1 and C > 0 such that
\int_{{\mathbb{D}}\setminus r{\mathbb{D}}}K(1-|z|^2)dA(z)\geq\frac{K(1-r^2)}{(1-r^2)^c}\int_{{\mathbb{D}}\setminus r{\mathbb{D}}}(1-|z|^2)^cdA(z) \gt 1-\frac{C\delta}{2}. |
Making change of variable z = \varphi_a(w) = \frac{a-z}{1-\overline{a}z} , we obtain
\begin{align*} &\frac{C\delta}{2}\geq\int_{r{\mathbb{D}}}K(1-|z|^2)dA(z))\\ = &\int_{D(a,r)}\frac{(1-|a|^2)^2}{|1-\overline{a}w|^4}K(1-|\varphi_a(w)|^2)dA(w)\\ \geq&C\int_{D(a,r)}\frac{(1-|a|^2)^2}{K(1-|a|^2)|1-\overline{a}w|^4}K(1-|w|^2)dA(w)\\ = &C\int_{D(a,r)}|f_a'(w)|^2K(1-|w|^2)dA(w). \end{align*} |
Thus,
\begin{align*} &\int_{D(a,r)\cap G_{\epsilon}(n)}|f_a'(z)|^2K(1-|z|^2)dA(z)\\ & = \int_{G_{\epsilon}(n)}|f_a'(z)|^2K(1-|z|^2)dA(z)-\int_{D(a,r)}|f_a'(z)|^2K(1-|z|^2)dA(z)\\ &\geq\delta-\frac{\delta}{2} = \frac{\delta}{2}. \end{align*} |
(2)\Rightarrow(3) . Let r = \sup_{n\in\mathbb{N}}\frac{1+|{\phi}_n(0)|}{2} . We claim that: there exists some \epsilon > 0 and some \delta > 0 such that for all a\in{\mathbb{D}} and n\in\mathbb{N} ,
\int_{r{\mathbb{D}}}|f_a'(z)|^2N_{{\phi}_n,K}(z)dA(z) \gt \delta |
or
\int_{G_{\epsilon}(n)}|f_a'(z)|^2K(1-|z|^2)dA(z) \gt \delta. |
Suppose that there are no \epsilon, \delta > 0 such that the above inequalities hold. Thus, there exists sequences \{a_k\}\subseteq{\mathbb{D}} and \{n_k\}\subseteq\mathbb{N} such that
\int_{r{\mathbb{D}}}|f_{a_k}'(z)|^2N_{{\phi}_{n_k},K}(z)dA(z) \lt \frac{1}{k} |
or
\int_{G_{\epsilon}(n)}|f_{a_k}'(z)|^2K(1-|z|^2)dA(z) \lt \frac{1}{k}. |
Hence,
\begin{align*} &\int_{{\mathbb{D}}}|f_a'(z)|^2N_{{\phi}_{n_k},K}(z)dA(z) = \int_{r{\mathbb{D}}}|f_a'(z)|^2N_{{\phi}_{n_k},K}(z)dA(z)\\ &+\int_{G_{\frac{1}{k}}(n_k)\setminus r{\mathbb{D}}}|f_a'(z)|^2N_{{\phi}_{n_k},K}(z)dA(z)+\int_{{\mathbb{D}}\setminus \left(G_{\frac{1}{k}}(n_k)\setminus r{\mathbb{D}}\right)}|f_a'(z)|^2N_{{\phi}_{n_k},K}(z)dA(z)\\ &\leq\frac{1}{k}+\frac{L}{k}+\frac{\eta}{k}\rightarrow 0, \end{align*} |
as k\rightarrow\infty . Where
L = \sup\limits_{|a|\geq\frac{1+|{\phi}_n(0)|}{2},n\in\mathbb{N}}\frac{N_{{\phi}_n,K}(a)}{K(1-|a|^2)},\ \ \eta = \sup\limits_{a\in{\mathbb{D}}}\|f_a\|_{{\mathcal{D}_{K}}}^2. |
This contradict (2), so our claim hold. Let \epsilon, \delta > 0 be as in above. Since f'_a\rightarrow 0 , uniformly on the compact subsets of {\mathbb{D}} , as |a|\rightarrow 1 , there exists some 0 < s < 1 such that for all |a| > s , we have
\int_{r{\mathbb{D}}}|f_a'(z)|^2N_{{\phi}_{n_k},K}(z)dA(z)\leq\|f_a'|_{r{\mathbb{D}}}\|^2_{H^{\infty}}\|{\phi}_n\|_{{\mathcal{D}_{K}}}^2\leq\delta. |
That is, for |a| > s , we deduce that
\int_{G_{\epsilon}(n)}|f_a'(z)|^2K(1-|z|^2)dA(z) \gt \delta. |
Similar to the proof of (3)\Rightarrow(4) , there must be \alpha, \beta > 0 such that
|G_{\epsilon}(n)\cap D(a,\alpha)| \gt \beta|D(a,\alpha)|, \ \forall |a| \gt s,\ \ \forall n\in\mathbb{N}. |
Therefore,
\int_{G_{\epsilon}(n)\cap D(a,\alpha)}K(1-|z|^2)dA(z)\gtrsim\beta\int_{ D(a,\alpha)}K(1-|z|^2)dA(z),\ \forall |a| \gt s,\ \ \forall n\in\mathbb{N}. |
Now if \{a_k\} is a \alpha -lattice for {\mathbb{D}} , we have
\sum\limits_{k = 1}^{\infty}\int_{G_{\epsilon}(n)\cap D(a_k,\alpha)}K(1-|z|^2)dA(z)\gtrsim\beta\sum\limits_{k = 1}^{\infty}\int_{ D(a_k,\alpha)}K(1-|z|^2)dA(z),\ \forall |a| \gt s,\ \ \forall n\in\mathbb{N}. |
Therefore,
\int_{G_{\epsilon}(n)}K(1-|z|^2)dA(z)\gtrsim 1 \ \ \forall n\in\mathbb{N}. |
For any |a|\leq s , we obtain |f'_a(z)|\gtrsim(1-s^2)^2K^2(1-s^2) . Hence,
\int_{G_{\epsilon}(n)}|f_a'(z)|^2K(1-|z|^2)dA(z)\gtrsim(1-s^2)^2K^2(1-s^2)\int_{G_{\epsilon}(n)}K(1-|z|^2)dA(z)\gtrsim 1. |
Therefore, (3) hold.
(5)\Rightarrow(2) . Let a\in{\mathbb{D}} . Then
\begin{align*} &\int_{{\mathbb{D}}}|f_a'(z)|^2N_{{\phi}_{n_k},K}(z)dA(z)\\ &\geq\int_{D(a,r)}|f_a'(z)|^2N_{{\phi}_{n_k},K}(z)dA(z)\\ &\gtrsim\int_{D(a,r)}\frac{N_{{\phi}_{n_k},K}(z)}{K(1-|z|^2)}dA(z)\gtrsim 1. \end{align*} |
(4)\Rightarrow(6) . Note that Luecking using a long proof to show that G satisfies the reverse Carleson condition if and only if the measure \chi_GdA(z) is a reverse Carleson measure. Simlar to the proof of [13], we omited here.
(6)\Rightarrow(1) . Let f\in{\mathcal{D}_{K}} . Then
\begin{align*} &\|C_{{\phi}_n}f\|_{{\mathcal{D}_{K}}}^2 = |f(0)|^2+\int_{{\mathbb{D}}}|f'(z)|^2N_{{\phi}_{n},K}(z)dA(z)\\ &\geq|f(0)|^2+\int_{G_{\epsilon}(n)}|f_a'(z)|^2N_{{\phi}_{n},K}(z)dA(z)\\ &\geq|f(0)|^2+\epsilon\int_{G_{\epsilon}(n)}|f_a'(z)|^2K(1-|z|^2)dA(z)\\ &\geq|f(0)|^2+\frac{\epsilon}{\delta}\int_{{\mathbb{D}}}|f_a'(z)|^2K(1-|z|^2)dA(z)\gtrsim\|f\|_{{\mathcal{D}_{K}}}^2. \end{align*} |
Thus, it is easily to get our result. The proof is completed.
In this paper, we give some equivalent characterizations of power bounded and power bounded below composition operator C_{{\phi}} on Dirichlet Type spaces, which generalize the main results in [11,12].
The authors thank the referee for useful remarks and comments that led to the improvement of this paper. This work was supported by NNSF of China (No. 11801250, No.11871257), Overseas Scholarship Program for Elite Young and Middle-aged Teachers of Lingnan Normal University, Yanling Youqing Program of Lingnan Normal University, the Key Program of Lingnan Normal University (No. LZ1905), The Innovation and developing School Project of Guangdong Province (No. 2019KZDXM032) and Education Department of Shaanxi Provincial Government (No. 19JK0213).
