Research article Special Issues

Does nonuniform behavior destroy the structural stability?

  • This paper provides an answer if the nonuniform behavior can destroy the structural stability of nonlinear systems. We show that if the linear system ˙x(t)=A(t)x(t) admits a nonuniform exponential dichotomy, then the perturbed nonautonomous system ˙x(t)=A(t)x(t)+f(t,x) is structurally stable under suitable conditions.

    Citation: Yuzhen Bai, Donal O’Regan, Yong-Hui Xia, Xiaoqing Yuan. Does nonuniform behavior destroy the structural stability?[J]. AIMS Mathematics, 2020, 5(6): 5628-5638. doi: 10.3934/math.2020359

    Related Papers:

    [1] Tian Yue . Barbashin type characterizations for nonuniform h-dichotomy of evolution families. AIMS Mathematics, 2023, 8(11): 26357-26371. doi: 10.3934/math.20231345
    [2] Cheng-Xiu Qiang, Jian-Ping Sun, Ya-Hong Zhao . Exponential stability analysis for nonlinear time-varying perturbed systems on time scales. AIMS Mathematics, 2023, 8(5): 11131-11150. doi: 10.3934/math.2023564
    [3] Yuxiao Zhao, Hong Lin, Xiaoyan Qiao . Persistence, extinction and practical exponential stability of impulsive stochastic competition models with varying delays. AIMS Mathematics, 2023, 8(10): 22643-22661. doi: 10.3934/math.20231152
    [4] Boonyachat Meesuptong, Peerapongpat Singkibud, Pantiwa Srisilp, Kanit Mukdasai . New delay-range-dependent exponential stability criterion and $ H_\infty $ performance for neutral-type nonlinear system with mixed time-varying delays. AIMS Mathematics, 2023, 8(1): 691-712. doi: 10.3934/math.2023033
    [5] Tijani A. Apalara, Aminat O. Ige, Cyril D. Enyi, Mcsylvester E. Omaba . Uniform stability result of laminated beams with thermoelasticity of type Ⅲ. AIMS Mathematics, 2023, 8(1): 1090-1101. doi: 10.3934/math.2023054
    [6] Li Zhu, Er-yong Cong, Xian Zhang . Global exponential stability conditions for quaternion-valued neural networks with leakage, transmission and distribution delays. AIMS Mathematics, 2023, 8(8): 19018-19038. doi: 10.3934/math.2023970
    [7] Xuelian Jin . Exponential stability analysis and control design for nonlinear system with time-varying delay. AIMS Mathematics, 2021, 6(1): 102-113. doi: 10.3934/math.2021008
    [8] Jing Ge, Xiaoliang Li, Bo Du, Famei Zheng . Almost periodic solutions of neutral-type differential system on time scales and applications to population models. AIMS Mathematics, 2025, 10(2): 3866-3883. doi: 10.3934/math.2025180
    [9] Fidel Meléndez-Vázquez, Guillermo Fernández-Anaya, Aldo Jonathan Muñóz-Vázquez, Eduardo Gamaliel Hernández-Martínez . Generalized conformable operators: Application to the design of nonlinear observers. AIMS Mathematics, 2021, 6(11): 12952-12975. doi: 10.3934/math.2021749
    [10] Yuanlin Ding . Existence and stability analysis of solutions for periodic conformable differential systems with non-instantaneous impulses. AIMS Mathematics, 2025, 10(2): 4040-4066. doi: 10.3934/math.2025188
  • This paper provides an answer if the nonuniform behavior can destroy the structural stability of nonlinear systems. We show that if the linear system ˙x(t)=A(t)x(t) admits a nonuniform exponential dichotomy, then the perturbed nonautonomous system ˙x(t)=A(t)x(t)+f(t,x) is structurally stable under suitable conditions.


