Industrial wastewater contains non-biodegradable dyes that are highly toxic to humans and aquatic life. As solution from photocatalytic degradation, TiO2 is one of the effective photocatalysts for wastewater degradation, but it has low adsorption power. To overcome this deficiency, this study synthesized a new photocatalyst by Fe-TiO2/zeolite H-A. The photocatalyst was successfully synthesized by the impregnation method and was systematically characterized by XRD, XRF, SEM, FT-IR and UV-Vis DRS. XRD diffractogram at 2θ = 25.3° showed anatase phase of the photocatalyst. SEM results showed a rough and soft surface with a size of 491.49 nm. FT-IR analysis obtained the zeolite-A characteristic band, vibration of Ti-O-Ti groups and the vibration of the Fe-O group. The bandwidth of the band gap was 3.16 eV. The photocatalytic efficiency of methylene blue degradation reached 89.58% yield with optimum conditions: irradiation time of 50 min, pH 9 and concentration of methylene blue about 20 mg/L. Fe-TiO2/zeolite H-A as a new photocatalyst can be an alternative photocatalyst to purify methylene blue.
Citation: Ririn Cahyanti, Sumari Sumari, Fauziatul Fajaroh, Muhammad Roy Asrori, Yana Fajar Prakasa. Fe-TiO2/zeolite H-A photocatalyst for degradation of waste dye (methylene blue) under UV irradiation[J]. AIMS Materials Science, 2023, 10(1): 40-54. doi: 10.3934/matersci.2023003
Industrial wastewater contains non-biodegradable dyes that are highly toxic to humans and aquatic life. As solution from photocatalytic degradation, TiO2 is one of the effective photocatalysts for wastewater degradation, but it has low adsorption power. To overcome this deficiency, this study synthesized a new photocatalyst by Fe-TiO2/zeolite H-A. The photocatalyst was successfully synthesized by the impregnation method and was systematically characterized by XRD, XRF, SEM, FT-IR and UV-Vis DRS. XRD diffractogram at 2θ = 25.3° showed anatase phase of the photocatalyst. SEM results showed a rough and soft surface with a size of 491.49 nm. FT-IR analysis obtained the zeolite-A characteristic band, vibration of Ti-O-Ti groups and the vibration of the Fe-O group. The bandwidth of the band gap was 3.16 eV. The photocatalytic efficiency of methylene blue degradation reached 89.58% yield with optimum conditions: irradiation time of 50 min, pH 9 and concentration of methylene blue about 20 mg/L. Fe-TiO2/zeolite H-A as a new photocatalyst can be an alternative photocatalyst to purify methylene blue.
[1] | Areerob Y, Cho KY, Oh WC (2017) Microwave assisted synthesis of graphene-Bi8La10O27-Zeolite nanocomposite with efficient photocatalytic activity towards organic dye degradation. J Photoch Photobio A 340: 157–169. https://doi.org/10.1016/j.jphotochem.2017.03.018 doi: 10.1016/j.jphotochem.2017.03.018 |
[2] | Karuppasamy P, Nisha NRN, Pugazhendhi A, et al. (2021) An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation. J Environ Chem Eng 9: 105254. https://doi.org/10.1016/j.jece.2021.105254 doi: 10.1016/j.jece.2021.105254 |
[3] | Qaderi J, Mamat CR, Jalil AA (2021) Preparation and characterization of copper, iron, and nickel doped titanium dioxide photocatalysts for decolorization of methylene blue. Sains Malays 50: 135–149. https://doi.org/10.17576/jsm-2021-5001-14 doi: 10.17576/jsm-2021-5001-14 |
[4] | Javanbakht V, Ghoreishi SM (2017) Application of response surface methodology for optimization of lead removal from an aqueous solution by a novel superparamagnetic nanocomposite. Adsorpt Sci Technol 35: 241–60. https://doi.org/10.1177/0263617416674474 doi: 10.1177/0263617416674474 |
[5] | Aghajari N, Ghasemi Z, Younesi H, et al. (2019) Synthesis, characterization and photocatalytic application of Ag-doped Fe-ZSM-5@TiO2 nanocomposite for degradation of reactive red 195 (RR 195) in aqueous environment under sunlight irradiation. J Environ Health Sci 17: 219–232. https://doi.org/10.1007/s40201-019-00342-5 doi: 10.1007/s40201-019-00342-5 |
[6] | Znad H, Abbas K, Hena S, et al. (2018) Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. J Environ Chem Eng 6: 218–227. https://doi.org/10.1016/j.jece.2017.11.077 doi: 10.1016/j.jece.2017.11.077 |
[7] | Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Appl Catal A-Gen 389: 1–8. https://doi.org/10.1016/j.apcata.2010.08.053 doi: 10.1016/j.apcata.2010.08.053 |
[8] | Vaez Z, Javanbakht V (2020) Synthesis, characterization and photocatalytic activity of ZSM-5/ZnO nanocomposite modified by Ag nanoparticles for methyl orange degradation. J Photoch Photobiol A 388: 112064. https://doi.org/10.1016/j.jphotochem.2019.112064 doi: 10.1016/j.jphotochem.2019.112064 |
[9] | Badvi K, Javanbakht V (2021) Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles. J Clean Prod 280: 124518. https://doi.org/10.1016/j.jclepro.2020.124518 doi: 10.1016/j.jclepro.2020.124518 |
[10] | Massoudinejad M, Sadani M, Gholami Z, et al. (2019) Optimization and modeling of photocatalytic degradation of Direct Blue 71 from contaminated water by TiO2 nanoparticles: Response surface methodology approach (RSM). Iran J Catal 9: 121–132. |
[11] | Ghasemi Z, Younesi H, Zinatizadeh AA (2016) Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: Optimization of process parameters by response surface methodology. Chemosphere 159: 552–564. https://doi.org/10.1016/j.chemosphere.2016.06.058 doi: 10.1016/j.chemosphere.2016.06.058 |
[12] | Safajou H, Khojasteh H, Salavati-niasari M, et al. (2017) Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles. J Colloid Interf Sci 498: 423–432. https://doi.org/10.1016/j.jcis.2017.03.078 doi: 10.1016/j.jcis.2017.03.078 |
[13] | Bian H, Zhang Z, Xu X, et al. (2020) Photocatalytic activity of Ag/ZnO/AgO/TiO2 composite. Physica E 124: 114236. https://doi.org/10.1016/j.physe.2020.114236 doi: 10.1016/j.physe.2020.114236 |
[14] | Derakhshan-Nejad A, Rangkooy HA, Cheraghi M, et al. (2020) Removal of ethyl benzene vapor pollutant from the air using TiO2 nanoparticles immobilized on the ZSM-5 zeolite under UVradiation in lab scale. J Environ Health Sci 18: 201–209. https://doi.org/10.1007/s40201-020-00453-4 doi: 10.1007/s40201-020-00453-4 |
[15] | Pedroza-herrera G, Medina-ramírez IE, Lozano-álvarez JA, et al. (2020) Evaluation of the photocatalytic activity of copper doped TiO2 nanoparticles for the purification and/or disinfection of industrial effluents. Catal Today 341: 37–48. https://doi.org/10.1016/j.cattod.2018.09.017 doi: 10.1016/j.cattod.2018.09.017 |
[16] | Al-Mamun MR, Kader S, Islam MS, et al. (2019) Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J Environ Chem Eng 7: 103248. https://doi.org/10.1016/j.jece.2019.103248 doi: 10.1016/j.jece.2019.103248 |
[17] | Arifiyana D, Murwani IK (2013) Pengaruh doping Logam Fe pada CaF2 terhadap Struktur Ca1–xFexF2. J Sains dan Seni Pomits 2: 54–56. |
[18] | Khatamian M, Hashemian S, Yavari A, et al. (2012) Preparation of metal ion (Fe3+ and Ni2+) doped TiO2 nanoparticles supported on ZSM-5 zeolite and investigation of its photocatalytic activity. Mater Sci Eng B-Adv 177: 1623–1627. https://doi.org/10.1016/j.mseb.2012.08.015 doi: 10.1016/j.mseb.2012.08.015 |
[19] | Khairy M, Zakaria W (2014) Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt J Pet 23: 419–426. https://doi.org/10.1016/j.ejpe.2014.09.010 doi: 10.1016/j.ejpe.2014.09.010 |
[20] | Hosseini MS, Ebratkhahan M, Shayegan Z, et al. (2020) Investigation of the effective operational parameters of self-cleaning glass surface coating to improve methylene blue removal efficiency; application in solar cells. Sol Energy 207: 398–408. https://doi.org/10.1016/j.solener.2020.06.109 doi: 10.1016/j.solener.2020.06.109 |
[21] | Noorjahan M, Kumari VD, Subrahmanyam M, et al. (2004) A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film. Appl Catal B-Environ 47: 209–213. https://doi.org/10.1016/j.apcatb.2003.08.004 doi: 10.1016/j.apcatb.2003.08.004 |
[22] | Mahalakshmi M, Priya SV, Arabindoo B, et al. (2009) Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ zeolite-supported TiO2. J Hazard Mater 161: 336–343. https://doi.org/10.1016/j.jhazmat.2008.03.098 doi: 10.1016/j.jhazmat.2008.03.098 |
[23] | Loiola AR, Andrade JCRA, Sasaki JM, et al. (2012) Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener. J Colloid Interf Sci 367: 34–39. https://doi.org/10.1016/j.jcis.2010.11.026 doi: 10.1016/j.jcis.2010.11.026 |
[24] | Wuntu AD, Kamu VS, Kumaunang M (2019) Crystallization temperature of NaA zeolite prepared from gel and aluminum hydroxide. Chem Prog 4: 1–4. |
[25] | Afrozi AS, Salam R, R A, et al. (2016) Pengolahan limbah methylen blue secara fotokatalisis TiO2 dengan penambahan Fe dan zeolit. Prosiding Seminar Nasional Teknologi Pengelolaan Limbah, 29–36. Available from: http://repo-nkm.batan.go.id/7417/. |
[26] | Pratama NA, Artsanti P (2019) Effect of aeration treatment on methylene blue removal using TiO2-zeolite. Proceeding International Conference on Science and Engineering 2: 219–224. https://doi.org/10.14421/icse.v2.89 doi: 10.14421/icse.v2.89 |
[27] | Estiaty LM (2015) Synthesis and characterization of zeolite-TiO2 from modified natural zeolite. Teknol Miner dan Batubara 11: 181–190. |
[28] | Erwanto E, Yulinda Y, Nabela Q (2020) Pengaruh Penambahan Ion Nitrat (NO3–) terhadap Kinetika Fotodegradasi Zat Warna Metilen Biru Menggunakan Zeolit-TiO2. J Inovasi Teknik Kimia 5: 59–67. Available from: http://dx.doi.org/10.31942/inteka.v5i2.3812. |
[29] | Septian DD, Sugiarti S (2019) Modifikasi Zeolit Alam Ende dengan Garam Logam serta Potensinya Sebagai Katalis Transformasi Glukosa Menjadi 5-Hidroksimetilfurfural (HMF). ALCHEMY J Penelit Kim 15: 203–218. https://doi.org/10.20961/alchemy.15.2.28180.203-218 doi: 10.20961/alchemy.15.2.28180.203-218 |
[30] | Rigo RT, Prigol C, Antunes Â, et al. (2013) Synthesis of ZK4 zeolite: An LTA-structured zeolite with a Si/Al ratio greater than 1. Mater Lett 102: 87–90. https://doi.org/10.1016/j.matlet.2013.03.120 doi: 10.1016/j.matlet.2013.03.120 |
[31] | Ginting SB, Sari DP, Iryani DA, et al. (2019) Sintesis ZeolitT Lynde Type-A (LTA) Dari Zeolit Alam Lampung (ZAL) Menggunakan Metode Step Change Temperature Of Hydrotermal Dengan Variasi SiO2/Al2O3 Diaplikasikan Untuk Dehidrasi Etanol. J Chem Process Eng 4: 32–44. https://doi.org/10.33536/jcpe.v4i1.324 doi: 10.33536/jcpe.v4i1.324 |
[32] | Asrori MR, Santoso A, Sumari S (2022) Initial defect product on immiscible mixture of palm oil: Ethanol by amphiphilic chitosan/Zeolite LTA as optimization of microemulsion fuel. Ind Crops Prod 180: 114727. https://doi.org/10.1016/j.indcrop.2022.114727 doi: 10.1016/j.indcrop.2022.114727 |
[33] | Treacy MMJ, Higgins JB (2007) Collection of Simulated XRD Powder Patterns for Zeolites, 5 Eds., Elsevier. |
[34] | Sescu AM, Favier L, Lutic D, et al. (2021) TiO2 doped with noble metals as an efficient solution for the photodegradation of hazardous organic water pollutants at ambient conditions. Water (Switzerland) 13: 1–18. https://doi.org/10.3390/w13010019 doi: 10.3390/w13010019 |
[35] | Sood S, Umar A, Mehta SK, et al. (2015) Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. J Colloid Interf Sci 450: 213–223. https://doi.org/10.1016/j.jcis.2015.03.018 doi: 10.1016/j.jcis.2015.03.018 |
[36] | Cacciato G, Zimbone M, Ruffino F, et al. (2016) TiO2 nanostructures and nanocomposites for sustainable photocatalytic water purification, In: Larramendy ML, Soloneski S, Green Nanotechnology-Overview and Further Prospects, Croatia: Janeza Trdine. https://doi.org/10.5772/62620 |
[37] | Pratiwi E, Harlia H, Aritonang AB (2020) Sintesis TiO2 terdoping Fe3+ untuk Degradasi Rhodamin B Secara Fotokatalisis dengan Bantuan Sinar Tampak. Positron 10: 57–63. https://doi.org/10.26418/positron.v10i1.37739 doi: 10.26418/positron.v10i1.37739 |
[38] | Al-Harbi LM, Kosa SA, Abd El Maksod IH, et al. (2015) The photocatalytic activity of TiO2-zeolite composite for degradation of dye using synthetic UV and Jeddah sunlight. J Nanomater 16: 46. https://doi.org/10.1155/2015/565849 doi: 10.1155/2015/565849 |
[39] | Li H, Zhang W, Liu Y (2020) HZSM-5 zeolite supported boron-doped TiO2 for photocatalytic degradation of ofloxacin. J Mater Res Technol 9: 2557–2567. https://doi.org/10.1016/j.jmrt.2019.12.086 doi: 10.1016/j.jmrt.2019.12.086 |
[40] | Sahel K, Perol N, Chermette H, et al. (2007) Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B-Isotherm of adsorption, kinetic of decolorization and mineralization. Appl Catal B-Environ 77: 100–109. https://doi.org/10.1016/j.apcatb.2007.06.016 doi: 10.1016/j.apcatb.2007.06.016 |
[41] | Khan I, Saeed K, Zekker I, et al. (2022) Review on methylene blue: Its properties, uses, toxicity and photodegradation. Water 14: 242. https://doi.org/10.3390/w14020242 doi: 10.3390/w14020242 |
[42] | Sutanto H, Wibowo S (2015) Semikonduktor Fotokatalis Seng Oksida dan Titania: Sintesis, Deposisi dan Aplikasi. Available from: http://eprints.undip.ac.id/49049/. |
[43] | Asiltürk M, Sayılkan F, Arpaç E (2009) Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation. J Photoch Photobiol A 203: 64–71. https://doi.org/10.1016/j.jphotochem.2008.12.021 doi: 10.1016/j.jphotochem.2008.12.021 |