We declare that we have no conflict of interest.
[1] | J. Bonet, P. Domański, A note on mean ergodic composition operators on spaces of holomorphic functions, RACSAM Rev. R. Acad. A, 105 (2011), 389–396. |
[2] |
J. Bonet, P. Domański, Power bounded composition operators on spaces of analytic functions, Collect. Math., 62 (2011), 69–83. doi: 10.1007/s13348-010-0005-9
![]() |
[3] | G. Bao, Z. Lou, R. Qian, H. Wulan, On multipliers of Dirichlet type spaces, Collect. Math., 9 (2015), 1701–1732. |
[4] | C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, Florida, 1955. |
[5] | P. Duren, Theory of H.p spaces, Academic Press, New York, 1970. |
[6] |
M. Essen, H. Wulan, J. Xiao, Several function-theoretic characterizations of Möbius invariant {\mathcal{Q}}_K spaces, J. Funct. Anal., 230 (2006), 78–115. doi: 10.1016/j.jfa.2005.07.004
![]() |
[7] |
O. El-Fallah, K. Kellay, M. Shabankhah, H. Youssfi, Level sets and composition operators on the Dirichlet space, J. Funct. Anal., 260 (2011), 1721–1733. doi: 10.1016/j.jfa.2010.12.023
![]() |
[8] | D. Girela, J. Peláez, Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal., 241 (2006), 334–358. |
[9] |
K. Kellay, P. Lefèvre, Compact composition operators on weighted Hilbert spaces of analytic functions, J. Math. Anal. Appl., 386 (2012), 718–727. doi: 10.1016/j.jmaa.2011.08.033
![]() |
[10] |
R. Kerman, E. Sawyer, Carleson measures and multipliers of Dirichlet-type spaces, Trans. Am. Math. Soc., 309 (1988), 87–98. doi: 10.1090/S0002-9947-1988-0957062-1
![]() |
[11] | H. Keshavarzi, B. Khani-Robati, Power bounded composition operators on weighted Dirichlet spaces, New York J. Math., 24 (2018), 389–403. |
[12] |
H. Keshavarzi, Power bounded weighted composition operators and power bounded below composition operators, Collect. Math., 71 (2020), 205–221. doi: 10.1007/s13348-019-00257-2
![]() |
[13] |
D. Luecking, Inequalities on Bergman spaces, Illinois J. Math., 25 (1981), 1–11. doi: 10.1215/ijm/1256047358
![]() |
[14] |
J. Pau, P. A. Pérez, Composition operators acting on weighted Dirichlet spaces, J. Math. Anal. Appl., 401 (2013), 682–694. doi: 10.1016/j.jmaa.2012.12.052
![]() |
[15] |
R. Rochberg, Z. Wu, A new characterization of Dirichlet type spaces and applications, Illinois J. Math., 37 (1993), 101–122. doi: 10.1215/ijm/1255987252
![]() |
[16] |
D. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math., 24 (1980), 113–139. doi: 10.1215/ijm/1256047800
![]() |
[17] |
J. Shapiro, The essential norm of a composition operator, Ann. Math., 125 (1987), 375–404. doi: 10.2307/1971314
![]() |
[18] | J. Shapiro, Composition operators and classical function theory, Springer, New York, 1993. |
[19] | G. Taylor, Multipliers on D_{\alpha}, Trans. Am. Math. Soc., 123 (1966), 229–240. |
[20] | E. Wolf, Power bounded composition operators, Comput. Methods. Funct. Theory, 12 (2012), 105–117. |
[21] | E. Wolf, Power bounded composition operators in several variables, Rom. J. Math. Comput. Sci., 5 (2015), 1–12. |
[22] | H. Wulan, K. Zhu, Möbius invariant Q_K spaces, Springer, Cham, 2017. |
[23] |
N. Zorboska, Composition operators on weighted Dirichlet spaces, Poc. Am. Math. Soc., 126 (1998), 2013–2023. doi: 10.1090/S0002-9939-98-04266-X
![]() |
[24] | K. Zhu, Operator theory in function spaces, American Mathematical Society, Providence, RI, 2007. |