    Structural stability of systems is important since structural stable systems can resist external disturbance; we refer the reader to [10,11,12,13,14,15,16,17,18,19,20,21,22]. Many researchers provided sufficient conditions for structural stability of planar (2-dimension) polynomial vector fields under polynomial perturbations [30,31,32,33,34,35,36]. In this paper, we focus on the high-dimensional systems. Usually authors study structural stability under the assumption that the linear system has some hyperbolic property and in most papers the authors assume that the linear system admits (classical or uniform) exponential dichotomy [7,8]. However, it is argued that (uniform) exponential dichotomy restrict the behavior of dynamical systems. For this reason, we need a more general concept of hyperbolicity. Recently, nonuniform exponential behavior and nonuniform exponential dichotomy was introduced (see e.g. [1,3,4,5,6,20,21]). As a result a natural question arises: if the linear system admits a nonuniform exponential dichotomy, can structural stability of systems be destroyed by the nonuniformity? This paper gives a nonuniform version of structural stability of nonlinear systems.

    In this section, we state our main theorem. Consider the systems

    ˙x(t)=A(t)x(t), (2.1)
    ˙x(t)=A(t)x(t)+f(t,x), (2.2)

    where tR,xRn, A(t) is a continuous matrix function, and f:R×RnRn is a piecewise continuous function. Let T(t,s) be the evolution operator satisfying x(t)=T(t,s)x(s), t,sR, where x(t) is a solution of the system (2.1).

    Definition 2.1. The linear system (2.1) is said to admit a nonuniform exponential dichotomy if there exists a projection P(t) (P2=P) and constants α>0,K>0,ε0, such that

    {T(t,s)P(s)Keα(ts)eε|s|,ts,T(t,s)Q(s)Keα(ts)eε|s|,ts, (2.3)

    where P(t)+Q(t)=Id(identity),T(t,s)P(s)=P(t)T(t,s),t,sR, and is the Euclidean norm (see e.g. [1,2,27]).

    Remark 2.1. The nonuniform exponential dichotomy reduces to the classical (uniform) exponential dichotomy by taking ε=0 in (2.3). In bad situations, an example is given in [1,2] to show that linear system does not admit an exponential dichotomy, but it admits a nonuniform exponential dichotomy.

    Let f:R×RnRn be a piecewise continuous function. There exists Lf>0 such that for any x1,x2Rn,tR, the piecewise continuous function f(t,x) satisfies (here ε0 as above)

    (H1) f(t,x1)f(t,x2)Lfeε|t|x1x2.

    For a small enough number 0<γ<1, denote

    S={f(t,x)|f(t,x)satisfies (H1)2KLfα1γ andsuptRt+1tf(σ,0)eε|σ|dσ<+}.

    Since the conditions in S are used in the following proof, for sake of convenience, we denote

    (H2) 2KLfα1γ,

    (H3) suptRt+1tf(σ,0)eε|σ|dσ<+.

    For any f(t,x)S, define Lf=inf{c>0|f(t,x1)f(t,x2)ceε|t|x1x2}. Taking f(t,x)1=max{Lf|fS}, then S is a normed linear vector space with norm 1. If ˙x(t)=A(t)x+f(t,x) is topologically conjugated to ˙y(t)=A(t)y+g(t,y), we denote it by fg. For detailed definition of a topological conjugacy, for example, one can refer to [11,13,23,26,27,28,29].

    Definition 2.2. The differential equation ˙x(t)=A(t)x+f(t,x) is said to be structurally stable in S, if for any g(t,y)S, we have ˙y(t)=A(t)y+g(t,y) is topologically conjugated to ˙x(t)=A(t)x+f(t,x) (i.e. gf).

    Theorem 2.1. For any f(t,x)S, if the linear system (2.1) admits a nonuniform exponential dichotomy, then system (2.2) is structurally stable in S.

    To prove the main result, some preliminary lemmas are needed.

    Lemma 3.1([26]) Let φ(t) be a non-negative locally integrable function on R. If there exist constants p>0,C>0 such that

    1pt+ptφ(s)dsC,

    then for any β>0, we have

    tφ(s)eβ(ts)ds(1eβp)1Cp,
    +tφ(s)eβ(ts)ds(1eβp)1Cp.

    Lemma 3.2 Suppose that system (2.1) admits a nonuniform exponential dichotomy with the constants ε,α. If the nonlinear term f(t,x)S, then the nonlinear system (2.2) has a unique bounded solution y(t) satisfying

    y(t)=tT(t,s)P(s)f(s,y(s))ds+tT(t,s)Q(s)f(s,y(s))ds. (3.1)

    Proof. Now we prove this lemma in three steps.

    Step 1. First, we prove that the nonlinear system (2.2) has a unique bounded solution. For this purpose, let suptRt+1tf(σ,0)eε|σ|dσ=M, x0(t)0, and

    x1(t)=tT(t,s)P(s)f(s,x0(s))ds+tT(t,s)Q(s)f(s,x0(s))ds.

    Take tR. From (H1) and Lemma 3.1, it is easy to obtain that

    x1(t)2KM(1eα)1,

    which implies x1(t) is bounded. Assume that xm(t) is bounded. Define xm+1(t) as

    xm+1(t)=tT(t,s)P(s)f(s,xm(s))ds+tT(t,s)Q(s)f(s,xm(s))ds.

    From (2.3) and (H2), we have

    xm+1(t)tKeα(ts)eε|s|[δxm(s)eε|s|+f(s,0)]ds++tKeα(ts)eε|s|[Lfxm(s)eε|s|+f(s,0)]ds=tKeα(ts)dsLfxm(s)+tKeα(ts)f(s,0)eε|s|ds++tKeα(ts)Lfxm(s)++tKeα(ts)f(s,0)eε|s|ds.

    It follows from (H1) and Lemma 3.1 that

    xm+1(t)2KLfαxm(t)+2KM(1eα)1,

    and this implies

    xm(t)2KLfαxm1(t)+2KM(1eα)1.

    Consequently, we have

    xm+1(t)2KLfα(2KLfαxm1(t)+2KM(1eα)1)+2KM(1eα)1[(2KLfα)m+(2KLfα)m1++2KLfα]x1(t)+2KM(1eα)11(2KLfα)m12KLfα2KLfαx1(t)+2KM(1eα)1.

    In view of (H3), 2KLfα<1, we obtain

    xm+1(t)112KLfα2KLfα2KM(1eα)1+2KM(1eα)1,

    which implies that the sequence of function {xm(t)} is bounded on R. Also,

    xm+1(t)xm(t)tKeα(ts)eε|s|(Lfxm(s)xm1(s)eε|s|)ds++tKeα(ts)eε|s|(Lfxm(s)xm1(s)eε|s|)ds=tKLfeα(ts)xm(s)xm1(s)ds++tKLfeα(ts)xm(s)xm1(s)ds.

    Let Tm=suptRxm(t)xm1(t). It follows from (H3) that

    Tm+1tKLfeα(ts)Tmds++tKLfeα(ts)Tmds2KLfα1TmγTm.

    Since 0<γ<1, the series +m=1xm(t)xm1(t) converges uniformly on R. Denote limmxm(t)=y(t), and note y(t) is bounded. In addition,

    y(t)=tT(t,s)P(s)f(s,y(s))ds+tT(t,s)Q(s)f(s,y(s))ds.

    Step 2. We will prove that any bounded solution of system (2.2) can be expressed by formula (3.1). Now assume that system (2.2) has another bounded solution x(t) satisfying x(0)=x0,x(t)ϑ. We have

    x(t)=T(t,0)x(0)+t0T(t,s)Iidf(s,x(s))ds=T(t,0)x(0)+t0T(t,s)(P(s)+Q(s))f(s,x(s))ds=T(t,0)x(0)+t0T(t,s)P(s)f(s,x(s))ds+t0T(t,s)Q(s)f(s,x(s))ds=T(t,0)x(0)+tT(t,s)P(s)f(s,x(s))ds0T(t,s)P(s)f(s,x(s))ds++0T(t,s)Q(s)f(s,x(s))ds+tT(t,s)Q(s)f(s,x(s))ds=tT(t,s)P(s)f(s,x(s))ds+tT(t,s)Q(s)f(s,x(s))ds+T(t,0)[x00T(0,s)P(s)f(s,x(s))ds++0T(0,s)Q(s)f(s,x(s))ds]. (3.2)

    From Lemma 3.1, we have

    tT(t,s)P(s)f(s,x(s))ds+tT(t,s)Q(s)f(s,x(s))ds|tKeα(ts)eε|s|(Lfx(s)eε|s|+f(s,0))|ds+|+tKeα(ts)eε|s|(Lfx(s)eε|s|+f(s,0))|ds|tKeα(ts)(Lfϑ+M)ds|+|+tKeα(ts)(Lfϑ+M)ds|2K(1eα)1(αϑ+M).

    Hence, we see that

    T(t,0)[x00T(0,s)P(s)f(s,x(s))ds++0T(0,s)Q(s)f(s,x(s))ds]

    is bounded. In addition, the above formula is the solution of system (2.1), so it is a bounded solution. Note that the linear system has no non-trival bounded solution due to the nonuniform exponential dichotomy. Thus we have

    T(t,0)[x00T(0,s)P(s)f(s,x(s))ds++0T(0,s)Q(s)f(s,x(s))ds]=0,

    and therefore,

    x(t)=tT(t,s)P(s)f(s,x(s))ds+tT(t,s)Q(s)f(s,x(s))ds.

    Step 3. We prove the uniqueness of the bounded solution. From (2.3), (H2) and (H3), we have

    y(t)x(t)tKeα(ts)eε|s|Lfy(s)x(s)eε|s|ds++tKeα(ts)eε|s|Lfy(s)x(s)eε|s|ds2KLfα1suptRy(t)x(t)γsuptRy(t)x(t).

    That is, suptRy(t)x(t)γsuptRy(t)x(t), which implies y(t)=x(t). Thus, the uniqueness is proved.

    Remark 3.1 In the proof, the function sequence {xm(t)} can be seen as the approximation sequence of the solution of system (2.2) and we conclude that {xm(t)} is bounded on R.

    Lemma 3.3 Suppose that the system (2.1) admits a nonuniform exponential dichotomy, fi(t,x)S,(i=1,2) and 2KLfiα1γ. Let y(t,ϱ,x) be the bounded solution of

    ˙z(t)=A(t)z+f1(t,x) (3.3)

    with φ(ϱ,ϱ,x)=x. Then for any xRn,ϱR, the following differential equation

    ˙z(t)=A(t)z+f2(t,z+φ(t,ϱ,x))f1(t,φ(t,ϱ,x)) (3.4)

    has a unique bounded solution z(ϱ,x)(t) satisfying

    z(ϱ,x)(t)=tT(t,s)P(s)[f2(s,z(ϱ,x)(s)+φ(s,ϱ,x))f1(s,φ(s,ϱ,x))]ds++tT(t,s)Q(s)[f2(s,z(ϱ,x)(s)+φ(s,ϱ,x))f1(s,φ(s,ϱ,x))]ds. (3.5)

    Moreover, z(ϱ,x)(ϱ) uniformly converges to z(ϱ,x0)(ϱ) for xx0Rn.

    Proof. For fixed (ϱ,x)R×Rn, clearly, system (3.4) satisfies the conditions of Lemma 3.2. Thus, (3.4) has a unique bounded solution z(ϱ,x)(t) satisfying (3.5). Now we construct a sequence {z(ϱ,x)m(t)}. Let z(ϱ,x)0(t)0, and

    z(ϱ,x)1(t)=tT(t,s)P(s)[f2(s,z(ϱ,x)0(s)+φ(s,ϱ,x))f1(s,φ(s,ϱ,x))]ds+tT(t,s)Q(s)[f2(s,z(ϱ,x)0(s)+φ(s,ϱ,x))f1(s,φ(s,ϱ,x))]ds.

    Assume that z(ϱ,x)m(t) is well defined. Take

    z(ϱ,x)m+1(t)=tT(t,s)P(s)[f2(s,z(ϱ,x)m(s)+φ(s,ϱ,x))f1(s,φ(s,ϱ,x))]ds+tT(t,s)Q(s)[f2(s,z(ϱ,x)m(s)+φ(s,ϱ,x))f1(s,φ(s,ϱ,x))]ds.

    From Remark 3.1 and Lemma 3.2, the approximation sequence {z(ϱ,x)m(t)} of the solution of system (3.4) uniformly converges to z(ϱ,x)(t) on R×(R×Rn).

    Now we claim that for any non-negative integer m, x0Rn,h>0, z(ϱ,x)m(t) uniformly converges to z(ϱ,x0)m(t) on |tϱ|h, for xx0.

    For m=0, z(ϱ,x)0(t)=0, the claim is clear. Assume that the above claim holds for m=k. Now we consider m=k+1. For x0Rn,h>0, we prove that for any ε>0, there exists a constant δ such that

    z(ϱ,x)k+1(t)z(ϱ,x0)k+1(t)<ε,|tϱ|h,

    where xx0<δ.

    Since fi(t,x)S,i=1,2, let suptRt+1tfi(σ,0)eε|σ|dσ=Mi,i=1,2.

    From (2.3) and (H1), we have

    z(ϱ,x)k+1(t)z(ϱ,x0)k+1(t)=tT(t,s)P(s)[f2(s,z(ϱ,x)k(s)+φ(s,ϱ,x))f1(s,φ(s,ϱ,x))]ds+tT(t,s)Q(s)[f2(s,z(ϱ,x)k(s)+φ(s,ϱ,x))f1(s,φ(s,ϱ,x))]dstT(t,s)P(s)[f2(s,z(ϱ,x0)k(s)+φ(s,ϱ,x0))f1(s,φ(s,ϱ,x0))]ds++tT(t,s)Q(s)[f2(s,z(ϱ,x0)k(s)+φ(s,ϱ,x0))f1(s,φ(s,ϱ,x0))]dstKeα(ts)eε|s|[f2(s,z(ϱ,x)k(s)+φ(s,ϱ,x))f1(s,φ(s,ϱ,x))][f2(s,z(ϱ,x0)k(s)+φ(s,ϱ,x0))f1(s,y(s,ϱ,x0))]ds++tKeα(ts)eε|s|[f2(s,z(ϱ,x)k(s)+φ(s,ϱ,x))f1(s,φ(s,ϱ,x))][f2(s,z(ϱ,x0)k(s)+φ(s,ϱ,x0))f1(s,φ(s,ϱ,x0))]ds=tτJds+ttτJds+t+τtJds++t+τJds,

    where τ=1α|lnεα8[(Lf1+Lf2)¯M+2M]|. From Remark 3.1 and Lemma 3.2, we see that the approximation sequence {z(ϱ,x)m(t)} of the solution of system (3.4) is bounded on R. Also, y(s,ϱ,x) is bounded on R. Without loss of generality, we assume that they are all bounded above by ¯M. Since fi(t,x)S,(i=1,2), a standard computations lead us to

    tτJdstτKeα(ts)eε|s|[(2Lf1+2Lf2)¯M+4M]eε|s|dsε4,
    +t+τJds+t+τKeα(ts)eε|s|[(2Lf1+2Lf2)¯M+4M]eε|s|dsε4,
    ttτJdsttτKeα(ts)eε|s|[Lf2z(ϱ,x)k(s)+φ(s,ϱ,x)z(ϱ,x0)k(s)φ(s,ϱ,x0)eε|s|+Lf1φ(s,ϱ,x)φ(s,ϱ,x0)eε|s|]dsttτKeα(ts)γ[z(ϱ,x)k(s)z(ϱ,x0)k(s)+2φ(s,ϱ,x)φ(s,ϱ,x0)]ds

    By assumption, for the above ε>0, there exists a constant δk>0 such that when xx0<δk, z(ϱ,x)k(t)z(ϱ,x0)k(t)<ε,|tϱ|h. Since φ(t,ϱ,x) is the solution of (2.2),

    φ(t,ϱ,x)=x+tϱ[A(s)φ(s,ϱ,x)+f(s,φ(s,ϱ,x))]ds.

    Due to the continuity, we can assume that there is a positive constant θ such that A(t)θ, for |tϱ|h+τ. We have

    φ(t,ϱ,x)φ(t,ϱ,x0)xx0+tϱ(θ+Lf)φ(s,ϱ,x)φ(s,ϱ,x0)dsxx0+(θ+γ2Kα)tϱφ(s,ϱ,x)φ(s,ϱ,x0)ds.

    It follows from Bellmen's inequality that

    φ(t,ϱ,x)φ(t,ϱ,x0)xx0e(θ+γ2Kα)|tϱ|xx0e(θ+γ2Kα)h.

    That is, for the above ε>0, there exists a constant δ0 such that

    φ(t,ϱ,x)φ(t,ϱ,x0)<ε,|tϱ|h,

    where xx0<δ0. Consequently,

    ttτJdsttτKeα(ts)γ2Kα3εds3γ2,|tϱ|h.

    Similarly, there exists a constant δ_>0, for xx0<δ_, t+τtJds3γ2,|tϱ|h. Taking δ=min{¯δ,δ_}, then for |xx0|<δ, we have

    z(ϱ,x)k+1(t)z(ϱ,x0)k+1(t)ε2+3γε<4ε,|tϱ|h.

    Therefore, for any x0Rn,h>0, when xx0, z(ϱ,x)k+1(t) uniformly converges to z(ϱ,x0)k+1(t) on |tϱ|h. From the induction principle, for any non-negative integer m, x0Rn and h>0, if xx0, then z(ϱ,x)m(t) uniformly converges to z(ϱ,x0)m(t) on |tϱ|h.

    In particular, taking h=0, we have for any non-negative integer m, x0Rn, if xx0, then z(ϱ,x)m(ϱ) uniformly converges to z(ϱ,x0)m(ϱ).

    We finally need to prove that for xx0, z(ϱ,x)(ϱ) uniformly converges to z(ϱ,x0)(ϱ) on R. In fact, for any ˜ε>0, since {z(ϱ,x)m(ϱ)} uniformly converges to z(ϱ,x)(ϱ) on R, there exists a constant m0 such that

    z(ϱ,x)m0(ϱ)z(ϱ,x)(ϱ)<˜ε,ϱR,xRn.

    In addition, for xx0, since {z(ϱ,x)m0(ϱ)} uniformly converges to z(ϱ,x0)m0(ϱ) on R, there exists a constant δ, xx0<δ such that for the above ˜ε>0,

    |z(ϱ,x)m0(ϱ)z(ϱ,x0)m0(ϱ)|<˜ε,ϱR.

    Hence, for |xx0|<δ,

    |z(ϱ,x)(ϱ)z(ϱ,x0)(ϱ)||z(ϱ,x)(ϱ)z(ϱ,x)m0(ϱ)|+|z(ϱ,x)m0(ϱ)z(ϱ,x0)m0(ϱ)|+|z(ϱ,x0)m0(ϱ)z(ϱ,x0)(ϱ)|<3˜ε.

    Therefore, for xx0, z(ϱ,x)(ϱ) uniformly converges to z(ϱ,x0)(ϱ) on R. This completes the proof of Lemma 3.3.

    Proof of Theorem 2.1. For any g in S, it suffices to prove that

    ˙x(t)=A(t)x+f1(t,x). (3.6)

    is topologically conjugated to

    ˙x(t)=A(t)x+f2(t,x). (3.7)

    For any ϱR,xRn, let y(t,ϱ,x) be a solution of system (2.2) and y(ϱ,ϱ,x)=x. From Lemma 3.3, the differential function (3.4) has a unique bounded solution z(ϱ,x)(t) satisfying (3.5). For xx0R, z(ϱ,x)(ϱ)z(ϱ,x0)(ϱ) uniformly with respect to ϱ. Now we take

    H(ϱ,x)=x+z(ϱ,x)(ϱ).

    Then by a similar argument as in [9] or [25,26], it is not difficult to prove the conjugacy between system (3.6) and (3.7).

    This paper provides a nonuniform version of the theorem on the structural stability of nonlinear systems. We show that if the linear system ˙x(t)=A(t)x(t) admits a nonuniform exponential dichotomy, then the perturbed nonautonomous system ˙x(t)=A(t)x(t)+f(t,x) is structurally stable under suitable conditions.

    This work was supported by the National Natural Science Foundation of China under Grant (No. 11671176 and No. 11931016), Natural Science Foundation of Zhejiang Province under Grant (No. LY20A010016).

    The authors declare that there is no conflict of interests regarding the publication of this article.

    Yonghui Xia conceived of the study, outlined the proof, proposed the project, drafted the manuscript. Yuzhen Bai participated in the discussion, smooth the English, made the corrections and proofread the final version. Xiaoqing Yuan carried out some part of computations in the proof. Donal O'Regan participated in the discussion and help to smooth the manuscript. All authors read and approved the final manuscript.



    [1] L. Barreira, Ya. Pesin, Nonuniform hyperbolicity, Encyclopedia of Mathematics and Its Applications, 115, Cambridge University Press, 2007.
    [2] L. Barreira, C. Valls, Stability of Nonautonomous Differential Equations,Lecture Notes in Mathematics, vol. 1926, Springer, 2008.
    [3] J. Chu, Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 137 (2013), 1031-1047. doi: 10.1016/j.bulsci.2013.03.003
    [4] J. Chu, F. Liao, S. Siegmund, et al. Nonuniform dichotomy spectrum and reducibility for nonautonomous equations, Bull. Sci. Math., 139 (2015), 538-557. doi: 10.1016/j.bulsci.2014.11.002
    [5] J. Zhang, M. Fan, H. Zhu, Nonuniform (h,k,u,v)-dichotomy with applications to nonautonomous dynamical systems, J. Math. Anal. Appl., 452 (2017), 505-551. doi: 10.1016/j.jmaa.2017.02.064
    [6] J. Zhang, M. Fan, H. Zhu, Existence and roughness of exponential dichotomies of linear dynamic equations on time scales, Comput. Math. Appl., 59 (2010), 2658-2675. doi: 10.1016/j.camwa.2010.01.035
    [7] O. Perron, Die stabilitsfrage bei differentialgleichungen, Math. Z., 32 (1930), 703-728. doi: 10.1007/BF01194662
    [8] W. A. Coppel, Dichotomies in stability theory, Lecture Notes in Mathematics, Springer, Berlin, Germany, 1978.
    [9] Y. Gao, Y. Xia, X.Yuan, et al. Linearization of nonautonomous impulsive system with nonuniform exponential dichotomy, Abstr. Appl. Anal., Volume 2014, Article ID 860378, 7 pages.
    [10] J. Hong, R. Yuan, Z. J. Jing, Exponential dichotomies, almost periodic structurally stable differential systems, and an example, J. Math. Anal. Appl., 208 (1997), 71-84. doi: 10.1006/jmaa.1997.5290
    [11] L. Jiang, Generalized exponential dichotomy and global linearization, J. Math. Anal. Appl., 315 (2006), 474-490. doi: 10.1016/j.jmaa.2005.05.042
    [12] S. G. Kryzhevich, V. A. Pliss, Structural stability of nonautonomous systems, Differential Equations, 39 (2003), 1395-1403. doi: 10.1023/B:DIEQ.0000017913.79915.b1
    [13] F. Lin, Exponential dichotomies, Anhui University Press, Hefei, China, 1999 (in Chinese).
    [14] F. Lin, Almost periodic structural stability of almost periodic differential equations, Ann. Diff. Equat., 5 (1989), 35-50.
    [15] K. Lu, Structural stability for scalar parabolic equations, J. Differential Equations, 114 (1994), 253-271. doi: 10.1006/jdeq.1994.1150
    [16] L. Markus, Structurally stable differential systems, Ann. Math., 73 (1961), 1-19. doi: 10.2307/1970280
