Research article

On the zero forcing number and propagation time of oriented graphs

  • Received: 07 October 2020 Accepted: 25 November 2020 Published: 01 December 2020
  • MSC : 05C20, 05C15, 05C57

  • Zero forcing is a process of coloring in a graph in time steps known as propagation time. These graph-theoretic parameters have diverse applications in computer science, electrical engineering and mathematics itself. The problem of evaluating these parameters for a network is known to be NP-hard. Therefore, it is interesting to study these parameters for special families of networks. Perila et al. (2017) studied properties of these parameters for some basic oriented graph families such as cycles, stars and caterpillar networks. In this paper, we extend their study to more non-trivial structures such as oriented wheel graphs, fan graphs, friendship graphs, helm graphs and generalized comb graphs. We also investigate the change in propagation time when the orientation of one edge is flipped.

    Citation: Sakander Hayat, Hafiz Muhammad Afzal Siddiqui, Muhammad Imran, Hafiz Muhammad Ikhlaq, Jinde Cao. On the zero forcing number and propagation time of oriented graphs[J]. AIMS Mathematics, 2021, 6(2): 1833-1850. doi: 10.3934/math.2021111

    Related Papers:

  • Zero forcing is a process of coloring in a graph in time steps known as propagation time. These graph-theoretic parameters have diverse applications in computer science, electrical engineering and mathematics itself. The problem of evaluating these parameters for a network is known to be NP-hard. Therefore, it is interesting to study these parameters for special families of networks. Perila et al. (2017) studied properties of these parameters for some basic oriented graph families such as cycles, stars and caterpillar networks. In this paper, we extend their study to more non-trivial structures such as oriented wheel graphs, fan graphs, friendship graphs, helm graphs and generalized comb graphs. We also investigate the change in propagation time when the orientation of one edge is flipped.


    加载中


    [1] A. Aazami, Hardness results and approximation algorithms for some problems on graphs, Thesis (Ph.D.), University of Waterloo, 2008.
    [2] F. Barioli, W. Barrett, S. Butler, S. M. Cioabă, D. Cvetković, S. M. Fallat, et al., Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl., 428 (2007), 1628-1648.
    [3] F. Barioli, W. Barrett, S. Fallat, H. T. Hall, L. Hogben, B. Shader, et al., Parameters related to tree-width, zero forcing, and maximum nullity of a graph, J. Graph Theory, 72 (2013), 146177.
    [4] F. Barioli, S. M. Fallat, H. T. Hall, D. Hershkowitz, L. Hogben, H. van der Holst, et al., On the minimum rank of not necessarily symmetric matrices: a preliminary study, Electron. J. Linear Algebra, 18 (2009), 126-145.
    [5] K. F. Benson, D. Ferrero, M. Flagg, V. Furst, L. Hogben, V. Vasilevska, et al., Power domination and zero forcing, arXiv preprint arXiv: 1510.02421, 2015.
    [6] A. Berliner, C. Bozeman, S. Butler, M. Catral, L. Hogben, B. Kroschel, et al., Zero forcing propagation time on oriented graphs, Discrete Appl. Math., 224 (2017), 45-59. doi: 10.1016/j.dam.2017.02.017
    [7] A. Berliner, C. Brown, J. Carlson, N. Cox, L. Hogben, J. Hu, et al., Path cover number, maximum nullity, and zero forcing number of oriented graphs and other simple digraphs, Involve, 8 (2015), 147-167. doi: 10.2140/involve.2015.8.147
    [8] A. Berliner, M. Catral, L. Hogben, M. Huynh, K. Lied, M. Young. Mini- mum rank, maximum nullity and zero forcing number of simple digraphs, Electron. J. Linear Algebra, 26 (2013), 762- 780.
    [9] D. Burgarth, D. D'Alessandro, L. Hogben, S. Severini, M. Young, Zero forcing, linear and quantum controllability for systems evolving on networks, IEEE Trans. Autom. Control, 58 (2013), 2349- 2354.
    [10] D. Burgarth, V. Giovannetti, Full control by locally induced relaxation, Phys. Rev. Lett., 99 (2007), 100501. doi: 10.1103/PhysRevLett.99.100501
    [11] K. B. Chilakamarri, N. Dean, C. X. Kang, E. Yi, Iteration index of a zero forcing set in a graph, Bull. Inst. Combin. Appl., 64 (2012), 57-72.
    [12] S. Fallat, L. Hogben, Minimum Rank, maximum nullity, and zero forcing number of graphs. In: Handbook of Linear Algebra, 2nd edition, L. Hogben editor, CRC Press, Boca Raton, 2014.
    [13] S. Fallat, K. Meagher, B. Yang, On the complexity of the positive semidefinite zero forcing number, Linear Algebra Appl., 491 (2016), 101-122. doi: 10.1016/j.laa.2015.03.011
    [14] L. Hogben, Minimum rank problems, Linear Algebra Appl., 432 (2010), 1961-1974.
    [15] L. Hogben, M. Huynh, N. Kingsley, S. Meyer, S. Walker, M. Young, Propagation time for zero forcing on a graph, Discrete Appl. Math., 160 (2012), 1994-2005. doi: 10.1016/j.dam.2012.04.003
    [16] I. J. Kim, B. P. Barthel, Y. Park, J. R. Tait, J. L. Dobmeier, S. Kim, D. Shin, Network analysis for active and passive propagation models, Networks, 63 (2014), 160-169. doi: 10.1002/net.21532
    [17] M. Perila, K. Rutschke, B. Kroschel, Zero forcing and propagation time of oriented graphs, Submitted.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2960) PDF downloads(252) Cited by(5)

Article outline

Figures and Tables

Figures(22)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog