This article mainly uses two methods of solving the conservation laws of two partial differential equations and a system of equations. The first method is to construct the conservation law directly and the second method is to apply the Ibragimov method to solve the conservation laws of the target equation systems, which are constructed based on the symmetric rows of the target equation system. In this paper, we select two equations and an equation system, and we try to apply these two methods to the combined KdV-MKdV equation, the Klein-Gordon equation and the generalized coupled KdV equation, and simply verify them. The combined KdV-MKdV equation describes the wave propagation of bound particles, sound waves and thermal pulses. The Klein-Gordon equation describes the nonlinear sine-KG equation that simulates the motion of the Josephson junction, the rigid pendulum connected to the stretched wire, and the dislocations in the crystal. And the coupled KdV equation has also attracted a lot of research due to its importance in theoretical physics and many scientific applications. In the last part of the article, we try to briefly analyze the Hamiltonian structures and adjoint symmetries of the target equations, and calculate their linear soliton solutions.
Citation: Long Ju, Jian Zhou, Yufeng Zhang. Conservation laws analysis of nonlinear partial differential equations and their linear soliton solutions and Hamiltonian structures[J]. Communications in Analysis and Mechanics, 2023, 15(2): 24-49. doi: 10.3934/cam.2023002
This article mainly uses two methods of solving the conservation laws of two partial differential equations and a system of equations. The first method is to construct the conservation law directly and the second method is to apply the Ibragimov method to solve the conservation laws of the target equation systems, which are constructed based on the symmetric rows of the target equation system. In this paper, we select two equations and an equation system, and we try to apply these two methods to the combined KdV-MKdV equation, the Klein-Gordon equation and the generalized coupled KdV equation, and simply verify them. The combined KdV-MKdV equation describes the wave propagation of bound particles, sound waves and thermal pulses. The Klein-Gordon equation describes the nonlinear sine-KG equation that simulates the motion of the Josephson junction, the rigid pendulum connected to the stretched wire, and the dislocations in the crystal. And the coupled KdV equation has also attracted a lot of research due to its importance in theoretical physics and many scientific applications. In the last part of the article, we try to briefly analyze the Hamiltonian structures and adjoint symmetries of the target equations, and calculate their linear soliton solutions.
[1] | G. Bluman, S. Kumei, Symmetries and Differential Equations, Springer New York, (1989). https://doi.org/10.1137/1032114 |
[2] | G.Z. Tu, The trace identity, a powerful tool for constructing the hamiltonian structure of integrable systems, J. Math. Phys., 30 (1989), 330–338. https://doi.org/10.1063/1.528449 doi: 10.1063/1.528449 |
[3] | P. J. Olver, Applications of Lie Groups to Differential Equations, Springer Science and Business Media New York, NY, (2012). https://doi.org/10.1016/0001-8708(88)90053-9 |
[4] | S. San, A. Akbulut, Ö. Ünsal, F. Tascan, Conservation laws and double reduction of (2+1) dimensional Calogero-Bogoyavlenskii-Schiff equation, Math. Methods Appl. Sci., 40 (2017), 1703–1710. https://doi.org/10.1002/mma.4091 doi: 10.1002/mma.4091 |
[5] | F. Tascan, Ö. Ünsal, A. Akbulut, S. San, Nonlinear self adjointness and exact solution of fokas.olver.rosenau.qiao (forq) eqation, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 67 (2018), 317–326. https://doi.org/10.1037/h0047923 doi: 10.1037/h0047923 |
[6] | S.C. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications, Eur. J. Appl. Math., 13 (2002), 545–566. https://doi.org/10.1017/S095679250100465X doi: 10.1017/S095679250100465X |
[7] | S.C. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: General treatment, Eur. J. Appl. Math., 13 (2002), 567–585. https://doi.org/10.1017/S0956792501004661 doi: 10.1017/S0956792501004661 |
[8] | S.C. Anco, G.Bluman, Direct construction of conservation laws from field equations, Phys. Rev. Lett., 78 (1997), 2869. https://doi.org/10.1103/PhysRevLett.78.2869 doi: 10.1103/PhysRevLett.78.2869 |
[9] | S.C. Anco, G. Bluman, Integrating factors and first integrals for ordinary differential equations, Eur. J. Appl. Math., 9 (1998), 245–259. https://doi.org/10.1017/S0956792598003477 doi: 10.1017/S0956792598003477 |
[10] | N.H. Ibragimov, Nonlinear self-adjointness in constructing conservation laws, arXiv preprint arXiv, 1109.1728(2011). https://doi.org/10.1088/1751-8113/44/43/432002 |
[11] | H.F. Wang, Y.F. Zhang, Self-adjointness and conservation laws of Burgers-type equations, Mod. Phys. Lett. B, 35 (2021), 2150161. https://doi.org/10.1142/S021798492150161X doi: 10.1142/S021798492150161X |
[12] | N. H. Ibragimov, Integrating factors, adjoint equations and Lagrangians, J. Math. Anal. Appl, 318 (2006), 742–757. https://doi.org/10.1016/j.jmaa.2005.11.012 doi: 10.1016/j.jmaa.2005.11.012 |
[13] | N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 333 (2007), 311. https://doi.org/10.1016/j.jmaa.2006.10.078 doi: 10.1016/j.jmaa.2006.10.078 |
[14] | N. H. Ibragimov, Conservation laws and non-invariant solutions of anisotropic wave equations with a source, Nonlinear Anal. Real World Appl., 40 (2018), 82. https://doi.org/10.1016/j.nonrwa.2017.08.005 doi: 10.1016/j.nonrwa.2017.08.005 |
[15] | S.C. Anco, B. Wang, A formula for symmetry recursion operators from non-variational symmetries of partial differential equations, Lett. Math. Phys., 111 (2021), 1–33. https://doi.org/10.1007/s11005-021-01413-1 doi: 10.1007/s11005-021-01413-1 |
[16] | S.C. Anco, Symmetry properties of conservation laws, Int. J. Mod. Phys. B, 30 (2016), 28–29. https://doi.org/10.1142/S0217979216400038 doi: 10.1142/S0217979216400038 |
[17] | X. Gu, W.X. Ma, On a class of coupled Hamiltonian operators and their integrable hierarchies with two potentials, Math. Methods Appl. Sci., 41 (2018), 3779–3789. https://doi.org/10.1002/mma.4864 doi: 10.1002/mma.4864 |
[18] | S. Manukure, Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints, Commun. Nonlinear Sci. Numer. Simul., 57 (2018), 125–135. https://doi.org/10.1016/j.cnsns.2017.09.016 doi: 10.1016/j.cnsns.2017.09.016 |
[19] | J.B. Zhang, Y. Gongye, W.X. Ma, The relationship between the conservation laws and multi-Hamiltonian structures of the Kundu equation, Math. Methods Appl. Sci., 45 (2022), 9006–9020. https://doi.org/10.1002/mma.8288 doi: 10.1002/mma.8288 |
[20] | S.C. Anco, M.L. Gandarias, E. Recio, Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with p-power nonlinearities in two dimensions, Theor. Math. Phys., 197 (2018), 1393–1411. https://doi.org/10.1134/S004057791810001X doi: 10.1134/S004057791810001X |
[21] | A.P. Marquez, M.L. Gandarias, S.C. Anco, Conservation laws, symmetries, and line solitons of a Kawahara-KP equation, arXiv preprint arXiv, preprint, arXiv: 2211.03904. |
[22] | C. Chen, Y.L. Jiang, Lie Group Analysis, Exact Solutions and New Conservation Laws for Combined KdV-mKdV Equation, Differ. Equ. Dyn. Syst., 28 (2020), 827–840. https://doi.org/10.1007/s12591-017-0351-0 doi: 10.1007/s12591-017-0351-0 |
[23] | T. Ak, S.B.G. Karakoc, A. Biswas, Application of Petrov-Galerkin finite element method to shallow water waves model: Modified Korteweg-de Vries equation, Sci. Iran., 24 (2017), 1148–1159. https://doi.org/10.24200/sci.2017.4096 doi: 10.24200/sci.2017.4096 |
[24] | S. B. G. Karakoc, A Quartic Subdomain Finite Element Method for the Modified KdV Equation, Stat. Optim. Inf. Comput., 6 (2018), 609–618. https://doi.org/10.19139/soic.v6i4.485 doi: 10.19139/soic.v6i4.485 |
[25] | S. Battal, G. Karakoc, Numerical solutions of the modified KdV Equation with collocation method, Malaya J. Mat., (2018). https://doi.org/10.26637/MJM0604/0020 |
[26] | T. Ak, S. B. G. Karakoc, A. Biswas, A New Approach for Numerical Solution of Modified Korteweg-de Vries Equation, Iran. J. Sci. Technol. Trans. Sci., 41 (2017), 1109–1121. https://doi.org/10.1007/s40995-017-0238-5 doi: 10.1007/s40995-017-0238-5 |
[27] | F. Mohammadizadeh, S. Rashidi, S.R. Hejazi, Space-time fractional Klein-Gordon equation: Symmetry analysis, conservation laws and numerical approximations, Math. Comput. Simul., 188 (2021), 476–497. https://doi.org/10.1016/j.matcom.2021.04.015 doi: 10.1016/j.matcom.2021.04.015 |
[28] | J. Satsuma, R.A. Hirota, A coupled KdV equation is one case of the four-reduction of the KP hierarchy, J. Phys. Soc. Jpn., 51 (1982), 3390–3397. https://doi.org/10.1143/JPSJ.51.3390 doi: 10.1143/JPSJ.51.3390 |
[29] | S.B.G. Karakoc, A. Saha, D. Sucu, A novel implementation of Petrov-Galerkin method to shallow water solitary wave pattern and superperiodic traveling wave and its multistability: Generalized Korteweg-de Vries equation, Chin. J. Phys., 68 (2020), 605-617. https://doi.org/10.1016/j.cjph.2020.10.010 doi: 10.1016/j.cjph.2020.10.010 |
[30] | Y.F. Zhang, Z. Han, H.W. Tam, An integrable hierarchy and Darboux transformations, bilinear Bäcklund transformations of a reduced equation, Appl. Math. Comput., 219 (2013), 5837–5848. https://doi.org/10.1016/j.amc.2012.11.086 doi: 10.1016/j.amc.2012.11.086 |
[31] | M.J. Ablowitz, P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge university press, 149 (1991), 28–29. https://doi.org/10.1017/CBO9780511623998 doi: 10.1017/CBO9780511623998 |
[32] | H.W. Tam, Y.F. Zhang, An integrable system and associated integrable models as well as Hamiltonian structures, J. Math. Phys., 53 (2012), 103508. https://doi.org/10.1063/1.4752721 doi: 10.1063/1.4752721 |
[33] | A.V. Mikhailov, The reduction problem and the inverse scattering method, Phys. D, 3 (1981), 73–117. https://doi.org/10.1016/0167-2789(81)90120-2 doi: 10.1016/0167-2789(81)90120-2 |
[34] | H.Y. Zhang, Y.F. Zhang, Spectral analysis and long-time asymptotics of complex mkdv equation, J. Math. Phys, 63 (2022), 021509. https://doi.org/10.1063/5.0073909 doi: 10.1063/5.0073909 |
[35] | H.F. Wang, Y.F. Zhang, Two nonisospectral integrable hierarchies and its integrable coupling, Int. J. Theor. Phys., 59 (2020), 2529–2539. https://doi.org/10.1007/s10773-020-04519-9 doi: 10.1007/s10773-020-04519-9 |
[36] | X.N. Gao, S.Y. Lou, X.Y. Tang, Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric kdv equation, J. High. Energ. Phys., 29 (2013), 1–29. https://doi.org/10.1007/JHEP05(2013)029 doi: 10.1007/JHEP05(2013)029 |
[37] | X.R. Hu, S.Y. Lou, Y. Chen, Explicit solutions from eigenfunction symmetry of the korteweg-de vries equation, Phys. Rev. E, 85 (2012), 056607. https://doi.org/10.1103/PhysRevE.85.056607 doi: 10.1103/PhysRevE.85.056607 |
[38] | S.Y. Lou, X.R. Hu, Y. Chen, Nonlocal symmetries related to bäcklund transformation and their applications, J. Phys. A: Math. Theor., 45 (2012), 155209. https://doi.org/10.1088/1751-8113/45/15/155209 doi: 10.1088/1751-8113/45/15/155209 |
[39] | S.Y. Lou, X.B. Hu, Infinitely many Lax pairs and symmetry constraints of the KP equation, J.Math. Phys., 38 (1997), 6401–6427. https://doi.org/10.1063/1.532219 doi: 10.1063/1.532219 |
[40] | R.K. Gazizov, N.H. Ibragimov, S.Y. Lukashchuk, Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations, Commun. Nonlinear Sci. Numer. Simul., 23 (2015), 153–163. https://doi.org/10.1016/j.cnsns.2014.11.010 doi: 10.1016/j.cnsns.2014.11.010 |
[41] | C. Chen, J. Zhou, S.Y. Zhao, B.L. Feng, Integrable Coupling of Expanded Isospectral and Non-Isospectral Dirac Hierarchy and Its Reduction, Symmetry, 14 (2022), 2489. https://doi.org/10.3390/sym14122489 doi: 10.3390/sym14122489 |