    [17] K. J. Palmer, The structurally stable linear systems on the half-line are those with exponential dichotomies, J. Differential Equations, 33 (1979), 16-25. doi: 10.1016/0022-0396(79)90076-7
    [18] J. Kurzweil, G. Papaschinopoulos, Structural stability of linear discrete systems via the exponential dichotomy, Czech. Math. J., 38 (1988), 280-284.
    [19] G. Papaschinopoulos, G. Schinas, Structural stability via the density of a class of linear discrete systems, J. Math. Anal. Appl., 127 (1987), 530-539. doi: 10.1016/0022-247X(87)90127-2
    [20] J. Wang, M. Fěckan, Y. Zhou, Center stable manifold for planar fractional damped equations, Appl. Math. Comput., 296 (2017), 257-269.
    [21] J. Wang, M. Li, M. Fěckan, Robustness for linear evolution equations with non-instantaneous impulsive effects, Bull. Sci. Math., 159 (2020), 102827.
    [22] L. Popescu, Topological classification and structural stability of strongly continuous groups, Integr. Equ. Oper. Theory, 79 (2014), 355-375. doi: 10.1007/s00020-014-2152-y
    [23] J. Shi, J. Zhang, The Principle of Classification for Differential Equations, Science Press, Beijing, 2003 (in Chinese).
    [24] J. C. Willems, Topological classification and structural stability of linear systems, J. Differential Equations, 35 (1980), 306-318. doi: 10.1016/0022-0396(80)90031-5
    [25] Y. Xia, X. Chen, V. G. Romanovski, On the linearization theorem of Fenner and Pinto, J. Math. Anal. Appl., 400 (2013), 439-451. doi: 10.1016/j.jmaa.2012.11.034
    [26] Y. Xia, R. Wang, K. Kou, et al. On the linearization theorem for nonautonomous differential equations, Bull. Sci. Math., 139 (2015), 820-846.
    [27] Y. Xia, Y. Bai, D. O'Regan, A new method to prove the nonuniform dichotomy spectrum theorem in Rn, Proc. Amer. Math. Soc., 149 (2019), 3905-3917.
    [28] C. Zou, Y. Xia, M. pinto, et al. Boundness and Linearisation of a class of differential equations with piecewise constant argument, Qual. Theor. Dyna. Syst., 18 (2019), 495-531. doi: 10.1007/s12346-018-0297-9
    [29] C. Zou, Y. Xia, M. Pinto, Hölder Continuity of Topological Equivalence Functions of DEPCAGs, Sci. China Math., 50 (2020), 847-872.
    [30] A. Algaba, N. Fuentes, E. Gamero, et al. Structural stability of planar quasi-homogeneous vector fields, J. Math. Anal. Appl., 468 (2018), 212-226. doi: 10.1016/j.jmaa.2018.08.005
    [31] X. Jarque, J. Llibre, Structural stability of planar Hamiltonian polynomial vector fields, Proc. Lond. Math. Soc., 68 (1994), 617-640.
    [32] J. Llibre, J. P. del Río, J. A. Rodríguez, Structural stability of planar homogeneous polynomial vector fields: Applications to critical points and to infinity, J. Differential Equations, 125 (1996), 490-520. doi: 10.1006/jdeq.1996.0038
    [33] J. Llibre, del Río, J. A. Rodríguez, Structural stability of planar semi-homogeneous polynomial vector fields: Applications to critical points and to infinity, Discrete Contin. Dyn. Syst., 6 (2000), 809-828. doi: 10.3934/dcds.2000.6.809
    [34] D. S. Shafer, Structure and stability of gradient polynomial vector fields, J. Lond. Math. Soc., 41 (1990), 109-121.
    [35] G. Wang, Y. L. Cao, Dynamical spectrum in random dynamical systems, J. Dynamic. Diff. Equat., 26 (2014), 1-20. doi: 10.1007/s10884-013-9340-3
    [36] R. Oliveira, Y. Zhao, Structural stability of planar quasi-homogeneous vector fields, Qual. Theory Dyn. Syst., 13 (2014), 39-72. doi: 10.1007/s12346-013-0105-5
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3522) PDF downloads(210) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog