Citation: Lei Hu, Cheng Wang, Shuqin Zhang. New results for nonlinear fractional jerk equations with resonant boundary value conditions[J]. AIMS Mathematics, 2020, 5(6): 5801-5812. doi: 10.3934/math.2020372
[1] | A. R. Elsonbaty, A. M. El-Sayed, Further nonlinear dynamical analysis of simple jerk system with multiple attractors, Nonlinear Dynam., 87 (2017), 1169-1186. doi: 10.1007/s11071-016-3108-3 |
[2] | M. S. Rahman, A. Hasan, Modified harmonic balance method for the solution of nonlinear jerk equations, Results Phys., 8 (2018), 893-897. doi: 10.1016/j.rinp.2018.01.030 |
[3] | C. Liu, J. R. Chang, The periods and periodic solutions of nonlinear jerk equations solved by an iterative algorithm based on a shape function method, Appl. Math. Lett., 102 (2020), 1-9. |
[4] | P. Prakash, J. P. Singh, B. K. Roy, Fractional-order memristor-based chaotic jerk system with no equilibrium point and its fractional-order backstepping control, IFAC-PapersOnLine, 51 (2018), 1-6. |
[5] | H. P. W. Gottlieb, Harmonic balance approach to periodic solutions of nonlinear Jerk equations, J. Sound Vib., 271 (2004), 671-683. doi: 10.1016/S0022-460X(03)00299-2 |
[6] | H. P. W. Gottlieb, Harmonic balance approach to limit cycles for nonlinear Jerk equations, J. Sound Vib., 297 (2006), 243-250. doi: 10.1016/j.jsv.2006.03.047 |
[7] | X. Ma, L, Wei, Z. Guo, He's homotopy perturbation method to periodic solutions of nonlinear Jerk equations, J. Sound Vib., 314 (2008), 217-227. doi: 10.1016/j.jsv.2008.01.033 |
[8] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, 2006. |
[9] | W. Jiang, Solvability of fractional differential equations with p-Laplacian at resonance, Appl. Math. Comput., 260 (2015), 48-56. |
[10] | N. Kosmatov, A boundary value problem of fractional order at resonance, Electron. J. Differ. Eq., 135 (2010), 1-10. |
[11] | S. Song, S. Meng, Y. Cui, Solvability of integral boundary value problems at resonance in $\mathbb{R}^n$}, J. Inequal. Appl., 2019 (2019), 1-19. |
[12] | Q. Song, Z. Bai, Positive solutions of fractional differential equations involving the RiemannStieltjes integral boundary condition, Adv. Differ. Equ., 2018 (2018), 1-7. doi: 10.1186/s13662-017-1452-3 |
[13] | Y. Zhang, Z. Bai, Existence of solutions for nonlinear fractional three-point boundary value problems at resonance, J. Appl. Math. Comput., 36 (2011), 417-440. doi: 10.1007/s12190-010-0411-x |
[14] | W. Zhang, W. Liu, Existence of Solutions for Fractional Multi-Point Boundary Value Problems on an Infinite Interval at Resonance, Mathematics, 8 (2020), 1-22. |
[15] | R. Agarwal, S. Hristova, D. O'Regan, Existence and Integral Representation of Scalar RiemannLiouville Fractional Differential Equations with Delays and Impulses, Mathematics, 8 (2020), 1- 16. |
[16] | X. Zhang, Positive solutions for a class of singular fractional differential equation with infinitepoint boundary value conditions, Appl. Math. Lett., 39 (2015), 22-27. doi: 10.1016/j.aml.2014.08.008 |
[17] | M. Benchohra, S. Bouriah, J. R. Graef, Nonlinear implicit differential equations of fractional order at resonance, Electron. J. Differ. Eq., 324 (2016),1-10. |
[18] | T. Shen, W. Liu, T. Chen, et al. Solvability of fractional multi-point boundary-value problems with p-Laplacian operator at resonance, Electron. J. Differ. Eq., 2014 (2014), 1-10. doi: 10.1186/1687-1847-2014-1 |
[19] | S. Zhang, L. Hu, Unique Existence Result of Approximate Solution to Initial Value Problem for Fractional Differential Equation of Variable Order Involving the Derivative Arguments on the HalfAxis, Mathematics, 7 (2019), 1-23. |
[20] | X. Su, S. Zhang, Monotone solutions for singular fractional boundary value problems, Electron. J. Qual. Theo., 15 (2020), 1-16. |
[21] | Z. Bai, S. Zhang, S. Su, et al. Monotone iterative method for fractional differential equations, Electron. J. Differ. Eq., 2016 (2016), 1-8. doi: 10.1186/s13662-015-0739-5 |
[22] | J. Mawhin, Topological Degree and Boundary Value Problems for Nonlinear Differential Equations, In: Topological Methods for Ordinary Differential Equations, Springer, Berlin, Heidelberg, 1993, 74-142. |