
Citation: Huan Xu, Tao Yu, Fawaz E. Alsaadi, Madini Obad Alassafi, Guidong Yu, Jinde Cao. Some spectral sufficient conditions for a graph being pancyclic[J]. AIMS Mathematics, 2020, 5(6): 5389-5401. doi: 10.3934/math.2020346
[1] | Giuseppe Maria Coclite, Carlotta Donadello . Vanishing viscosity on a star-shaped graph under general transmission conditions at the node. Networks and Heterogeneous Media, 2020, 15(2): 197-213. doi: 10.3934/nhm.2020009 |
[2] | John D. Towers . An explicit finite volume algorithm for vanishing viscosity solutions on a network. Networks and Heterogeneous Media, 2022, 17(1): 1-13. doi: 10.3934/nhm.2021021 |
[3] | Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro . On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 617-633. doi: 10.3934/nhm.2010.5.617 |
[4] | Wen Shen . Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks and Heterogeneous Media, 2018, 13(3): 449-478. doi: 10.3934/nhm.2018020 |
[5] | Martin Gugat, Mario Sigalotti . Stars of vibrating strings: Switching boundary feedback stabilization. Networks and Heterogeneous Media, 2010, 5(2): 299-314. doi: 10.3934/nhm.2010.5.299 |
[6] |
Giuseppe Maria Coclite, Nicola De Nitti, Mauro Garavello, Francesca Marcellini .
Vanishing viscosity for a |
[7] | Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012 |
[8] | Joachim von Below, José A. Lubary . Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks and Heterogeneous Media, 2009, 4(3): 453-468. doi: 10.3934/nhm.2009.4.453 |
[9] | Alessia Marigo . Equilibria for data networks. Networks and Heterogeneous Media, 2007, 2(3): 497-528. doi: 10.3934/nhm.2007.2.497 |
[10] | Gen Qi Xu, Siu Pang Yung . Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks and Heterogeneous Media, 2008, 3(4): 723-747. doi: 10.3934/nhm.2008.3.723 |
We consider a family of scalar conservation laws defined on an oriented graph
On the edge
∂tρi+∂xfi(ρi)=0,t>0,x<0,i=1,...,m, | (1) |
and on the outgoing ones
∂tρj+∂xfj(ρj)=0,t>0,x>0,j=m+1,...,m+n. | (2) |
The fluxes
(H.1) for each
(H.2) for any
We augment (1) and (2) with the initial conditions
{ρi(0,x)=ρi,0(x),x<0,i=1,...,m,ρj(0,x)=ρj,0(x),x>0,j=m+1,...,m+n, | (3) |
assuming that
(H.3)
and
Finally, we introduce the necessary conservation assumption at the node, which transforms our family of independent equations into a single problem
m∑i=1fi(ρi(t,0−))=m+n∑j=m+1fj(ρj(t,0+)) for a.e. t≥0. |
Questions related to existence, uniqueness and stability of solutions for problems of this kind have been extensively investigated in recent years, mainly in relation with traffic modeling. The interested reader can refer to [7,13] for an overview of the subject. Here our point of view is different, as we do not focus on a specific model. We consider a parabolic regularization of the problem, similarly to what has been done in [11,10], but instead of enforcing a continuity condition at the node for the regularized solutions, we introduce a more general set of transmission conditions on the parabolic fluxes.
In this work we adopt the following definition of weak solution for the problem (1), (2), and (3). We stress that this definition is for sure not sufficient to ensure uniqueness. On the contrary it fix somehow a minimal set of properties that any reasonable solution is expected to satisfy, see [3] and references therein for a more detailed discussion on this point.
Definition 1.1. Let
(D.1)
(D.2) for every
∫∞0∫0−∞(|ρi−c|∂tφ+sign(ρi−c)(fi(ρi)−fi(c))∂xφ)dtdx+∫0−∞|ρi,0(x)−c|φ(0,x)dx≥0; |
(D.3) for every
∫∞0∫∞0(|ρj−c|∂tφ+sign(ρj−c)(fj(ρR)−fj(c))∂xφ)dtdx+∫∞0|ρj,0(x)−c|φ(0,x)dx≥0; |
(D.4)
In [10] the authors approximated (1), (2), and (3) in the following way
{∂tρi,ε+∂xfi(ρi,ε)=ε∂2xxρi,ε,t>0,x<0,i,∂tρj,ε+∂xfj(ρj,ε)=ε∂2xxρj,ε,t>0,x>0,j,ρi,ε(t,0)=ρj,ε(t,0),t>0,i,j,m∑i=1(fi(ρi,ε(t,0))−ε∂xρi,ε(t,0))=m+n∑j=m+1(fj(ρj,ε(t,0))−ε∂xρj,ε(t,0)),t>0,ρi,ε(0,x)=ρi,0,ε(x),x<0,i,ρj,ε(0,x)=ρj,0,ε(x),x>0,j, | (4) |
where
ρi,ε→ρia.e. in (0,∞)×(−∞,0) andin Lploc((0,∞)×(−∞,0)),1≤p<∞, as ε→0 for every i,ρj,ε→ρja.e. in (0,∞)×(0,∞) and in Lploc((0,∞)×(0,∞)),1≤p<∞, as ε→0 for every j, |
where
In this paper we modify the transmission condition of (4) and inspired by [14] we consider the following viscous approximation of (1), (2), and (3)
{∂tρi,ε+∂xfi(ρi,ε)=ε∂2xxρi,ε,t>0,x<0,i,∂tρj,ε+∂xfj(ρj,ε)=ε∂2xxρj,ε,t>0,x>0,j,fi(ρi,ε(t,0))−ε∂xρi,ε(t,0)=βi(ρ1,ε(t,0),....,ρm+n,ε(t,0)),t>0,i,fj(ρj,ε(t,0))−ε∂xρj,ε(t,0)=βj(ρ1,ε(t,0),....,ρm+n,ε(t,0)),t>0,j,ρi,ε(0,x)=ρi,0,ε(x),x<0,i,ρj,ε(0,x)=ρj,0,ε(x),x>0,j, | (5) |
where, of course,
m∑i=1βi(ρ1,ε(t,0),…,ρm+n,ε(t,0))=m+n∑j=m+1βj(ρ1,ε(t,0),…,ρm+n,ε(t,0)). | (6) |
The additional assumptions we make on the functions
The main result of the paper is the following.
Theorem 1.2. Assume(H.1), (H.2), and (H.3). There exist a sequence
ρi,εk⟶ρi,a.e.andinLploc((0,∞)×(−∞,0)), | (7) |
ρj,εk⟶ρj,a.e.andinLploc((0,∞)×(0,∞)), | (8) |
f1(ρ1),...,fm(ρm)∈BV((0,∞)×(−∞,0)),fm+1(ρm+1),...,fm+n(ρm+n)∈BV((0,∞)×(0,∞)), | (9) |
for every
It worth mentioning that a complete characterization of the limit solution obtained from (4) as
At the moment we are not able to formulate a similar characterization of the limit of (5). In general, however, the limits coming from parabolic regularization subject to the two different kinds of transmission conditions are different.
To show this consider the simple case of a junction with one incoming and one outgoing edges. So we have the conservation law
∂tρ1+∂xf1(ρ1)=0,t>0,x<0, | (10) |
on the incoming edge and
∂tρ2+∂xf2(ρ2)=0,t>0,x>0, | (11) |
on the outgoing one. Assume that
f1(0)=f1(1)=f2(0)=f2(1)=0,f″1,f″2<0,there exists 0<ˇρ<ˆρ<1 and G>0 such that f1(ˆρ)=f2(ˇρ)=G(ˆρ−ˇρ). | (12) |
Consider the simplified version of (5)
{∂tρ1,ε+∂xf1(ρ1,ε)=ε∂2xxρ1,ε,t>0,x<0,∂tρ2,ε+∂xf2(ρ2,ε)=ε∂2xxρ2,ε,t>0,x>0,f1(ρ1,ε(t,0))−ε∂xρ1,ε(t,0)=f2(ρ2,ε(t,0))−ε∂xρ2,ε(t,0)=G(ρ1,ε−ρ2,ε),t>0,ρ1,ε(0,x)=ˆρ,x<0,ρ2,ε(0,x)=ˇρ,x>0. | (13) |
The unique solution of (13) is
ρ1,ε(⋅,⋅)=ˆρ,ρ2,ε(⋅,⋅)=ˇρ,ε>0. | (14) |
Therefore, as
ρ1(⋅,⋅)=ˆρ,ρ2(⋅,⋅)=ˇρ. | (15) |
This stationary solution is not admissible in the sense of the classical vanishing viscosity germ, see [5,Sec. 5], as it consists of a nonclassical shock. However, when dealing with conservation laws with discontinuous flux, it is well known that infinitely many
It is worth noticing that entropy solutions admissible in the sense of a
It is difficult, however, to establish a direct equivalence between the aforementioned results and the one we put forward in this paper. In particular, in the present case we miss information on the boundary layers at the parabolic level and we do not know how the transmission conditions we impose on the parabolic fluxes translates into a condition for the hyperbolic problem.
This means in particular that we have little information on the germ associated to the family of limit solutions obtained in Theorem 1.2 and, so far, we have not been able to prove that this germ is
The paper is organized as follows: Section 2 contains the precise list of assumptions on the initial and transmission conditions in the parabolic problem (5). In Section 3 we present the proofs of all necessary a priori estimates on (5). Finally, in Section 4 we detail the proof of Theorem 1.2.
The initial conditions
Once the functions
ρi,0,ε∈C∞((−∞,0])∩L1(−∞,0),ρj,0,ε∈C∞([0,∞))∩L1(0,∞),ε>0,ρi,0,ε→ρi,0a.e. in (−∞,0) and in Lploc(−∞,0),1≤p<∞, as ε→0,ρj,0,ε→ρj,0a.e. in (0,∞) and in Lploc(0,∞),1≤p<∞, as ε→0,0≤ρi,0,ε,ρj,0,ε≤1,ε>0,‖ρi,0,ε‖L1(−∞,0)≤‖ρi,0‖L1(−∞,0),‖ρj,0,ε‖L1(0,∞)≤‖ρj,0‖L1(0,∞),ε>0,‖ρi,0,ε‖L2(−∞,0)≤‖ρi,0‖L2(−∞,0),‖ρj,0,ε‖L2(0,∞)≤‖ρj,0‖L2(0,∞),ε>0,‖∂xρi,0,ε‖L1(−∞,0)≤TV(ρi,0),‖∂xρj,0,ε‖L1(0,∞)≤TV(ρj,0),ε>0,ε‖∂xρi,0,ε‖L1(−∞,0),ε‖∂2xxρj,0,ε‖L1(0,∞)≤C,ε>0, | (16) |
for some constant
The functions
βi(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m+n∑j=m+1Gi,j(ρi,ε(t,0),ρj,ε(t,0))+ε(m∑h=1Ki,h(ρi,ε(t,0),ρh,ε(t,0))−m+n∑h=1Kh,i(ρh,ε(t,0),ρi,ε(t,0))); | (17) |
for
βj(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m∑i=1Gi,j(ρi,ε(t,0),ρj,ε(t,0))+ε(m+n∑h=m+1Kh,j(ρh,ε(t,0),ρj,ε(t,0))−m+n∑h=1Kj,h(ρj,ε(t,0),ρh,ε(t,0))). | (18) |
The functions
∂vGi,j(⋅,⋅)≤0≤∂uGi,j(⋅,⋅),Gi,j(0,0)=Gi,j(1,1)=0,∂uKh,ℓ(⋅,⋅)≤0≤∂vKh,ℓ(⋅,⋅),Kh,ℓ(0,0)=Kh,ℓ(1,1)=0. | (19) |
In particular, (19) implies
(sign(u)−sign(v))∇Gi,j(⋅,⋅)⋅(u,v)≥0,u,v∈R,(sign(u)−sign(v))∇Kh,ℓ(⋅,⋅)⋅(u,v)≤0,u,v∈R,(sign(u−u′)−sign(v−v′))(Gi,j(u,v)−Gi,j(u′,v′))≥0,u,u′,v,v′∈R,(sign(u−u′)−sign(v−v′))(Kh,ℓ(u,v)−Kh,ℓ(u′,v′))≤0,u,u′,v,v′∈R,(χ(−∞,0)(u)−χ(−∞,0)(v))Gi,j(u,v)≤0,u,v∈R,(χ(−∞,0)(u)−χ(−∞,0)(v))Kh,ℓ(u,v)≥0,u,v∈R, | (20) |
where
This specific form of transmission conditions is reminiscent of the parabolic transmission conditions considered in [14,8], which were originally inspired from the Kedem-Katchalsky conditions for membrane permeability introduced in [16]
Gh,ℓ(u,v)=ch,ℓ(u−v), | (21) |
for some constants
Gh,ℓ(u,v)(u−v)≥0, | (22) |
that allows the authors in [14] to get the
We can observe that the equality (6) holds as
m∑i=1βi(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m∑i=1m+n∑j=m+1Gi,j(ρi,ε(t,0),ρj,ε(t,0))+εm∑i=1(m∑h=1Ki,h(ρi,ε(t,0),ρh,ε(t,0))−m+n∑h=1Kh,i(ρh,ε(t,0),ρi,ε(t,0)))=m∑i=1m+n∑j=m+1(Gi,j(ρi,ε(t,0),ρj,ε(t,0))−εKj,i(ρj,ε(t,0),ρi,ε(t,0))) | (23) |
and analogously
m+n∑j=m+1βj(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m+n∑j=m+1m∑i=1(Gi,j(ρi,ε(t,0),ρj,ε(t,0))−εKj,i(ρj,ε(t,0),ρi,ε(t,0))). | (24) |
This section is devoted to establish a priori estimates, uniform with respect to
For every
Lemma 3.1 (
0≤ρi,ε,ρj,ε≤1,i,j. | (25) |
Proof. Consider the function
η(ξ)=−ξχ(−∞,0)(ξ). |
Since
η′(ξ)=−χ(−∞,0)(ξ), |
using (19) we obtain
ddt(m∑i=1∫0−∞η(ρi,ε)dx+m+n∑j=m+1∫∞0η(ρj,ε)dx)=m∑i=1∫0−∞η′(ρi,ε)∂tρi,εdx+m+n∑j=m+1∫∞0η′(ρj,ε)∂tρj,εdx=−m∑i=1∫0−∞χ(−∞,0)(ρi,ε)∂tρi,εdx−m+n∑j=m+1∫∞0χ(−∞,0)(ρj,ε)∂tρj,εdx=m∑i=1∫0−∞χ(−∞,0)(ρi,ε)∂x(fi(ρi,ε)−ε∂xρi,ε)dx+m+n∑j=m+1∫∞0χ(−∞,0)(ρj,ε)∂x(fj(ρj,ε)−ε∂xρj,ε)dx=m∑i=1χ(−∞,0)(ρi,ε(t,0))(fi(ρi,ε(t,0))−ε∂xρi,ε(t,0))−m+n∑j=m+1χ(−∞,0)(ρj,ε(t,0))(fj(ρj,ε(t,0))−ε∂xρj,ε(t,0))+m∑i=1∫0−∞∂xρi,ε(fi(ρi,ε)−ε∂xρi,ε)dδ{ρi,ε=0}⏟≤0+m+n∑j=m+1∫∞0∂xρj,ε(fj(ρj,ε)−ε∂xρj,ε)dδ{ρj,ε=0}⏟≤0≤m+n∑j=m+1m∑i=1(χ(−∞,0)(ρi,ε(t,0))−χ(−∞,0)(ρj,ε(t,0)))⋅⋅(Gi,j(ρi,ε(t,0),ρj,ε(t,0))−εKj,i(ρj,ε(t,0),ρi,ε(t,0)))≤0, |
where
0≤m∑i=1∫0−∞η(ρi,ε(t,x))dx+m+n∑j=m+1∫∞0η(ρj,ε(t,x))dx≤m∑i=1∫0−∞η(ρi,0,ε)dx+m+n∑j=m+1∫∞0η(ρj,0,ε)dx=0 |
and then
ρi,ε,ρj,ε≥0,i,j, |
that proves the lower bounds in (25). The upper bounds in (25) can be proved in the same way using the function
Lemma 3.2 (
m∑i=1‖ρi,ε(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖ρj,ε(t,⋅)‖L1(0,∞)≤m∑i=1‖ρi,0‖L1(−∞,0)+m+n∑j=m+1‖ρj,0‖L1(0,∞),t≥0. | (26) |
Proof. Thanks to (5), (23), (24), and (25), we have that
ddt(m∑i=1∫0−∞|ρi,ε|dx+m+n∑j=m+1∫∞0|ρj,ε|dx)=ddt(m∑i=1∫0−∞ρi,εdx+m+n∑j=m+1∫∞0ρj,εdx)=m∑i=1∫0−∞∂tρi,εdx+m+n∑j=m+1∫∞0∂tρj,εdx=−m∑i=1∫0−∞∂x(fi(ρi,ε)−ε∂xρi,ε)dx−m+n∑j=m+1∫∞0∂x(fj(ρj,ε)−ε∂xρj,ε)dx=−m∑i=1βi(ρ1,ε(t,0),…,ρm+n,ε(t,0))+m+n∑j=m+1βj(ρ1,ε(t,0),…,ρm+n,ε(t,0))=0. |
Integrating over
Lemma 3.3 (
m∑i=1‖ρi,ε(t,⋅)‖2L2(−∞,0)+m+n∑j=m+1‖ρj,ε(t,⋅)‖2L2(0,∞)+2ε∫t0(m∑i=1‖∂xρi,ε(s,⋅)‖2L2(−∞,0)+m+n∑j=m+1‖∂xρj,ε(s,⋅)‖2L2(0,∞))ds≤m∑i=1‖ρi,0‖2L2(−∞,0)+m+n∑j=m+1‖ρj,0‖2L2(0,∞)+2(m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1))t, | (27) |
for every
Proof. Thanks to (5), we have that
ddt(m∑i=1∫0−∞ρ2i,ε2dx+m+n∑j=m+1∫∞0ρ2j,ε2dx)=m∑i=1∫0−∞ρi,ε∂tρi,εdx+m+n∑j=m+1∫∞0ρj,ε∂tρj,εdx=−m∑i=1∫0−∞ρi,ε∂x(fi(ρi,ε)−ε∂xρi,ε)dx−m+n∑j=m+1∫∞0ρj,ε∂x(fj(ρj,ε)−ε∂xρj,ε)dx=−m∑i=1ρi,ε(t,0)(fi(ρi,ε(t,0))−ε∂xρi,ε(t,0))+m+n∑j=m+1ρj,ε(t,0)(fj(ρj,ε(t,0))−ε∂xρj,ε(t,0))+m∑i=1∫0−∞∂x(∫ρi,ε(t,x)0fi(ξ)dξ)dx+m+n∑j=m+1∫∞0∂x(∫ρj,ε(t,x)0fj(ξ)dξ)dx−εm∑i=1∫0−∞(∂xρi,ε)2dx−εm+n∑j=m+1∫∞0(∂xρj,ε)2dx=m∑i=1ρj,ε(t,0)βi(ρ1,ε(t,0),....,ρm+n,ε(t,0))−m+n∑j=m+1ρi,ε(t,0))βj(ρ1,ε(t,0),....,ρm+n,ε(t,0))+m∑i=1∫ρi,ε(t,0)0fi(ξ)dξ−m+n∑j=m+1∫ρj,ε(t,0)0fj(ξ)dξ⏟≤0−εm∑i=1∫0−∞(∂xρi,ε)2dx−εm+n∑j=m+1∫∞0(∂xρj,ε)2dx≤m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1)−εm∑i=1∫0−∞(∂xρi,ε)2dx−εm+n∑j=m+1∫∞0(∂xρj,ε)2dx. |
Integrating over
Lemma 3.4 (
m∑i=1‖∂tρi,ε(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖∂tρj,ε(t,⋅)‖L1(0,∞)≤(m+n)C+m∑i=1‖f′i‖L∞(0,1)TV(ρi,0)+m+n∑j=m+1‖f′j‖L∞(0,1)TV(ρj,0), | (28) |
for every
Proof. From (5) we get
∂2ttρi,ε+∂x(f′i(ρi,ε)∂tρi,ε)=ε∂3txxρi,ε,∂2ttρj,ε+∂x(f′j(ρj,ε)∂tρj,ε)=ε∂3txxρj,ε,f′i(ρi,ε(t,0))∂tρi,ε(t,0)−ε∂2txρi,ε(t,0)=m+n∑j=m+1∇Gi,j(ρi,ε(t,0),ρj,ε(t,0))⋅(∂tρi,ε(t,0),∂tρj,ε(t,0))+εm∑h=1∇Ki,h(ρi,ε(t,0),ρh,ε(t,0))⋅(∂tρi,ε(t,0),∂tρh,ε(t,0))−εm+n∑h=1∇Kh,i(ρh,ε(t,0),ρi,ε(t,0))⋅(∂tρh,ε(t,0),∂tρi,ε(t,0)),f′j(ρj,ε(t,0))∂tρj,ε(t,0)−ε∂2txρj,ε(t,0)=m∑i=1∇Gi,j(ρi,ε(t,0),ρj,ε(t,0))⋅(∂tρi,ε(t,0),∂tρj,ε(t,0))+εm+n∑h=m+1∇Kh,j(ρh,ε(t,0),ρj,ε(t,0))⋅(∂tρh,ε(t,0),∂tρj,ε(t,0))−εm+n∑h=1∇Kj,h(ρj,ε(t,0),ρh,ε(t,0))⋅(∂tρi,ε(t,0),∂tρh,ε(t,0)). |
Thanks to (20), we have that
ddt(m∑i=1∫0−∞|∂tρi,ε|dx+m+n∑j=m+1∫∞0|∂tρj,ε|dx)=m∑i=1∫0−∞∂2ttρi,εsign(∂tρi,ε)dx+m+n∑j=m+1∫∞0∂2ttρj,εsign(∂tρj,ε)dx=−m∑i=1∫0−∞sign(∂tρi,ε)∂x(f′i(ρi,ε)∂tρi,ε−ε∂2txρi,ε)dx−m+n∑j=m+1∫∞0sign(∂tρj,ε)∂x(f′j(ρj,ε)∂tρj,ε−ε∂2txρj,ε)dx=−m∑i=1sign(∂tρi,ε(t,0))(f′i(ρi,ε(t,0))∂tρi,ε(t,0)−ε∂2txρi,ε(t,0))+m+n∑j=m+1sign(∂tρj,ε(t,0))(f′j(ρj,ε(t,0))∂tρj,ε(t,0)−ε∂2txρj,ε(t,0))+2m∑i=1∫0−∞∂2txρi,ε(f′i(ρi,ε)∂tρi,ε−ε∂2txρi,ε)dδ{∂tρi,ε=0}⏟≤0+2m+n∑j=m+1∫0−∞∂2txρj,ε(f′j(ρj,ε)∂tρj,ε−ε∂2txρj,ε)dδ{∂tρj,ε=0}⏟≤0≤−m∑i=1m+n∑j=m+1(sign(∂tρi,ε(t,0))−sign(∂tρj,ε(t,0)))××∇Gi,j(ρi,ε(t,0),ρj,ε(t,0))⋅(∂tρi,ε(t,0),∂tρj,ε(t,0))+εm∑i=1m+n∑j=m+1(sign(∂tρi,ε(t,0))−sign(∂tρj,ε(t,0)))××∇Kj,i(ρi,ε(t,0),ρj,ε(t,0))⋅(∂tρi,ε(t,0),∂tρj,ε(t,0))≤0, |
where
Integrating over
m∑i=1‖∂tρi,ε(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖∂tρj,ε(t,⋅)‖L1(0,∞)≤m∑i=1‖∂tρi,ε(0,⋅)‖L1(−∞,0)+m+n∑j=m+1‖∂tρj,ε(0,⋅)‖L1(0,∞)=m∑i=1‖ε∂2xxρi,0,ε−∂xfi(ρi,0,ε)‖L1(−∞,0)+m+n∑j=m+1‖ε∂2xxρj,0,ε−∂xfj(ρj,0,ε)‖L1(0,∞)≤m∑i=1(ε‖∂2xxρi,0,ε‖L1(−∞,0)+‖f′i(ρi,0,ε)‖L∞(−∞,0)‖∂xρi,0,ε‖L1(−∞,0))+m+n∑j=m+1(ε‖∂2xxρj,0,ε‖L1(0,∞)+‖f′j(ρj,0,ε)‖L∞(0,∞)‖∂xρj,0,ε‖L1(0,∞))≤(m+n)C+m∑i=1‖f′i‖L∞(0,1)TV(ρi,0)+m+n∑j=m+1‖f′j‖L∞(0,1)TV(ρj,0), |
that is (28).
Lemma 3.5 (Stability estimate). Let
m∑i=1‖ρi,ε(t,⋅)−¯ρi,ε(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖ρj,ε(t,⋅)−¯ρj,ε(t,⋅)‖L1(0,∞)≤m∑i=1‖ρi,0,ε−¯ρi,0,ε‖L1(−∞,0)+m+n∑j=m+1‖ρj,0,ε−¯ρj,0,ε‖L1(0,∞),t≥0. | (29) |
Proof. From (5) we get
∂t(ρi,ε−¯ρi,ε)+∂x(fi(ρi,ε)−fi(¯ρi,ε))=ε∂2xx(ρi,ε−¯ρi,ε),∂t(ρj,ε−¯ρj,ε)+∂x(fj(ρj,ε)−fj(¯ρj,ε))=ε∂2xx(ρj,ε−¯ρj,ε). |
Thanks to (5), (20), and (25), we have that
ddt(m∑i=1∫0−∞|ρi,ε−¯ρi,ε|dx+m+n∑j=m+1∫∞0|ρj,ε−¯ρj,ε|dx)=m∑i=1∫0−∞sign(ρi,ε−¯ρi,ε)∂t(ρi,ε−¯ρi,ε)dx+m+n∑j=m+1∫∞0sign(ρj,ε−¯ρj,ε)∂t(ρj,ε−¯ρj,ε)dx=−m∑i=1∫0−∞sign(ρi,ε−¯ρi,ε)∂x((fi(ρi,ε)−fi(¯ρi,ε))−ε∂x(ρi,ε−¯ρi,ε))dx−m+n∑j=m+1∫∞0sign(ρj,ε−¯ρj,ε)∂x((fj(ρj,ε)−fj(¯ρj,ε))−ε∂x(ρj,ε−¯ρj,ε))dx=−m∑i=1m+n∑j=m+1[sign(ρi,ε(t,0)−¯ρi,ε(t,0))−sign(ρj,ε(t,0)−¯ρj,ε(t,0))]××[Gi,j(ρi,ε(t,0),ρj,ε(t,0))−Gi,j(¯ρi,ε(t,0),¯ρj,ε(t,0))]+εm∑i=1m+n∑j=m+1[sign(ρi,ε(t,0)−¯ρi,ε(t,0))−sign(ρj,ε(t,0)−¯ρj,ε(t,0))]××[Kj,i(ρi,ε(t,0),ρj,ε(t,0))−Gi,j(¯ρi,ε(t,0),¯ρj,ε(t,0))]+2m∑i=1∫0−∞∂x(ρi,ε−¯ρi,ε)((fi(ρi,ε)−fi(¯ρi,ε))−ε∂x(ρi,ε−¯ρi,ε))dδ{ρi,ε=¯ρi,ε}⏟≤0+2m+n∑j=m+1∫∞0∂x(ρj,ε−¯ρj,ε)((fi(ρj,ε)−fi(¯ρj,ε))−ε∂x(ρj,ε−¯ρj,ε))dδ{ρj,ε=¯ρj,ε}⏟≤0≤0, |
where we use [6,Lemma 2] and we denote by
Integrating over
The well-posedness of smooth solutions for (5) can be proved following the argument used in [10,Theorem 1.2] to establish the well-posedness of smooth solutions for (4). Indeed, the existence of a linear semigroup of solutions in the linear case (i.e., when
The main result of this section is the following.
Lemma 4.1. Let
ρ1,...,ρm∈L1((0,∞)×(−∞,0))∩L∞((0,∞)×(−∞,0)), | (30) |
ρm+1,...,ρm+n∈L1((0,∞)×(0,∞))∩L∞((0,∞)×(0,∞)), | (31) |
0≤ρℓ≤1,ℓ∈{1,...,m+n}, | (32) |
ρi,εk⟶ρi,a.e.andinLploc((0,∞)×(−∞,0)), | (33) |
ρj,εk⟶ρj,a.e.andinLploc((0,∞)×(0,∞)), | (34) |
for every
m∑i=1‖ρi(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖ρj(t,⋅)‖L1(0,∞) | (35) |
≤m∑i=1‖ρi,0‖L1(−∞,0)+m+n∑j=m+1‖ρj,0‖L1(0,∞),m∑i=1‖ρi(t,⋅)‖2L2(−∞,0)+m+n∑j=m+1‖ρj(t,⋅)‖2L2(0,∞) | (36) |
≤m∑i=1‖ρi,0‖2L2(−∞,0)+m+n∑j=m+1‖ρj,0‖2L2(0,∞)+2(m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1))t,m∑i=1TV(fi(ρi(t,⋅)))+m+n∑j=m+1TV(fj(ρj(t,⋅)))=m∑i=1‖∂tρi(t,⋅)‖M(−∞,0)+m+n∑j=m+1‖∂tρj(t,⋅)‖M(0,∞)≤(m+n)C+m∑i=1‖f′i‖L∞(0,1)TV(ρi,0)+m+n∑j=m+1‖f′j‖L∞(0,1)TV(ρj,0). | (37) |
Thanks to the genuine nonlinearity of
Theorem 4.2 (Tartar). Let
‖vν‖L∞((0,T)×R)≤MT,T,ν>0, |
and the family
{∂tη(vν)+∂xqℓ(vν)}ν>0 |
is compact in
vνn⟶va.e.andinLploc((0,∞)×R),1≤p<∞. |
The following compact embedding of Murat [17] is useful.
Theorem 4.3 (Murat). Let
Ln=L1,n+L2,n, |
where
Proof of Lemma 4.1. Let us fix
Let
∂tη(ρi,ε)+∂xqi(ρi,ε)=ε∂2xxη(ρi,ε)⏟L1,ε−εη″(ρi,ε)(∂xρi,ε)2⏟L2,ε. | (38) |
We claim that
L1,ε⟶0inH−1((0,T)×(−∞,0)),T>0,asε→0,{L2,ε}εisuniformlyboundedinL1((0,T)×(−∞,0)),T>0. | (39) |
Indeed, (25) and (27) imply
‖ε∂xη(ρi,ε)‖L2((0,T)×(−∞,0))≤√ε‖η′‖L∞(0,1)‖√ε∂xρi,ε‖L2((0,∞)×(−∞,0))≤√ε‖η′‖L∞(0,1)(m∑i=1‖ρi,ε,0‖L2(−∞,0)+m+n∑j=m+1‖ρj,ε,0‖L2(0,∞)+√2(m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1))T)→0,‖εη″(ρi,ε)(∂xρi,ε)2‖L1((0,T)×(−∞,0))≤‖η″‖L∞(0,1)(m∑i=1‖ρi,ε,0‖2L2(−∞,0)+m+n∑j=m+1‖ρj,ε,0‖2L2(0,∞)+2(m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1))T). |
Due to (16), (39) follows. Therefore, Theorems 4.3 and 4.2 give the existence of a subsequence
ρi,εk⟶ρiinLploc((0,∞)×(−∞,0))foranyp∈[1,∞),ρi,εk⟶ρia.e.in(0,∞)×(−∞,0), | (40) |
that guarantees (32) and (33).
Finally, thanks to Lemmas 3.2, 3.3, and 3.4 we have (35), (36), and (37).
Proof of Theorem 1.2.. The first part of the statement related to the convergence of vanishing viscosity approximations has been proved in Lemma 4.1.
Let us fix
Thanks to (3.4) and (33), for all
∫∞0∫0−∞ρi∂tφdxdt=limk∫∞0∫0−∞ρi,εk∂tφdxdt=−limk∫∞0∫0−∞∂tρi,εkφdxdt≤‖φ‖L∞((0,∞)×(−∞,0))((m+n)C+m∑i=1‖f′i‖L∞(0,1)TV(ρi,0)+m+n∑j=m+1‖f′j‖L∞(0,1)TV(ρj,0)), |
therefore
∂tρi∈M((0,∞)×(−∞,0)), | (41) |
where
∂xfi(ρi)∈M((0,∞)×(−∞,0)). | (42) |
Clearly (41) and (42) give (9) and so the trace at the junction
We prove now that the identity
m∑i=1fi(ρi(t,0−))=n+m∑j=m+1fj(ρj(t,0+)) | (43) |
holds for a.e.
Let
0≤rν(x)≤1,rν(0)=1,supp(rν)⊆[0,1ν], | (44) |
for every
From (5) we have that
0=m∑i=1∫∞0∫0−∞(∂tρi,εk+∂xfi(ρi,εk)−εk∂2xxρi,εk)φ(t)˜rν(x)dxdt+m+n∑j=m+1∫∞0∫∞0(∂tρj,εk+∂xfj(ρj,εk)−εk∂2xxρj,εk)φ(t)rν(x)dxdt=−m∑i=1∫∞0∫0−∞(ρi,εkφ′(t)˜rν(x)+fi(ρi,εk)φ(t)˜r′ν(x)−εk∂xρi,εkφ(t)˜r′ν(x))dxdt−m+n∑j=m+1∫∞0∫∞0(ρj,εkφ′(t)rν(x)+fj(ρj,εk)φ(t)r′ν(x)−εk∂xρj,εkφ(t)r′ν(x))dxdt+m∑i=1∫∞0(fi(ρi,εk(t,0))−εk∂xρi,εk(t,0))φ(t)dt−m+n∑j=m+1∫∞0(fj(ρj,εk(t,0))−εk∂xρj,εk(t,0))φ(t)dt=−m∑i=1∫∞0∫0−∞(ρi,εkφ′(t)˜rν(x)+fi(ρi,εk)φ(t)˜r′ν(x)−εk∂xρi,εkφ(t)˜r′ν(x))dxdt−m+n∑j=m+1∫∞0∫∞0(ρj,εkφ′(t)rν(x)+fj(ρj,εk)φ(t)r′ν(x)−εk∂xρj,εkφ(t)r′ν(x))dxdt. |
As
0=−m∑i=1∫∞0∫0−∞(ρiφ′(t)˜rν(x)+fi(ρi)φ(t)˜r′ν(x))dxdt−m+n∑j=m+1∫∞0∫∞0(ρjφ′(t)rν(x)+fj(ρj)φ(t)r′ν(x))dxdt. |
Finally, sending
0=−m∑i=1∫∞0fi(ρi(t,0−))φ(t)dt+m+n∑j=m+1∫∞0fj(ρj(t,0+))φ(t)dt, |
that gives (43).
[1] |
M. Fiedler, V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl., 432 (2010), 2170-2173. doi: 10.1016/j.laa.2009.01.005
![]() |
[2] | G. D. Yu, Y. Z. Fan, Spectral conditions for a graph to be hamilton-connected, Appl. Mech. Mater., 336-338 (2013), 2329-2334. |
[3] |
M. Lu, H. Q. Liu, F. Tian, Spectral Radius and Hamiltonion graphs, Linear Algebra Appl., 437 (2012), 1670-1674. doi: 10.1016/j.laa.2012.05.021
![]() |
[4] | Y. Z. Fan, G. D. Yu. Spectral Condition for a Graph to be Hamiltonian with respect to Normalized Laplacian, Mathematics, 2012. |
[5] |
L. H. Feng, P. L. Zhang, H. Liu, et al. Spectral conditions for some graphical properties, Linear Algebra Appl., 524 (2017), 182-198. doi: 10.1016/j.laa.2017.03.006
![]() |
[6] |
B. L. Li, B. Ning, Spectral analogues of Erdos' and Moon-Moser's theorems on Hamilton cycles, Linear Multilinear Algebra, 64 (2016), 2252-2269. doi: 10.1080/03081087.2016.1151854
![]() |
[7] |
R. F. Liu, W. C. Shiu, J. Xue, Sufficient spectral conditions on Hamiltonian and traceable graphs, Linear Algebra Appl., 467 (2015), 254-266. doi: 10.1016/j.laa.2014.11.017
![]() |
[8] |
V. Nikiforov, Spectral radius and Hamiltonicity of graphs with large minimum degree, Czechoslovak Math. J., 66 (2016), 925-940. doi: 10.1007/s10587-016-0301-y
![]() |
[9] | G. D. Yu, G. X. Cai, M. L. Ye, et al. Energy conditions for Hamiltonicity of graphs, Discrete Dyn. Nature Soc., 53-56 (2014), 1-6. |
[10] | Q. N. Zhou, L. G. Wang, Y. Lu, Some sufficient conditions on hamiltonian and traceable graphs, Advances in Mathematics, 47 (2018), 31-40. |
[11] | G. D. Yu, T. Yu, A. X. Shu, et al. Some Sufficient Conditions on Pancyclic Graphs, Inf. Process. Lett., 2018. |
[12] |
E. F. Schmeichel, S. L. Hakimi, Pancyclic graphs and a conjecture of Bondy and Chvatal, J. Comb. Theory, 17 (1974), 22-34. doi: 10.1016/0095-8956(74)90043-4
![]() |
[13] | H. Yuan. A bound on the spectral radius of graphs, Linear Algebra and Its Applications, 108 (1988), 135-139. |
[14] | G. D. Yu, Y. Z. Fan, Spectral Conditions for a Graph to be Hamilton-Connected, Applied Mech. Mater., 336-338 (2013), 2329-2334. |
[15] |
J. A. Bondy, A. W. Ingleton, Pancyclic graphs I, J. Comb. Theory, 11 (1971), 80-84. doi: 10.1016/0095-8956(71)90016-5
![]() |
[16] | R. Haggkvist, R. J. Faudree, R. H. Schelp, Pancyclic graphs Dconnected Ramsey number, Ars Comb.-Waterloo Winnipeg, 11 (1981), 37-49. |
1. | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro, Well-posedness theory for nonlinear scalar conservation laws on networks, 2022, 17, 1556-1801, 101, 10.3934/nhm.2021025 | |
2. | Francesca R. Guarguaglini, Roberto Natalini, Vanishing viscosity approximation for linear transport equations on finite star-shaped networks, 2021, 21, 1424-3199, 2413, 10.1007/s00028-021-00688-0 | |
3. | John D. Towers, An explicit finite volume algorithm for vanishing viscosity solutions on a network, 2022, 17, 1556-1801, 1, 10.3934/nhm.2021021 | |
4. | Ulrik S. Fjordholm, Markus Musch, Nils H. Risebro, Well-Posedness and Convergence of a Finite Volume Method for Conservation Laws on Networks, 2022, 60, 0036-1429, 606, 10.1137/21M145001X | |
5. | Jon Asier Bárcena-Petisco, Márcio Cavalcante, Giuseppe Maria Coclite, Nicola De Nitti, Enrique Zuazua, Control of hyperbolic and parabolic equations on networks and singular limits, 2024, 0, 2156-8472, 0, 10.3934/mcrf.2024015 | |
6. | Dilip Sarkar, Shridhar Kumar, Pratibhamoy Das, Higinio Ramos, Higher-order convergence analysis for interior and boundary layers in a semi-linear reaction-diffusion system networked by a k-star graph with non-smooth source terms, 2024, 19, 1556-1801, 1085, 10.3934/nhm.2024048 |