Research article

An example in Hamiltonian dynamics

  • Received: 11 November 2023 Revised: 03 April 2024 Accepted: 08 May 2024 Published: 11 June 2024
  • Primary 05C38, 15A15; Secondary 05A15, 15A18

  • We present an example of a three-degrees-of-freedom polynomial Hamilton function with a critical point characterized by indefinite quadratic part with a Morse index 2. This function generates a Hamiltonian system wherein all eigenvalues equal $ \pm \mathrm{i} $, but it lacks small-amplitude periodic solutions with a period $ \approx 2\pi. $

    Citation: Henryk Żoła̧dek. An example in Hamiltonian dynamics[J]. Communications in Analysis and Mechanics, 2024, 16(2): 431-447. doi: 10.3934/cam.2024020

    Related Papers:

  • We present an example of a three-degrees-of-freedom polynomial Hamilton function with a critical point characterized by indefinite quadratic part with a Morse index 2. This function generates a Hamiltonian system wherein all eigenvalues equal $ \pm \mathrm{i} $, but it lacks small-amplitude periodic solutions with a period $ \approx 2\pi. $



    加载中


    [1] A. M. Lyapunov, The General Problem of the Stability of Motion, Taylor & Francis Group, London, 1992. https://doi.org/10.1115/1.2901415
    [2] H. Żoła̧dek, Normal forms, invariant manifolds and Lyapunov theorems, Commun. Analysis Mech., 15 (2023), 300–341. https://doi.org/10.3934/cam.2023016
    [3] H. Poincaré, Mémoire sur les Courbes Définies par une Équation Différentielle, in: Œuvres de Henri Poincaré 1, Gauthier–Villars, Paris, 1951.
    [4] D. S. Schmidt, Periodic solutions near a resonant equilibrium of a Hamiltonian system, Celestial Mech., 9 (1974), 81–103. https://doi.org/10.1007/BF01236166 doi: 10.1007/BF01236166
    [5] A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math, 20 (1973), 47–57. https://doi.org/10.1007/BF01405263 doi: 10.1007/BF01405263
    [6] J. Mawhin, J. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989. https://doi.org/10.1007/971-1-4757-2061-7
    [7] J. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math, 29 (1976), 724–747. https://doi.org/10.1016/s0304-0208(08)71098-3 doi: 10.1016/s0304-0208(08)71098-3
    [8] A. Szulkin, Bifurcation of strongly indefinite functionals and a Liapunov type theorem for Hamiltonian systems, Differential Integral Equations, 7 (1994), 217–234. https://doi.org/10.57262/die/1369926976 doi: 10.57262/die/1369926976
    [9] E. N. Dancer, S. Rybicki, A note on periodic solutions of autonomous Hamiltonian systems emanating from degenerate stationary solutions, Differential Integral Equations, 12 (1999), 147–160. https://doi.org/10.57262/die/1367265626 doi: 10.57262/die/1367265626
    [10] A. Gołȩbiewska, E. Pérez-Chavela, S. Rybicki, A. Ureña, Bifurcation of closed orbits from equilibria of Newtonian systems with Coriolis forces, J. Differential Equations, 338 (2022), 441–473. https://doi.org/10.1016/j.jde.2022.08.004 doi: 10.1016/j.jde.2022.08.004
    [11] D. Strzelecki, Periodic solutions of symmetric Hamiltonian systems, Arch. Rational Mech. Anal, 237 (2020), 921–950. https://doi.org/10.1007/s00205-020-01522-6 doi: 10.1007/s00205-020-01522-6
    [12] A. van Straten, A note on the number of periodic orbits near a resonant equilibrium point, Nonlinearity, 2 (1989), 445–458. https://doi.org/10.1007/BF02570469 doi: 10.1007/BF02570469
    [13] G. D. Birkhoff, Dynamical Systems, Amer. Math. Soc., Providence, 1927. https://doi.org/10.1016/B978-044450871-3/50149-2
    [14] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical Aspects of the Mathematical and Celestial Mechanics, Encyclopaedia of Math. Sci., Dynamical Systems, 3, Springer, New York, 1988. https://doi.org/10.2307/3619341
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(564) PDF downloads(51) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog