Research article

The Cauchy problem for general nonlinear wave equations with doubly dispersive

  • Received: 06 February 2024 Revised: 08 April 2024 Accepted: 10 April 2024 Published: 03 June 2024
  • 35A01, 35D30, 35L05

  • This paper focuses on a class of generalized nonlinear wave equations with doubly dispersive over equation whole lines. By employing the potential well theory, we classify the initial profile such that the solution blows up or globally exists.

    Citation: Yue Pang, Xiaotong Qiu, Runzhang Xu, Yanbing Yang. The Cauchy problem for general nonlinear wave equations with doubly dispersive[J]. Communications in Analysis and Mechanics, 2024, 16(2): 416-430. doi: 10.3934/cam.2024019

    Related Papers:

  • This paper focuses on a class of generalized nonlinear wave equations with doubly dispersive over equation whole lines. By employing the potential well theory, we classify the initial profile such that the solution blows up or globally exists.



    加载中


    [1] C. Babaoglu, H. A. Erbay, A. Erkip, Global existence and blow-up solutions for a general class of doubly dispersive nonlocal nonlinear wave equations, Nonlinear Anal., 77 (2013), 82–93. https://doi.org/10.1016/j.na.2012.09.001 doi: 10.1016/j.na.2012.09.001
    [2] N. Duruk, H. A. Erbay, A. Erkip, Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity, Nonlinearity, 23 (2010), 107–118. https://doi.org/10.1088/0951-7715/23/1/006 doi: 10.1088/0951-7715/23/1/006
    [3] J. L. Bona, R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Commun. Math. Phys, 118 (1988), 15–29. https://doi:10.1007/BF01218475 doi: 10.1007/BF01218475
    [4] Y. Liu, Instability of solitary waves for generalized Boussinesq equations, J. Dynam. Differential Equations, 5 (1993), 537–558. https://doi.org/10.1007/BF01053535 doi: 10.1007/BF01053535
    [5] Y. Liu, R. Xu, Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation, Phys. D, 237 (2008), 721–731. https://doi.org/10.1016/j.physd.2007.09.028 doi: 10.1016/j.physd.2007.09.028
    [6] L. A. Ostrovskii, A. M. Sutin, Nonlinear elastic waves in rods, J. Appl. Math. Mech., 41 (1977), 543–549. https://doi.org/10.1016/0021-8928(77)90046-6 doi: 10.1016/0021-8928(77)90046-6
    [7] Y. Liu, R. Xu, Potential well method for Cauchy problem of generalized double dispersion equations, J. Math. Anal. Appl., 338 (2008), 1169–1187. https://doi.org/10.1016/j.jmaa.2007.05.076 doi: 10.1016/j.jmaa.2007.05.076
    [8] Y. Wang, C. Mu, Y. Wu, Decay and scattering of solutions for a generalized Boussinesq equation, J. Differential Equations, 247 (2009), 2380–2394. https://doi.org/10.1016/j.jde.2009.07.022 doi: 10.1016/j.jde.2009.07.022
    [9] Y. Chen, X. Qiu, R. Xu, Y. Yang, Global existence and blowup of solutions for a class of nonlinear wave equations with linear pseudo-differential operator, Eur. Phys. J. Plus, , 135 (2020), 1–14. https://doi.org/10.1140/epjp/s13360-020-00568-5 doi: 10.1140/epjp/s13360-020-00568-5
    [10] H. A. Erbay, S. Erbay, A. Erkip, Thresholds for global existence and blow-up in a general class of doubly dispersive nonlocal wave equations, Nonlinear Anal., 95 (2014), 313–322. https://doi.org/10.1016/j.na.2013.09.013 doi: 10.1016/j.na.2013.09.013
    [11] W. Lian, V. D. Rǎdulescu, R. Xu, Y. Yang, N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 14 (2021), 589–611. https://doi.org/10.1515/acv-2019-0039 doi: 10.1515/acv-2019-0039
    [12] R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quart. Appl. Math., 68 (2010), 459–468. https://doi.org/10.1090/S0033-569X-2010-01197-0 doi: 10.1090/S0033-569X-2010-01197-0
    [13] R. Xu, W. Lian, Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321–356. https://doi.org/10.1007/s11425-017-9280-x doi: 10.1007/s11425-017-9280-x
    [14] H. Triebel, Theory of Function Spaces, Monographs in Mathematics, Birkhäuser Verlag, Basel, 1983. https://doi.org/10.1007/978-3-0346-0416-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(646) PDF downloads(67) Cited by(1)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog