
Citation: Jian-Guo Liu, Wen-Hui Zhu, Yan He, Aly R. Seadawy. Complexiton solutions and periodic-soliton solutions for the (2+1)-dimensional BLMP equation[J]. AIMS Mathematics, 2020, 5(1): 421-439. doi: 10.3934/math.2020029
[1] | Sixing Tao . Breathers, resonant multiple waves and complexiton solutions of a (2+1)-dimensional nonlinear evolution equation. AIMS Mathematics, 2023, 8(5): 11651-11665. doi: 10.3934/math.2023590 |
[2] | Jianhong Zhuang, Yaqing Liu, Ping Zhuang . Variety interaction solutions comprising lump solitons for the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation. AIMS Mathematics, 2021, 6(5): 5370-5386. doi: 10.3934/math.2021316 |
[3] | M. A. El-Shorbagy, Sonia Akram, Mati ur Rahman, Hossam A. Nabwey . Analysis of bifurcation, chaotic structures, lump and $ M-W $-shape soliton solutions to $ (2+1) $ complex modified Korteweg-de-Vries system. AIMS Mathematics, 2024, 9(6): 16116-16145. doi: 10.3934/math.2024780 |
[4] | Gaukhar Shaikhova, Bayan Kutum, Ratbay Myrzakulov . Periodic traveling wave, bright and dark soliton solutions of the (2+1)-dimensional complex modified Korteweg-de Vries system of equations by using three different methods. AIMS Mathematics, 2022, 7(10): 18948-18970. doi: 10.3934/math.20221043 |
[5] | Ninghe Yang . Exact wave patterns and chaotic dynamical behaviors of the extended (3+1)-dimensional NLSE. AIMS Mathematics, 2024, 9(11): 31274-31294. doi: 10.3934/math.20241508 |
[6] | Naveed Iqbal, Meshari Alesemi . Soliton dynamics in the $ (2+1) $-dimensional Nizhnik-Novikov-Veselov system via the Riccati modified extended simple equation method. AIMS Mathematics, 2025, 10(2): 3306-3333. doi: 10.3934/math.2025154 |
[7] | Zhe Ji, Yifan Nie, Lingfei Li, Yingying Xie, Mancang Wang . Rational solutions of an extended (2+1)-dimensional Camassa-Holm- Kadomtsev-Petviashvili equation in liquid drop. AIMS Mathematics, 2023, 8(2): 3163-3184. doi: 10.3934/math.2023162 |
[8] | Wafaa B. Rabie, Hamdy M. Ahmed, Taher A. Nofal, Soliman Alkhatib . Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(11): 31882-31897. doi: 10.3934/math.20241532 |
[9] | Ahmed A. Gaber, Abdul-Majid Wazwaz . Dynamic wave solutions for (2+1)-dimensional DJKM equation in plasma physics. AIMS Mathematics, 2024, 9(3): 6060-6072. doi: 10.3934/math.2024296 |
[10] | Noor Alam, Mohammad Safi Ullah, Jalil Manafian, Khaled H. Mahmoud, A. SA. Alsubaie, Hamdy M. Ahmed, Karim K. Ahmed, Soliman Al Khatib . Bifurcation analysis, chaotic behaviors, and explicit solutions for a fractional two-mode Nizhnik-Novikov-Veselov equation in mathematical physics. AIMS Mathematics, 2025, 10(3): 4558-4578. doi: 10.3934/math.2025211 |
The nonlinear evolution equations (NLEEs) can be used to describe many physical models [1,2,3,4,5]. The investigation on exact solutions and numerical solutions of NLEEs has become one of the most important areas in the study of nonlinear physical phenomena [6,7,8,9]. Via symbolic computation [10,11,12,13,14,15,16,17], many effective methods are presented [18,19,20,21,22,23,24,25].
In this paper, a (2+1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation is investigated as [26,27,28,29,30,31,32,33,34,35]
uyt+uxxxy−3uxuxy−3uxxuy=0, | (1.1) |
where u=u(x,y,t). Some exact solutions including kinky periodic solitary-wave solutions, periodic soliton solutions and kink solutions were discussed [26]. Bilinear form was presented via using the binary Bell polynomials [27]. The variable separable solutions and some novel localized excitations were obtained [28]. New solutions were derived via wronskian formalism and the Hirota method [29,30]. The periodic-soliton solutions are investigated [31] and so on [32,33,34,35]. But so far, complexiton solutions and double periodic-soliton solutions for Eq. (1) have not been obtained.
The organization of this paper is as follows. Section 2 obtains many new complexiton solutions and double periodic-soliton solutions based the bilinear form and an ansätz function, their dynamical behaviors are demonstrated in some three-dimensional plots by selecting different values of the parameters. Section 3 gives the conclusions.
Under the transformation
u(x,y,t)=−2[lnΨ(x,y,t)]x, | (2.1) |
the Eq. (1) is transformed into the bilinear form
(DyDt+DyD3x)Ψ⋅Ψ=0. | (2.2) |
Eq. (3) is equivalent to
−ΨtΨy−ΨxxxΨy+3ΨxyΨxx−3ΨxΨxxy+Ψ(Ψyt+Ψxxxy)=0. | (2.3) |
Supposing Eq. (4) has the following form of solution:
Ψ=eΨ1[Θ1cos(Ψ2)+Θ2sin(Ψ2)]+k1e2Ψ1+eΨ3[Θ3cos(Ψ4)+Θ4sin(Ψ4)]+k2eΨ4, | (2.4) |
where Ψi=ιix+ρiy+ςit,i=1,2,3,4 and ιi, ρi and ςi are unknown constants. Substituting Eq. (5) into Eq. (4) and equating corresponding coefficients of eΨ1, eΨ3, eΨ4, cosΨ2, sinΨ2, cosΨ4, and sinΨ4 to zero, a set of algebraic equations for ιi, ρi and ςi can be presented as follows
Case (1)
k1=ρ4=ρ2=0,ρ1=ρ3,ς4=ι4(−3ι23+12ι4ι3−11ι24),ς2=ι2(−3ι21+12ι4ι1+ι22−12ι24),ς3=−ι33+15ι24ι3−20ι34,ς1=−ι31+6ι4ι21+3ι22ι1−12ι24ι1−14ι34+24ι3ι24−6ι22ι4−6ι23ι4, | (2.5) |
Ψ=e2(xι4+t(−3ι23+12ι4ι3−11ι24)ι4)k2+exι1+yρ3+tς1[cos[xι2+t(−3ι21+12ι4ι1+ι22−12ι24)ι2]Θ1+sin[xι2+t(−3ι21+12ι4ι1+ι22−12ι24)ι2]Θ2]+exι3+t(−ι33+15ι24ι3−20ι34)+yρ3[cos[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]Θ3+sin[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]Θ4]. | (2.6) |
u1=−[2[2e2[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]k2ι4+exι1+yρ3+tς1ι1[cos[xι2+t(−3ι21+12ι4ι1+ι22−12ι24)ι2]Θ1+sin[xι2+t(−3ι21+12ι4ι1+ι22−12ι24)ι2]Θ2]+exι1+yρ3+tς1[cos[xι2+t(−3ι21+12ι4ι1+ι22−12ι24)ι2]ι2Θ2−sin[xι2+t(−3ι21+12ι4ι1+ι22−12ι24)ι2]ι2Θ1]+exι3+t(−ι33+15ι24ι3−20ι34)+yρ3ι3[cos[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]Θ3+sin(xι4+t(−3ι23+12ι4ι3−11ι24)ι4)Θ4]+exι3+t(−ι33+15ι24ι3−20ι34)+yρ3[cos[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]∗ι4Θ4−sin[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]ι4Θ3]]]/[e2[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]k2+exι1+yρ3+tς1[cos[xι2+t(−3ι21+12ι4ι1+ι22−12ι24)ι2]Θ1+sin[xι2+t(−3ι21+12ι4ι1+ι22−12ι24)ι2]Θ2]+exι3+t(−ι33+15ι24ι3−20ι34)+yρ3[cos[xι4+t(−3ι23+12ι4∗ι3−11ι24)ι4]Θ3+sin[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]Θ4]]. | (2.7) |
The dynamical behavior to Eq. (8) is demonstrated in Figure 1.
Case (2)
k1=ρ4=ι2=0,ς2=4ι32,ι1=2ι4,ς4=ι4(−3ι23+12ι4ι3−11ι24),ς1=−22ι34+24ι3ι24−6ι23ι4,ς3=−ι33+15ι24ι3−20ι34, | (2.8) |
Ψ=e2[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]k2+e2xι4+t(−22ι34+24ι3ι24−6ι23ι4)+yρ1[cos(yρ2)Θ1+sin(yρ2)Θ2]+exι3+t(−ι33+15ι24ι3−20ι34)+yρ3[cos[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]Θ3+sin[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]Θ4]. | (2.9) |
u2=−[2[2e2[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]k2ι4+2[cos(yρ2)Θ1+sin[yρ2]Θ2]ι4e2xι4+t(−22ι34+24ι3ι24−6ι23ι4)+yρ1+exι3+t(−ι33+15ι24ι3−20ι34)+yρ3ι3[cos[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]Θ3+sin[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]Θ4]+exι3+t(−ι33+15ι24ι3−20ι34)+yρ3[cos[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]ι4Θ4−sin[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]ι4Θ3]]]/[e2[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]k2+[cos(yρ2)Θ1+sin(yρ2)Θ2]e2xι4+t(−22ι34+24ι3ι24−6ι23ι4)+yρ1+[cos[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]Θ3+sin[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]Θ4]]∗exι3+t(−ι33+15ι24ι3−20ι34)+yρ3. | (2.10) |
The dynamical behavior to Eq. (11) is demonstrated in Figure 2.
Case (3)
k1=ρ2=ι4=0,ς2=ι2(−3ι21+6ι3ι1+ι22−3ι23),ρ1=2ρ4,ς4=4ι34,ς1=[−Θ2ι31+3(ι2Θ1+ι3Θ2)ι21+3((ι22−ι23)Θ2−2ι2ι3Θ1)ι1−ι32Θ1+3ι2ι23Θ1−3ι22ι3Θ2+Θ1ς2]/Θ2,ς3=−ι33, | (2.11) |
Ψ=e2yρ4k2+exι1+2yρ4+tς1[cos[xι2+t(−3ι21+6ι3ι1+ι22−3ι23)ι2]Θ1+sin[xι2+t(−3ι21+6ι3ι1+ι22−3ι23)ι2]Θ2]+e−tι33+xι3+yρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]. | (2.12) |
u3=−[2[exι1+2yρ4+tς1ι1[cos[xι2+t(−3ι21+6ι3ι1+ι22−3ι23)ι2]Θ1+sin[xι2+t(−3ι21+6ι3ι1+ι22−3ι23)ι2]Θ2]+exι1+2yρ4+tς1[cos[xι2+t(−3ι21+6ι3ι1+ι22−3ι23)ι2]ι2Θ2−sin[xι2+t(−3ι21+6ι3ι1+ι22−3ι23)ι2]ι2Θ1]+e−tι33+xι3+yρ3ι3[cos(yρ4)Θ3+sin(yρ4)Θ4]]]/[e2yρ4k2+exι1+2yρ4+tς1[cos[xι2+t(−3ι21+6ι3ι1+ι22−3ι23)ι2]Θ1+sin[xι2+t(−3ι21+6ι3ι1+ι22−3ι23)ι2]Θ2]+e−tι33+xι3+yρ3(cos(yρ4)Θ3+sin(yρ4)Θ4)]. | (2.13) |
The dynamical behavior to Eq. (14) is demonstrated in Figure 3.
Case (4)
k1=ρ2=ς3=ι3=ι4=ς4=0,ς1=3ι1ι22−ι31,ς2=ι2(ι22−3ι21), | (2.14) |
Ψ=e2yρ4k2+exι1+t(3ι1ι22−ι31)+yρ1[cos[xι2+t(ι22−3ι21)ι2]Θ1+sin[xι2+t(ι22−3ι21)ι2]Θ2]+eyρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]. | (2.15) |
u4=−[2[exι1+t(3ι1ι22−ι31)+yρ1ι1[cos(xι2+t(ι22−3ι21)ι2)Θ1+sin[xι2+t(ι22−3ι21)ι2]Θ2]+exι1+t(3ι1ι22−ι31)+yρ1[cos[xι2+t(ι22−3ι21)ι2]∗ι2Θ2−sin[xι2+t(ι22−3ι21)ι2]ι2Θ1]]]/[[cos[xι2+t(ι22−3ι21)ι2]Θ1+sin(xι2+t(ι22−3ι21)ι2)Θ2]e2yρ4k2+exι1+t(3ι1ι22−ι31)+yρ1+eyρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]]. | (2.16) |
The dynamical behavior to Eq. (17) is demonstrated in Figure 4.
Case (5)
k1=ς2=ι2=ι4=ς4=0,ι3=ι1,ς3=−ι31,ς1=−ι31, | (2.17) |
Ψ=e2yρ4k2+e−tι31+xι1+yρ1[cos(yρ2)Θ1+sin(yρ2)Θ2]+e−tι31+xι1+yρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]. | (2.18) |
u5=−[2[e−tι31+xι1+yρ1ι1[cos(yρ2)Θ1+sin(yρ2)Θ2]+e−tι31+xι1+yρ3∗ι1[cos(yρ4)Θ3+sin(yρ4)Θ4]]]/[e2yρ4k2+e−tι31+xι1+yρ1[cos(yρ2)Θ1+sin(yρ2)Θ2]+e−tι31+xι1+yρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]]. | (2.19) |
The dynamical behavior to Eq. (20) is demonstrated in Figure 5.
Case (6)
k2=ς2=ρ4=ι2=0,ς3=−ι33+3ι1ι23−3ι21ι3+3ι24ι3−3ι1ι24,ς4=ι34−3(ι1−ι3)2ι4,ς1=−ι31,ρ3=2ρ1, | (2.20) |
Ψ=e2(−tι31+xι1+yρ1)k1+e−tι31+xι1+yρ1[cos(yρ2)Θ1+sin(yρ2)Θ2]+exι3+t(−ι33+3ι1ι23−3ι21ι3+3ι24ι3−3ι1ι24)+2yρ1[cos[xι4+tς4]Θ3+sin[xι4+t(ι34−3(ι1−ι3)2ι4)]Θ4]. | (2.21) |
u6=−[2[2e2(−tι31+xι1+yρ1)k1ι1+e−tι31+xι1+yρ1[cos(yρ2)Θ1+sin(yρ2)∗Θ2]ι1+exι3+2yρ1+tς3ι3(sin(xι4+tς4)+cos(xι4+tς4)Θ3)+exι3+2yρ1+tς3[cos(xι4+tς4)ι4−sin(xι4+tς4)ι4Θ3]]]/[e2(−tι31+xι1+yρ1)k1+e−tι31+xι1+yρ1[cos(yρ2)Θ1+sin(yρ2)Θ2]+exι3+2yρ1+tς3[sin(xι4+tς4)+cos(xι4+tς4)Θ3]]. | (2.22) |
The dynamical behavior to Eq. (23) is demonstrated in Figure 6.
Case (7)
k2=ς2=ς1=ρ4=ι2=ι1=0,ς3=3ι3ι24−ι33,ς4=ι34−3ι23ι4, | (2.23) |
Ψ=e2yρ1k1+eyρ1[cos(yρ2)Θ1+sin(yρ2)Θ2]+exι3+t(3ι3ι24−ι33)+yρ3∗[cos[xι4+t(ι34−3ι23ι4)]Θ3+sin[xι4+t(ι34−3ι23ι4)]Θ4]. | (2.24) |
u7=−[2[exι3+t(3ι3ι24−ι33)+yρ3ι3[cos[xι4+t(ι34−3ι23ι4)]Θ3+sin[xι4+t(ι34−3ι23ι4)]Θ4]+exι3+t(3ι3ι24−ι33)+yρ3[cos[xι4+t(ι34−3ι23ι4)]∗ι4Θ4−sin[xι4+t(ι34−3ι23ι4)]ι4Θ3]]]/[e2yρ1k1+eyρ1[cos(yρ2)Θ1+sin(yρ2)Θ2]+exι3+t(3ι3ι24−ι33)+yρ3[cos[xι4+t(ι34−3ι23ι4)]Θ3+sin[xι4+t(ι34−3ι23ι4)]Θ4]]. | (2.25) |
The dynamical behavior to Eq. (26) is demonstrated in Figure 7.
Case (8)
k2=ρ4=ρ2=0,ρ1=ρ3,ς1=3ι1ι22−ι31,ς2=ι32−3ι21ι2,ς3=6ι31−12ι3ι21+6ι22ι1+6ι23ι1−6ι24ι1−ι33+3ι3ι24,ς4=ι34−3(ι3−2ι1)2ι4, | (2.26) |
Ψ=e2[xι1+t(3ι1ι22−ι31)+yρ3]k1+exι1+t(3ι1ι22−ι31)+yρ3[cos[xι2+t(ι32−3ι21ι2)]Θ1+sin[xι2+t(ι32−3ι21ι2)]Θ2]+exι3+yρ3+tς3∗[sin(xι4+tς4)+cos(xι4+tς4)Θ3]. | (2.27) |
u8=−[2[2e2[xι1+t(3ι1ι22−ι31)+yρ3]k1ι1+exι1+t(3ι1ι22−ι31)+yρ3[cos[xι2+t(ι32−3ι21ι2)]Θ1+sin[xι2+t(ι32−3ι21ι2)]Θ2]ι1+exι1+t(3ι1ι22−ι31)+yρ3[cos[xι2+t(ι32−3ι21ι2)]ι2Θ2−sin[xι2+t(ι32−3ι21ι2)]ι2Θ1]+exι3+yρ3+tς3ι3[sin(xι4+tς4)+cos(xι4+tς4)Θ3]+exι3+yρ3+tς3[cos(xι4+tς4)ι4−sin(xι4+tς4)ι4Θ3]]]/[e2(xι1+t(3ι1ι22−ι31)+yρ3)k1+exι1+t(3ι1ι22−ι31)+yρ3[cos[xι2+t(ι32−3ι21ι2)]Θ1+sin(xι2+t(ι32−3ι21ι2))Θ2]+exι3+yρ3+tς3(sin(xι4+tς4)+cos(xι4+tς4)Θ3)]. | (2.28) |
The dynamical behavior to Eq. (29) is demonstrated in Figure 8.
Case (9)
k2=ς4=ς2=ι2=ι4=0,ι1=ι3,ς1=−ι33,ς3=−ι33, | (2.29) |
Ψ=e2(−tι33+xι3+yρ1)k1+e−tι33+xι3+yρ1[cos(yρ2)Θ1+sin(yρ2)Θ2]+e−tι33+xι3+yρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]. | (2.30) |
u9=−[2[2e2(−tι33+xι3+yρ1)k1ι3+e−tι33+xι3+yρ1[cos(yρ2)Θ1+sin(yρ2)Θ2]∗ι3+e−tι33+xι3+yρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]ι3]]/[e2(−tι33+xι3+yρ1)k1+e−tι33+xι3+yρ1[cos(yρ2)Θ1+sin(yρ2)Θ2]+e−tι33+xι3+yρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]]. | (2.31) |
The dynamical behavior to Eq. (32) is demonstrated in Figure 9.
Case (10)
k2=ς4=ρ2=ι4=0,ι3=2ι1,ς1=3ι1ι22−ι31,ς2=ι32−3ι21ι2,ς3=6ι1(4ι21+ι22)−26ι31, | (2.32) |
Ψ=e2[xι1+t(3ι1ι22−ι31)+yρ1]k1+exι1+t(3ι1ι22−ι31)+yρ1[cos[xι2+t(ι32−3ι21ι2)]Θ1+sin[xι2+t(ι32−3ι21ι2)]Θ2]+e2xι1+t[6ι1(4ι21+ι22)−26ι31]+yρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]. | (2.33) |
u10=−[2[2e2[xι1+t(3ι1ι22−ι31)+yρ1]k1ι1+exι1+t(3ι1ι22−ι31)+yρ1[cos[xι2+t(ι32−3ι21ι2)]Θ1+sin[xι2+t(ι32−3ι21ι2)]Θ2]ι1+2e2xι1+yρ3+tς3∗[cos(yρ4)Θ3+sin(yρ4)Θ4]ι1+exι1+t(3ι1ι22−ι31)+yρ1[cos[xι2+t(ι32−3ι21ι2)]ι2Θ2−sin[xι2+t(ι32−3ι21ι2)]ι2Θ1]]]/[e2[xι1+t(3ι1ι22−ι31)+yρ1]k1+exι1+t(3ι1ι22−ι31)+yρ1[cos[xι2+t(ι32−3ι21ι2)]Θ1+sin[xι2+t(ι32−3ι21ι2)]Θ2]+e2xι1+yρ3+tς3[cos(yρ4)Θ3+sin(yρ4)Θ4]]. | (2.34) |
The dynamical behavior to Eq. (35) is demonstrated in Figure 10.
Case (11)
ρ1=ρ4=ς2=ι2=ρ3=0,ι1=3ι23−5ι246(ι3−ι4),ς1=−(3ι23−5ι24)3216(ι3−ι4)3,ς3=−3ι53+6ι4ι43+6ι24ι33−24ι34ι23+41ι44ι3−30ι5412(ι3−ι4)2,ς4=−ι4(9ι43−36ι4ι33+54ι24ι23−36ι34ι3+13ι44)12(ι3−ι4)2, | (2.35) |
Ψ=e2[x(3ι23−5ι24)6(ι3−ι4)−t(3ι23−5ι24)3216(ι3−ι4)3]k1+e2(xι4+tς4)k2+ex(3ι23−5ι24)6(ι3−ι4)−t(3ι23−5ι24)3216(ι3−ι4)3∗[cos(yρ2)Θ1+sin(yρ2)Θ2]+exι3+tς3[cos(xι4+tς4)Θ3+sin(xι4+tς4)Θ4]. | (2.36) |
u11=−[2[2e2(xι4+tς4)k2ι4+e2[x(3ι23−5ι24)6(ι3−ι4)−t(3ι23−5ι24)3216(ι3−ι4)3]k1(3ι23−5ι24)3(ι3−ι4)+ex(3ι23−5ι24)6(ι3−ι4)−t(3ι23−5ι24)3216(ι3−ι4)3(3ι23−5ι24)(cos(yρ2)Θ1+sin(yρ2)Θ2)6(ι3−ι4)+exι3+tς3ι3(cos(xι4+tς4)Θ3+sin(xι4+tς4)Θ4)+exι3+tς3[cos(xι4+tς4)ι4Θ4−sin(xι4+tς4)ι4Θ3]]]/[e2(x(3ι23−5ι24)6(ι3−ι4)−t(3ι23−5ι24)3216(ι3−ι4)3)k1+e2(xι4+tς4)k2+ex(3ι23−5ι24)6(ι3−ι4)−t(3ι23−5ι24)3216(ι3−ι4)3(cos(yρ2)Θ1+sin(yρ2)Θ2)+exι3+tς3[cos(xι4+tς4)Θ3+sin(xι4+tς4)Θ4]]. | (2.37) |
The dynamical behavior to Eq. (38) is demonstrated in Figure 11.
Case (12)
ρ1=ρ4,ι2=ι4=ς4=ς2=0,ι1=ι3,ς3=−ι33,ς1=−ι31, | (2.38) |
Ψ=e2(−tι33+xι3+yρ4)k1+e2yρ4k2+e−tι33+xι3+yρ4[cos(yρ2)Θ1+sin(yρ2)Θ2]+e−tι33+xι3+yρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]. | (2.39) |
u12=−[2[2e2(−tι33+xι3+yρ4)k1ι3+e−tι33+xι3+yρ4[cos(yρ2)Θ1+sin(yρ2)Θ2]ι3+e−tι33+xι3+yρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]ι3]]/[e2(−tι33+xι3+yρ4)k1+e2yρ4k2+e−tι33+xι3+yρ4[cos(yρ2)Θ1+sin(yρ2)Θ2]+e−tι33+xι3+yρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]]. | (2.40) |
The dynamical behavior to Eq. (41) is demonstrated in Figure 12.
Case (13)
ρ1=ρ4,ρ2=ι3=ι1=ς4=ι4=ς1=0,ς3=−ι33,ς2=ι32, | (2.41) |
Ψ=e2yρ4k1+e2yρ4k2+eyρ4[cos(tι32+xι2)Θ1+sin(tι32+xι2)Θ2]+eyρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]. | (2.42) |
u13=−[2eyρ4[cos(tι32+xι2)ι2Θ2−sin(tι32+xι2)ι2Θ1]]/[e2yρ4k1+e2yρ4k2+eyρ4[cos(tι32+xι2)Θ1+sin(tι32+xι2)Θ2]+eyρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]]. | (2.43) |
The dynamical behavior to Eq. (44) is demonstrated in Figure 13.
Case (14)
ρ1=ρ4,ρ2=Θ3=Θ4=ι4=ς4=0,ς1=3ι1ι22−ι31,ς2=ι2(ι22−3ι21), | (2.44) |
Ψ=e2[xι1+t(3ι1ι22−ι31)+yρ4]k1+e2yρ4k2+exι1+t(3ι1ι22−ι31)+yρ4[cos[xι2+t(ι22−3ι21)ι2]Θ1+sin[xι2+t(ι22−3ι21)ι2]Θ2]. | (2.45) |
u14=−[2[2e2[xι1+t(3ι1ι22−ι31)+yρ4]k1ι1+exι1+t(3ι1ι22−ι31)+yρ4[cos[xι2+t(ι22−3ι21)ι2]Θ1+sin[xι2+t(ι22−3ι21)ι2]Θ2]ι1+exι1+t(3ι1ι22−ι31)+yρ4[cos[xι2+t(ι22−3ι21)ι2]ι2Θ2−sin[xι2+t(ι22−3ι21)ι2]ι2Θ1]]]/[e2[xι1+t(3ι1ι22−ι31)+yρ4]k1+e2yρ4k2+exι1+t(3ι1ι22−ι31)+yρ4[cos(xι2+t(ι22−3ι21)ι2)Θ1+sin(xι2+t(ι22−3ι21)ι2)Θ2]]. | (2.46) |
The dynamical behavior to Eq. (47) is demonstrated in Figure 14.
Case (15)
k2=ι4=ς4=ρ2=0,ς2=ι32−3ι21ι2,ς1=3ι1ι22−ι31,ι3=ι1+iι2,Θ2=iΘ1,Θ4=(ρ1−ρ3)Θ3ρ4,ς3=6ι31−12ι3ι21+6(ι22+ι23)ι1−ι33, | (2.47) |
Ψ=e2[xι1+t(3ι1ι22−ι31)+yρ1]k1+exι1+t(3ι1ι22−ι31)+yρ1[cos[xι2+t(ι32−3ι21ι2)]Θ1+isin(xι2+t(ι32−3ι21ι2))Θ1]+ex(ι1+iι2)+yρ3+tς3∗[cos(yρ4)Θ3+sin(yρ4)(ρ1−ρ3)Θ3ρ4]. | (2.48) |
u15=−[2[2e2[xι1+t(3ι1ι22−ι31)+yρ1]k1ι1+exι1+t(3ι1ι22−ι31)+yρ1[cos[xι2+t(ι32−3ι21ι2)]Θ1+isin(xι2+t(ι32−3ι21ι2))Θ1]ι1+exι1+t(3ι1ι22−ι31)+yρ1[icos[xι2+t(ι32−3ι21ι2)]ι2Θ1−sin[xι2+t(ι32−3ι21ι2)]ι2Θ1]+ex(ι1+iι2)+yρ3+tς3(ι1+iι2)[cos(yρ4)Θ3+sin(yρ4)(ρ1−ρ3)Θ3ρ4]]]/[e2(xι1+t(3ι1ι22−ι31)+yρ1)k1+[cos[xι2+t(ι32−3ι21ι2)]Θ1+isin[xι2+t(ι32−3ι21ι2)]Θ1]∗exι1+t(3ι1ι22−ι31)+yρ1+ex(ι1+iι2)+yρ3+tς3∗[cos(yρ4)Θ3+sin(yρ4)(ρ1−ρ3)Θ3ρ4]]. | (2.49) |
Case (16)
k1=ρ4=0,Θ1=iΘ2,ς4=ι4(−3ι23+12ι4ι3−11ι24),ρ1=iρ2+ρ3,ς3=[−2Θ3ι33−6ι4(Θ4−2Θ3)ι23−6ι24(3Θ3−4Θ4)ι3+2ι34(2Θ3−11Θ4)+(2Θ3−Θ4)((ι1−iι2−2ι4)3+ς1−iς2)]/(2Θ3),ς1=−ι31+6ι4ι21+3ι22ι1−12ι24ι1−14ι34+24ι3ι24−6ι22ι4−6ι23ι4+i(−ι32+3ι21ι2+12ι24ι2−12ι1ι4ι2+ς2), | (2.50) |
Ψ=e2(xι4+t(−3ι23+12ι4ι3−11ι24)ι4)k2+exι1+y(iρ2+ρ3)+tς1[icos(xι2+yρ2+tς2)Θ2+sin(xι2+yρ2+tς2)Θ2]+exι3+yρ3+tς3[cos[xι4+t(−3ι23+12∗ι4ι3−11ι24)ι4]Θ3+sin(xι4+t(−3ι23+12ι4ι3−11ι24)ι4)Θ4]. | (2.51) |
u16=−[2[2e2[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]k2ι4+exι1+y(iρ2+ρ3)+tς1ι1[icos(xι2+yρ2+tς2)Θ2+sin(xι2+yρ2+tς2)Θ2]+exι1+y(iρ2+ρ3)+tς1∗[cos(xι2+yρ2+tς2)ι2Θ2−isin(xι2+yρ2+tς2)ι2Θ2]+exι3+yρ3+tς3ι3[cos[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]Θ3+sin[xι4+t(−3ι23+12ι4ι3−11ι24)ι4])Θ4]+exι3+yρ3+tς3[cos[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]ι4Θ4−sin[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]ι4∗Θ3]]]/[e2[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]k2+exι1+y(iρ2+ρ3)+tς1[icos(xι2+yρ2+tς2)Θ2+sin(xι2+yρ2+tς2)Θ2]+exι3+yρ3+tς3[cos[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]Θ3+sin[xι4+t(−3ι23+12ι4ι3−11ι24)ι4]Θ4]]. | (2.52) |
Case (17)
ρ1=ρ4,ι2=ς2=0,Θ4=iΘ3,ς1=−(ι3+iι4)3,ι1=ι3+iι4,ς4=−4ι34+6ι1ι24−3ι21ι4,ς3=−ι33−(3+6i)ι24ι3+(6+2i)ι34, | (2.53) |
Ψ=e2(−t(ι3+iι4)3+x(ι3+iι4)+yρ4)k1+e2(xι4+yρ4+tς4)k2+[cos(yρ2)Θ1+sin(yρ2)Θ2]e−t(ι3+iι4)3+x(ι3+iι4)+yρ4+[cos(xι4+yρ4+tς4)Θ3+isin(xι4+yρ4+tς4)Θ3]exι3+t(−ι33−(3+6i)ι24ι3+(6+2i)ι34)+yρ3. | (2.54) |
u17=−[2[2e2[−t(ι3+iι4)3+x(ι3+iι4)+yρ4]k1(ι3+iι4)+[cos(yρ2)Θ1+sin(yρ2)Θ2](ι3+iι4)e−t(ι3+iι4)3+x(ι3+iι4)+yρ4+2e2(xι4+yρ4+tς4)k2∗ι4+exι3+t(−ι33−(3+6i)ι24ι3+(6+2i)ι34)+yρ3ι3[cos(xι4+yρ4+tς4)Θ3+isin(xι4+yρ4+tς4)Θ3]+exι3+t(−ι33−(3+6i)ι24ι3+(6+2i)ι34)+yρ3∗[icos(xι4+yρ4+tς4)ι4Θ3−sin(xι4+yρ4+tς4)ι4Θ3]]]/[e2[−t(ι3+iι4)3+x(ι3+iι4)+yρ4]k1+e2(xι4+yρ4+tς4)k2+[cos(yρ2)Θ1+sin(yρ2)Θ2]e−t(ι3+iι4)3+x(ι3+iι4)+yρ4+[cos(xι4+yρ4+tς4)Θ3+isin(xι4+yρ4+tς4)Θ3]exι3+t(−ι33−(3+6i)ι24ι3+(6+2i)ι34)+yρ3]. | (2.55) |
Case (18)
ρ1=ρ4,ρ2=ι1=ι4=ς4=ς1=0,ς2=ι32,ς3=−ι33,Θ1=−ι3Θ2ι2,ι3=iι2, | (2.56) |
Ψ=e2yρ4k1+e2yρ4k2+eyρ4[sin(tι32+xι2)Θ2−icos(tι32+xι2)Θ2]+eitι32+ixι2+yρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]. | (2.57) |
u18=−[2[eyρ4[cos(tι32+xι2)ι2Θ2+isin(tι32+xι2)ι2Θ2]+ieitι32+ixι2+yρ3ι2[cos(yρ4)Θ3+sin(yρ4)Θ4]]]/[e2yρ4k1+e2yρ4k2+eyρ4(sin(tι32+xι2)Θ2−icos(tι32+xι2)Θ2)+eitι32+ixι2+yρ3[cos(yρ4)Θ3+sin(yρ4)Θ4]]. | (2.58) |
Case (19)
ρ1=ρ4=ρ2=0,ι2=iι1,ι4=ι3−ι1,Θ3=−3ι1Θ45ι1−2ι3,Θ1=iΘ2,ς1=(3ι1−2ι3)(3ι21−6ι3ι1+2ι23),ς3=20ι31−45ι3ι21+30ι23ι1−6ι33,ς4=(ι1−ι3)(11ι21−10ι3ι1+2ι23),ς2=i(3ι1−2ι3)(3ι21−6ι3ι1+2ι23), | (2.59) |
Ψ=e2(xι1+tς1)k1+e2[x(ι3−ι1)+tς4]k2+exι1+tς1[cosh(xι1−itς2)Θ1+isinh(xι1−itς2)Θ2]+exι3+yρ3+tς3[cos(x(ι3−ι1)+tς4)Θ3+sin(x(ι3−ι1)+tς4)Θ4]. | (2.60) |
u19=−[2[2e2(xι1+tς1)k1ι1+exι1+tς1[cosh(xι1−itς2)Θ1+isinh(xι1−itς2)Θ2]ι1+2e2(x(ι3−ι1)+tς4)k2(ι3−ι1)+exι1+tς1[sinh(xι1−itς2)∗ι1Θ1+icosh(xι1−itς2)ι1Θ2]+exι3+yρ3+tς3ι3[cos[x(ι3−ι1)+tς4]Θ3+sin[x(ι3−ι1)+tς4]Θ4]+exι3+yρ3+tς3[cos[x(ι3−ι1)+tς4](ι3−ι1)Θ4−sin[x(ι3−ι1)+tς4](ι3−ι1)Θ3]]]/[e2(xι1+tς1)k1+e2(x(ι3−ι1)+tς4)k2+exι1+tς1[cosh(xι1−itς2)Θ1+isinh(xι1−itς2)∗Θ2]+exι3+yρ3+tς3[cos(x(ι3−ι1)+tς4)Θ3+sin(x(ι3−ι1)+tς4)Θ4]]. | (2.61) |
Case (20)
ρ1=ρ4=ρ2=0,ι2=iι1,ι4=ι1,Θ3=−3(ι1−ι3)Θ45ι1−3ι3,Θ1=iΘ2,ς1=−11Θ4ι31+12ι3Θ4ι21−3ι23Θ4ι1Θ4,ς2=−iι1(11ι21−12ι3ι1+3ι23),ς4=ι1(−11ι21+12ι3ι1−3ι23),ς3=−20ι31+15ι3ι21−ι33, | (2.62) |
Ψ=e2(xι1+tς1)k1+e2(xι1+tς4)k2+exι1+tς1[cosh(xι1−itς2)Θ1+isinh(xι1−itς2)Θ2]+exι3+yρ3+tς3[cos(xι1+tς4)Θ3+sin(xι1+tς4)Θ4]. | (2.63) |
u20=−[2[2e2(xι1+tς1)k1ι1+2e2(xι1+tς4)k2ι1+exι1+tς1[cosh(xι1−itς2)Θ1+isinh(xι1−itς2)Θ2]ι1+exι1+tς1[sinh(xι1−itς2)ι1Θ1+icosh(xι1−itς2)ι1Θ2]+exι3+yρ3+tς3ι3[cos(xι1+tς4)Θ3+sin(xι1+tς4)Θ4]+exι3+yρ3+tς3[cos(xι1+tς4)ι1Θ4−sin(xι1+tς4)ι1Θ3]]]/[e2(xι1+tς1)∗k1+e2(xι1+tς4)k2+exι1+tς1[cosh(xι1−itς2)Θ1+isinh(xι1−itς2)∗Θ2]+exι3+yρ3+tς3[cos(xι1+tς4)Θ3+sin(xι1+tς4)Θ4]]. | (2.64) |
In this paper, the (2+1)-dimensional BLMP equation is discussed, which describes the incompressible fluid. Based on the bilinear form and an ansätz functions, many entirely new complexiton solutions and double periodic-soliton solutions are obtained. The dynamical behaviors are demonstrated in some three-dimensional plots by setting different values of the parameters. The ansätz function is very effective in solving the periodic solutions and complexiton solutions of the higher order nonlinear evolution equations. In Figs. 1-14, it is obvious that the waves are repeated at intervals of time or distance. All the solutions have been verified to be correct by symbolic computation software Mathematica.
We would like to express our sincere thanks to the reviewers and editors for their valuable suggestions. Project supported by National Natural Science Foundation of China (Grant No 81960715).
The authors declare that there is no conflict of interests regarding the publication of this article.
In[1]:=Ψ[x,y,t]=Exp[ι1x+ρ1y+ς1t][Θ1cos[ι2x+ρ2y+ς2t]+Θ2sin[ι2x+ρ2y+ς2t]]+k1Exp[2(ι1x+ρ1y+ς1t)]+Exp[ι3x+ρ3y+ς3t][Θ3cos[ι4x+ρ4y+ς4t]+Θ4sin[ι4x+ρ4y+ς4t]]+k2Exp[ι4x+ρ4y+ς4t]In[2]:=M=Expand[−ΨtΨy−ΨxxxΨy+3ΨxyΨxx−3ΨxΨxxy+Ψ(Ψyt+Ψxxxy)]In[3]:=M1=FullSimplify[Coefficient[M,Exp[2(ι1x+ρ1y+ς1t)+2(ι4x+ρ4y+ς4t)]]]In[4]:=M2=FullSimplify[Coefficient[M,Exp[3(ι1x+ρ1y+ς1t)]]]In[5]:=M3=FullSimplify[Coefficient[M,Sin[ι2x+ρ2y+ς2t]]]In[6]:=M4=FullSimplify[Coefficient[M,Cos[ι2x+ρ2y+ς2t]]]In[7]:=M5=FullSimplify[Coefficient[M,Sin[ι4x+ρ4y+ς4t]]]In[8]:=M6=FullSimplify[Coefficient[M,Cos[ι4x+ρ4y+ς4t]]] |
[1] | T. Motoda. Time periodic solutions of Cahn-Hilliard systems with dynamic boundary conditions, AIMS Mathematics, 3 (2018), 263-287. |
[2] | A. M. Wazwaz. A variety of negative-order integrable KdV equations of higher orders, Wave. Random. Complex., 29 (2019), 195-203. |
[3] | W. P. Gao, Y. X. Hu. The exact traveling wave solutions of a class of generalized Black-Scholes equation, AIMS Mathematics, 2 (2017), 385-399. |
[4] |
Z. F. Zeng, J. G. Liu, Y. Jiang, et al. Transformations and soliton solutions for a variable-coefficient nonlinear schrödinger equation in the dispersion decreasing fiber with symbolic computation, Fund. Inform., 145 (2016), 207-219. doi: 10.3233/FI-2016-1355
![]() |
[5] | M. T. Islam, M. A. Akbar, M. A. Azad. Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative, AIMS Mathematics, 3 (2018), 625-646. |
[6] | W. X. Ma, X. Yong, H. Q. Zhang. Diversity of interaction solutions to the (2+1)-dimensional ito equation, Comput. Math. Appl., 75 (2018), 289-295. |
[7] | A. Bashan. An Efficient Approximation to Numerical Solutions for the Kawahara Equation Via Modified Cubic B-Spline Differential Quadrature Method, Mediterr. J. Math., 16 (2019), 14. |
[8] | A. Bashan. A novel approach via mixed Crank-Nicolson scheme and differential quadrature method for numerical solutions of solitons of mKdV equation, Pramana, 92 (2019), 84. |
[9] | A. Bashan. A mixed algorithm for numerical computation of soliton solutions of the coupled KdV equation: Finite difference method and differential quadrature method, Appl. Math. Comput., 360 (2019), 42-57. |
[10] | M. S. Osman. On complex wave solutions governed by the 2d Ginzburg-Landau equation with variable coefficients, Optik, 156 (2018), 169-174. |
[11] |
Y. H. Yin, W. X. Ma, J. G. Liu, et al. Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction, Comput. Math. Appl., 76 (2018), 1275-1283. doi: 10.1016/j.camwa.2018.06.020
![]() |
[12] |
Y. Kong, L. Xin, Q. Qiu, et al. Exact periodic wave solutions for the modified Zakharov equations with a quantum correction, Appl. Math. Lett., 94 (2019), 140-148. doi: 10.1016/j.aml.2019.01.009
![]() |
[13] | Y. Z. Li, J. G. Liu. Multiple periodic-soliton solutions of the (3 + 1)-dimensional generalised shallow water equation, Pramana, 90 (2018), 71. |
[14] | W. X. Ma, Y. Zhou. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Differ. Equations., 264 (2018), 2633-2659. |
[15] | G. Akram, F. Batool. Solitary wave solutions of the Schafer-Wayne short-pulse equation using two reliable methods, Opt. Quant. Electron., 49 (2017), 14. |
[16] | J. Y. Yang, W. X. Ma, Z. Y. Qin. Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation, Anal. Math. Phys., 8 (2018), 427-436. |
[17] | Z. Z. Lan. Rogue wave solutions for a coupled nonlinear Schrödinger equation in the birefringent optical fiber, Appl. Math. Lett., 98 (2019), 128-134. |
[18] |
L. N. Gao, X. Y. Zhao, Y. Y. Zi, et al. esonant behavior of multiple wave solutions to a Hirota bilinear equation, Comput. Math. Appl., 72 (2016), 1225-1229. doi: 10.1016/j.camwa.2016.06.008
![]() |
[19] | A. M. Wazwaz. A study on a (2+1)-dimensional and a (3+1)-dimensional generalized Burgers equation, Appl. Math. Lett., 31 (2014), 41-45. |
[20] | J. G. Liu. Double-periodic soliton solutions for the (3+1)-dimensional Boiti-Leon-MannaPempinelli equation in incompressible fluid, Comput. Math. Appl., 75 (2018), 3604-3613. |
[21] |
Y. F. Hua, B. L. Guo, W. X. Ma, et al. Interaction behavior associated with a generalized (2+1)- dimensional Hirota bilinear equation for nonlinear waves, Appl. Math. Model., 74 (2019), 184-198. doi: 10.1016/j.apm.2019.04.044
![]() |
[22] | X. P. Zeng, Z. D. Dai, D. L. Li. New periodic soliton solutions for the (3 + 1)-dimensional potentialYTSF equation, Chaos. Soliton. Fract., 42 (2009), 657-661. |
[23] | O. Gonzalez-Gaxiola. Bright and dark optical solitons of the Schafer-Wayne short-pulse equation by Laplace substitution method, Optik, 200 (2020), 163414. |
[24] | J. G. Liu, J. Q. Du, Z. F. Zeng, et al. Exact periodic cross-kink wave solutions for the new (2+1) dimensional kdv equation in fluid flows and plasma physics, Chaos, 26 (2016), 989-1002. |
[25] | A. M. Wazwaz. Multiple complex and multiple real soliton solutions for the integrable sine-Gordon equation, Optik, 172 (2018), 622-627. |
[26] | Y. N. Tang, W. J. Zai. New periodic-wave solutions for (2+1)- and (3+1)-dimensional Boiti-LeonManna-Pempinelli equations, Nonlinear Dyn., 81 (2015), 249-255. |
[27] | L. Luo. New exact solutions and Bäklund transformation for Boiti-Leon-Manna-Pempinelli equation, Phys. Lett. A., 375 (2001), 1059-1063. |
[28] | S. H. Ma, J. P. Fang. Multi dromion-solitoff and fractal excitations for (2+1)-dimensional BoitiLeon-Manna-Pempinelli system, Commun. Theor. Phys., 52 (2009), 641-645. |
[29] | L. Delisle, M. Mosaddeghi. Classical and SUSY solutions of the Boiti-Leon-Manna-Pempinelli equation, J. Phys. A Math. Theor., 46 (2013), 115203. |
[30] | M. Najafi, M. Najafi, S. Arbabi. Wronskian determinant solutions of the (2+1)-dimensional BoitiLeon-Manna-Pempinelli equation, Int. J. Adv. Math. Sci., 1 (2013), 8-11. |
[31] | Z. H. Fu, J. G. Liu. Exact periodic cross-kink wave solutions for the (2+1)-dimensional Boiti-LeonManna-Pempinelli equation, Indian. J. Pure. Ap. Phy., 55 (2017), 163-167. |
[32] | Y. Li, D. S. Li. New exact solutions for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Appl. Math. Sci., 6 (2012), 579-587. |
[33] | K. Melike, A. Arzu, B. Ahmet. The Auto-Bäcklund transformations for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, AIP Conference Proceedings, 1798 (2017), 020071. |
[34] | K. Melike. Two different systematic techniques to find analytical solutions of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Chinese J. Phys., 56 (2018), 2523-2530. |
[35] | C. J. Bai, H. Zhao. New solitary wave and jacobi periodic wave excitations in (2+1)-demensional Boiti-Leon-Manna-Pempinelli system, Int. J. Mod. Phys. B, 22 (2008), 2407-2420. |
1. | Chen Yue, Mostafa M. A. Khater, Mustafa Inc, Raghda A. M. Attia, Dianchen Lu, Abundant analytical solutions of the fractional nonlinear (2 + 1)-dimensional BLMP equation arising in incompressible fluid, 2020, 34, 0217-9792, 2050084, 10.1142/S0217979220500848 | |
2. | Kalim U. Tariq, Aly R. Seadawy, Syed T. R. Rizvi, Rizwan Javed, Some optical soliton solutions to the generalized (1 + 1)-dimensional perturbed nonlinear Schrödinger equation using two analytical approaches, 2022, 36, 0217-9792, 10.1142/S0217979222501776 | |
3. | Chun-Rong Qin, Jian-Guo Liu, Study on double-periodic soliton and non-traveling wave solutions of integrable systems with variable coefficients, 2022, 34, 22113797, 105254, 10.1016/j.rinp.2022.105254 | |
4. | Ali Althobaiti, Saad Althobaiti, K. El-Rashidy, Aly R. Seadawy, Exact solutions for the nonlinear extended KdV equation in a stratified shear flow using modified exponential rational method, 2021, 29, 22113797, 104723, 10.1016/j.rinp.2021.104723 | |
5. | Litao Gai, Wen-Xiu Ma, Bilige Sudao, Abundant multilayer network model solutions and bright-dark solitons for a (3 + 1)-dimensional p-gBLMP equation, 2021, 106, 0924-090X, 867, 10.1007/s11071-021-06864-8 | |
6. | Jiajia Yang, Meng Jin, Xiangpeng Xin, Lie symmetry analysis, optimal system and exact solutions for variable-coefficients Boiti-Leon-Manna-Pempinelli equation, 2024, 99, 0031-8949, 025233, 10.1088/1402-4896/ad1a32 | |
7. | Wen-Hui Zhu, Jian-Guo Liu, Mohammad Asif Arefin, M. Hafiz Uddin, Ya-Kui Wu, Mohammad Mirzazadeh, Double-Periodic Soliton Solutions of the (2+1)-Dimensional Ito Equation, 2023, 2023, 1687-9139, 1, 10.1155/2023/9321673 | |
8. | Handenur Esen, Aydin Secer, Muslum Ozisik, Mustafa Bayram, Obtaining soliton solutions of the nonlinear (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation via two analytical techniques, 2024, 38, 0217-9792, 10.1142/S0217979224500103 | |
9. | Wenfang Li, Yingchun Kuang, Jalil Manafian, Somaye Malmir, Baharak Eslami, K. H. Mahmoud, A. S. A. Alsubaie, Multiple rogue wave, double-periodic soliton and breather wave solutions for a generalized breaking soliton system in (3 + 1)-dimensions, 2024, 14, 2045-2322, 10.1038/s41598-024-70523-2 |