This paper focuses on a class of generalized nonlinear wave equations with doubly dispersive over equation whole lines. By employing the potential well theory, we classify the initial profile such that the solution blows up or globally exists.
Citation: Yue Pang, Xiaotong Qiu, Runzhang Xu, Yanbing Yang. The Cauchy problem for general nonlinear wave equations with doubly dispersive[J]. Communications in Analysis and Mechanics, 2024, 16(2): 416-430. doi: 10.3934/cam.2024019
This paper focuses on a class of generalized nonlinear wave equations with doubly dispersive over equation whole lines. By employing the potential well theory, we classify the initial profile such that the solution blows up or globally exists.
[1] | C. Babaoglu, H. A. Erbay, A. Erkip, Global existence and blow-up solutions for a general class of doubly dispersive nonlocal nonlinear wave equations, Nonlinear Anal., 77 (2013), 82–93. https://doi.org/10.1016/j.na.2012.09.001 doi: 10.1016/j.na.2012.09.001 |
[2] | N. Duruk, H. A. Erbay, A. Erkip, Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity, Nonlinearity, 23 (2010), 107–118. https://doi.org/10.1088/0951-7715/23/1/006 doi: 10.1088/0951-7715/23/1/006 |
[3] | J. L. Bona, R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Commun. Math. Phys, 118 (1988), 15–29. https://doi:10.1007/BF01218475 doi: 10.1007/BF01218475 |
[4] | Y. Liu, Instability of solitary waves for generalized Boussinesq equations, J. Dynam. Differential Equations, 5 (1993), 537–558. https://doi.org/10.1007/BF01053535 doi: 10.1007/BF01053535 |
[5] | Y. Liu, R. Xu, Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation, Phys. D, 237 (2008), 721–731. https://doi.org/10.1016/j.physd.2007.09.028 doi: 10.1016/j.physd.2007.09.028 |
[6] | L. A. Ostrovskii, A. M. Sutin, Nonlinear elastic waves in rods, J. Appl. Math. Mech., 41 (1977), 543–549. https://doi.org/10.1016/0021-8928(77)90046-6 doi: 10.1016/0021-8928(77)90046-6 |
[7] | Y. Liu, R. Xu, Potential well method for Cauchy problem of generalized double dispersion equations, J. Math. Anal. Appl., 338 (2008), 1169–1187. https://doi.org/10.1016/j.jmaa.2007.05.076 doi: 10.1016/j.jmaa.2007.05.076 |
[8] | Y. Wang, C. Mu, Y. Wu, Decay and scattering of solutions for a generalized Boussinesq equation, J. Differential Equations, 247 (2009), 2380–2394. https://doi.org/10.1016/j.jde.2009.07.022 doi: 10.1016/j.jde.2009.07.022 |
[9] | Y. Chen, X. Qiu, R. Xu, Y. Yang, Global existence and blowup of solutions for a class of nonlinear wave equations with linear pseudo-differential operator, Eur. Phys. J. Plus, , 135 (2020), 1–14. https://doi.org/10.1140/epjp/s13360-020-00568-5 doi: 10.1140/epjp/s13360-020-00568-5 |
[10] | H. A. Erbay, S. Erbay, A. Erkip, Thresholds for global existence and blow-up in a general class of doubly dispersive nonlocal wave equations, Nonlinear Anal., 95 (2014), 313–322. https://doi.org/10.1016/j.na.2013.09.013 doi: 10.1016/j.na.2013.09.013 |
[11] | W. Lian, V. D. Rǎdulescu, R. Xu, Y. Yang, N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 14 (2021), 589–611. https://doi.org/10.1515/acv-2019-0039 doi: 10.1515/acv-2019-0039 |
[12] | R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quart. Appl. Math., 68 (2010), 459–468. https://doi.org/10.1090/S0033-569X-2010-01197-0 doi: 10.1090/S0033-569X-2010-01197-0 |
[13] | R. Xu, W. Lian, Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321–356. https://doi.org/10.1007/s11425-017-9280-x doi: 10.1007/s11425-017-9280-x |
[14] | H. Triebel, Theory of Function Spaces, Monographs in Mathematics, Birkhäuser Verlag, Basel, 1983. https://doi.org/10.1007/978-3-0346-0416-1 |