Citation: Venetia D. Lyles, Wilson K. Serem, Erhong Hao, M. Graça H. Vicente, Jayne C. Garno. Characterization of designed cobaltacarborane porphyrins using conductive probe atomic force microscopy[J]. AIMS Materials Science, 2016, 3(2): 380-389. doi: 10.3934/matersci.2016.2.380
[1] | Vivek Tewary . Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458. doi: 10.3934/nhm.2021012 |
[2] | Grégoire Allaire, Tuhin Ghosh, Muthusamy Vanninathan . Homogenization of stokes system using bloch waves. Networks and Heterogeneous Media, 2017, 12(4): 525-550. doi: 10.3934/nhm.2017022 |
[3] | Carlos Conca, Luis Friz, Jaime H. Ortega . Direct integral decomposition for periodic function spaces and application to Bloch waves. Networks and Heterogeneous Media, 2008, 3(3): 555-566. doi: 10.3934/nhm.2008.3.555 |
[4] | Laura Caravenna, Laura V. Spinolo . New interaction estimates for the Baiti-Jenssen system. Networks and Heterogeneous Media, 2016, 11(2): 263-280. doi: 10.3934/nhm.2016.11.263 |
[5] | Riccardo Bonetto, Hildeberto Jardón Kojakhmetov . Nonlinear diffusion on networks: Perturbations and consensus dynamics. Networks and Heterogeneous Media, 2024, 19(3): 1344-1380. doi: 10.3934/nhm.2024058 |
[6] | Rémi Goudey . A periodic homogenization problem with defects rare at infinity. Networks and Heterogeneous Media, 2022, 17(4): 547-592. doi: 10.3934/nhm.2022014 |
[7] | Andrea Braides, Valeria Chiadò Piat . Non convex homogenization problems for singular structures. Networks and Heterogeneous Media, 2008, 3(3): 489-508. doi: 10.3934/nhm.2008.3.489 |
[8] | Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou . Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1(4): 537-568. doi: 10.3934/nhm.2006.1.537 |
[9] | Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343 |
[10] | Antonin Chambolle, Gilles Thouroude . Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem. Networks and Heterogeneous Media, 2009, 4(1): 127-152. doi: 10.3934/nhm.2009.4.127 |
The formation of shear bands in elasticity is described by a degenerate operator of elliptic-hyperbolic type [1, 23, 4]. The shear bands that are mathematically obtained in this model are infinitesimally thin. To overcome this non-physical description, it is customary to penalize the elasticity operator by a fourth-order singular perturbation [18]. Subsequently, it was suggested that the penalization should be followed by a homogenization procedure, which results in different regimes depending on the order of penalization as compared to the length-scale of the periodic heterogeneities. This was first carried out in [6, 18]. Similar problems in the framework of
We will study the simultaneous homogenization and singular perturbation limits of the following operator
$ Aκ,ε:=κ2Δ2−∇⋅A(xε)∇, $ | (1.1) |
where
A1.
A2.
A3. The matrix
We mention briefly the function spaces that make an appearance in this problem. The solutions of the cell problem associated with homogenization of (1.1), as well as Bloch eigenfunctions, are sought in the space .
The method of Bloch waves rests on decomposition of a periodic operator in terms of Bloch waves which may be thought of as a periodic analogue of plane waves. As plane waves decompose a linear operator with constant coefficients by means of the Fourier transform, Bloch waves diagonalize a linear operator with periodic coefficients. This decomposition begins with a direct integral decomposition of a periodic operator
$ A→⨁∫TdA(η)dη. $ |
The fiber operator
The homogenization limits for a highly oscillating scalar periodic operator are obtained from its first Bloch mode. The rest of the Bloch modes do not contribute to the homogenization limit. This is a consequence of the separation of the first Bloch eigenvalue from the rest of the spectrum. Such an interpretation of homogenization is also called spectral threshold effect [7]. Moreover, the homogenized tensor is obtained from Hessian of the first Bloch eigenvalue. Therefore, the second-order nature of the differential operator is reflected in the quadratic nature of the first Bloch eigenvalue near the bottom of the spectrum. Indeed, homogenization of higher-even-order periodic operators can also be obtained by the Bloch wave method, where the first Bloch eigenvalue behaves like a polynomial of the corresponding order near the bottom of the spectrum [37, 36].
The homogenization result in Theorem 8.1 exhibits three different regimes depending on the ratio of
●
●
●
In the first regime, the subcritical case, that is,
The approach is to treat
While the motivation for the problem (1.1) comes from the theory of elasticity, it is for the sake of simplicity that we only study the scalar operator. However, it must be noted that Bloch wave homogenization of systems carries some unique difficulties, such as the presence of multiplicity at the bottom of the spectrum. Indeed, these challenges have been surmounted by the use of directional analyticity of Bloch eigenvalues in [35, 7, 3]. Further, the assumption of symmetry, while customary in elasticity, is made for a simplified presentation. A Bloch wave analysis of homogenization of non-selfadjoint operators may be found in [19].
In a forthcoming work, we will obtain quantitative estimates for the combined effects of singular perturbation and homogenization through the notion of Bloch approximation, which was introduced in [11]. Higher order estimates in homogenization have been obtained by these methods, particularly for the dispersive wave equation [14, 15, 2, 22].
The plan of the paper is as follows: In Section 2, we obtain Bloch waves for the singularly perturbed operator
In this section, we will prove the existence of Bloch waves for the singular operator given by
$ Aρ:=ρ2Δ2−∇⋅A(y)∇. $ | (2.1) |
Recall that
$ {ρ2Δ2ψ−∇⋅A(y)∇ψ=λψψ(y+2πp)=e2πip⋅ηψ(y),p∈Zd,η∈Rd. $ |
The above problem is invariant under
$ {Aρ(η)ϕ:=ρ2(∇+iη)4ϕ−(∇+iη)⋅A(y)(∇+iη)ϕ=λϕϕ(y+2πp)=ϕ(y),p∈Zd,η∈Y′. $ | (2.2) |
The operator
The bilinear form
$ aρ[η](u,v):=∫YA(∇+iη)u⋅¯(∇+iη)vdy+ρ2∫Y(∇+iη)2u¯(∇+iη)2vdy, $ | (2.3) |
is associated to the operator
Lemma 2.1. There exists a positive real number
$ aρ[η](u,u)+C∗||u||2L2♯(Y)≥ρ26||Δu||2L2♯(Y)+α2||u||H1♯(Q). $ | (2.4) |
Proof. We have
$ aρ[η](u,u)=∫YA(∇+iη)u⋅¯(∇+iη)udy⏟I+ρ2∫Y(∇+iη)2u¯(∇+iη)2udy⏟II. $ | (2.5) |
We shall estimate the two summands separately. For the first summand, observe that
$ I=∫YA(∇+iη)u⋅¯(∇+iη)udy=∫YA∇u⋅¯∇udy+2Re{∫YAiηu⋅¯∇udy}+∫YAηu⋅η¯udy, $ | (2.6) |
where
$ ∫YA∇u⋅∇¯udy=∫YA∇u⋅∇¯udy≥α∫Y|∇u|2dy. $ | (2.7) |
For the second term of
$ |2Re{∫YAηu⋅∇¯udy}|≤2∫Y|Aηu⋅∇¯u|dy≤C1∫Y|ηu⋅∇¯u|dy≤C1||ηu||L2♯(Y)||∇u||L2♯(Y)≤C1C2||u||2L2♯(Y)+C1C2||∇u||L2♯(Y). $ | (2.8) |
Finally, the third term of
$ |∫YAηu⋅η¯udy|≤C3∫Y|ηu⋅η¯u|dy≤C4||u||L2♯(Y). $ | (2.9) |
Now, we may choose
$ I≥α2||u||L2♯(Y)+α2||∇u||L2♯(Y)−(α2+C1C2+C4)||u||2L2♯(Y). $ | (2.10) |
For the second summand, observe that
$ II=ρ2∫Y|(∇+iη)2u|2dy=ρ2∫Y|Δu|2dy+ρ2∫Y|η|4|u|2dy+4ρ2∫Y|η⋅∇u|2dy+2ρ2iIm{∫Y|η|2u¯Δudy}+4iρ2Re{∫Y(η⋅∇u)Δ¯udy}+4iρ2Re{∫Y|η|2u(η⋅∇¯u)dy}. $ | (2.11) |
We estimate the last three terms as follows.
$ ρ2|2iIm{∫Y|η|2u¯Δudy}|≤2ρ2∫Y|η|2|u||Δu|dy≤2ρ2|η|2||u||L2||Δu||L2≤48ρ2|η|4||u||2L2+ρ248||Δu||2L2. $ | (2.12) |
$ ρ2|4iRe{∫Y(η⋅∇)uΔ¯udy}|≤4ρ2∫Y|(η⋅∇)u||Δu|dy≤4ρ2||(η⋅∇)u||L2||Δu||L2≤16ρ23||(η⋅∇)u||2L2+3ρ24||Δu||2L2. $ | (2.13) |
$ ρ2|4iRe{∫Y|η|2u(η⋅∇)¯udy}|≤4ρ2∫Y|(η⋅∇)u||η|2|u|dy≤4ρ2|η|2||u||L2||(η⋅∇)u||L2≤192ρ2|η|4||u||2L2+ρ248||(η⋅∇)u||2L2. $ | (2.14) |
The previous threee estimate use Cauchy-Schwarz inequality for the second step and Young's inequality for the third step. Substituting the inequalities (2.12), (2.13) and (2.14) into (2.11), we get
$ II≥11ρ248||Δu||2L2(Y)−240ρ2|η|4||u||2L2(Y)−65ρ248||(η⋅∇)u||2L2(Y). $ | (2.15) |
Since
$ II≥11ρ248||Δu||2L2(Y)−15ρ2||u||2L2(Y)−65ρ2192||∇u||2L2(Y). $ |
Now, notice that
$ ||∇u||2L2=∫Y|∇u|2dy=−∫YuΔudy≤6548||u||2L2+1265||Δu||2L2. $ | (2.16) |
Substituting (2.16) in (2.15), we get
$ II≥ρ26||Δu||2L2(Y)−16ρ2||u||2L2(Y). $ | (2.17) |
Combining (2.10) and (2.17), we obtain (2.4) with
$ C∗=(α2+C1C2+C4+16ρ2). $ | (2.18) |
Remark 2.2. In the Gå rding type inequality for the operator
Now that we have the coercivity estimate (2.4), we can prove the existence of Bloch eigenvalues and eigenfunctions for the operator
Theorem 2.3. For each
Proof. Lemma 2.1 shows that for every
Remark 2.4. We can prove the existence of Bloch eigenvalues and eigenfunctions for the case
Now that we have proved the existence of Bloch eigenvalues and eigenfunctions, we can state the Bloch Decomposition Theorem which offers a partial diagonalization of the operator
Theorem 2.5. Let
$ Bρmg(η):=∫Rdg(y)e−iy⋅η¯ϕρm(y;η)dy,m∈N,η∈Y′. $ | (2.19) |
1. The following inverse formula holds
$ g(y)=∫Y′∞∑m=1Bρmg(η)ϕρm(y;η)eiy⋅ηdη. $ | (2.20) |
2. Parseval's identity
$ ||g||2L2(Rd)=∞∑m=1∫Y′|Bρmg(η)|2dη. $ | (2.21) |
3. Plancherel formula For
$ ∫Rdf(y)¯g(y)dy=∞∑m=1∫Y′Bρmf(η)¯Bρmg(η)dη. $ | (2.22) |
4. Bloch Decomposition in
$ BρmF(η)=∫Rde−iy⋅η{u0(y)¯ϕρm(y;η)+iN∑j=1ηjuj(y)¯ϕρm(y;η)}dy−∫Rde−iy⋅ηN∑j=1uj(y)∂¯ϕρm∂yj(y;η)dy. $ | (2.23) |
The definition above is independent of the particular representative of
5. Finally, for
$ Bρm(Aρg)(η)=λρm(η)Bρmg(η). $ | (2.24) |
The Bloch wave method of homogenization requires differentiability of the Bloch eigenvalues and eigenfunctions in a neighbourhood of
Theorem 3.1. For every
1. The first Bloch eigenvalue
2. There is a choice of corresponding eigenfunctions
For the proof, we will make use of Kato-Rellich theorem which establishes the existence of a sequence of eigenvalues and eigenfunctions associated with a selfadjoint holomorphic family of type (B). The definition of selfadjoint holomorphic family of type (B) and other related notions may be found in Kato [21]. Nevertheless, they are stated below for completeness. We begin with the definition of a holomorphic family of forms of type (a).
Definition 3.2.
1. The numerical range of a form
$ \Theta(a) = \{a(u,u): u \in D(a), ||u|| = 1\} $ |
where
2. The form
$ \Theta(a) \subset S_{c,\theta} := \{\lambda \in\mathbb{C}: | \arg(\lambda -c)| \leq \theta)\}. $ |
3. A sectorial form
Definition 3.3. [Kato] A family of forms
1. each
2.
A family of operators is called a holomorphic family of type (B) if it generates a holomorphic family of forms of type (a).
In [21, 31], Kato-Rellich theorem is stated only for a single parameter family. In [5], one can find the proof of Kato-Rellich theorem for multiple parameters with the added assumption of simplicity for the eigenvalue at
Theorem 3.4. (Kato-Rellich) Let
1. There is exactly one point
2. There is an associated eigenfunction
The proof of Theorem 3.1 proceeds by complexifying the shifted operator
Proof. (Proof of Theorem 3.1)
(i) Complexification of
$ t(\tilde{\eta}) = \int_Y A(\nabla+i\sigma-\tau)u\cdot(\nabla-i\sigma+\tau)\overline{u}\,dy+\rho^2\int_Y |(\nabla+i\sigma+\tau)^2 u|^2\,dy $ |
for
$ R:={˜η∈CM:˜η=σ+iτ,σ,τ∈RM,|σ|<1/2,|τ|<1/2}. $ |
(ii) the form
$ t(˜η)=∫YA(∇+iσ−τ)u⋅(∇−iσ+τ)¯udy+ρ2∫Y|(∇+iσ+τ)2u|2dy=∫YA(∇+iσ)u⋅(∇−iσ)¯udy−∫YA(τu)⋅∇¯udy+∫YA∇u⋅(τ¯u)dy−∫YAτu⋅τ¯udy+i∫YAσu⋅τ¯udy+i∫YAτu⋅σ¯udy+ρ2∫Y(Δ−|σ|2+|τ|2)u(Δ−|σ|2+|τ|2)¯udy+2ρ2∫Y(Δ−|σ|2+|τ|2)u(τ⋅∇−iσ⋅∇−iσ⋅τ)¯udy+2ρ2∫Y(iσ⋅∇−τ⋅∇−iσ⋅τ)u(Δ−|σ|2+|τ|2)¯udy+4ρ2∫Y(iσ⋅∇−τ⋅∇−iσ⋅τ)u(τ⋅∇−iσ⋅∇−iσ⋅τ)¯udy. $ |
From above, it is easy to write separately the real and imaginary parts of the form
$ ℜt(˜η)[u]=∫YA(∇+iσ)u⋅(∇−iσ)¯udy−∫YAτu⋅τ¯udy+ρ2∫Y(Δ−|σ|2+|τ|2)u(Δ−|σ|2+|τ|2)¯udy−4ρ2∫Y|(τ⋅∇)u|2dy+4ρ2∫Y|(σ⋅∇)u|2dy−4ρ2∫Y|(τ⋅σ)u|2dy+8ρ2Re{∫Yi(τ⋅∇)u(σ⋅τ)¯udy}+4ρ2Re{∫Yi(σ⋅∇)uΔ¯udy}+4ρ2Re{∫Yi|σ|2u(σ⋅∇)¯udy}. $ |
$ ℑt(˜η)[u]=∫YAσu⋅τ¯udy+∫YAτu⋅σ¯udy+2ℑ{∫YA∇u⋅τ¯udy}+8ρ2Im{∫Yi(τ⋅σ)u(σ⋅∇)¯udy}+8ρ2Im{∫Yi(σ⋅∇)u(σ⋅τ)¯udy}+4ρ2Im{∫YΔu(τ⋅∇)¯udy}−4ρ2Im{∫YiΔu(σ⋅τ)¯udy}+4ρ2Im{∫Y(τ⋅∇)u|σ|2¯udy}+4ρ2Im{∫Yi|σ|2u(σ⋅τ)¯udy}+4ρ2Im{∫Y|τ|2u(τ⋅∇)¯udy}−4ρ2Im{∫Yi|τ|2u(σ⋅τ)¯udy}. $ |
The following coercivity estimate can be easily found for the real part:
$ ℜt(˜η)[u]+C5||u||2L2♯(Y)≥α2(||u||2L2♯(Y)+||∇u||2L2♯(Y))+ρ26||Δu||2L2♯(Y). $ | (3.1) |
Let us define the new form
$ ℜ˜t(˜η)[u]≥α2(||u||2L2♯(Y)+||∇u||2L2♯(Y))+ρ26||Δu||2L2♯(Y)+C6||u||2L2♯(Y). $ |
Also, the imaginary part of
$ ℑ˜t(˜η)[u]≤C7||u||2L2♯(Y)+C8||∇u||2L2♯(Y)+C9||Δu||2L2♯(Y)C10=max{2C8α,6C9ρ2}=C6=C10C7C10(C6||u||2L2♯(Y)+α2||∇u||2L2♯(Y)+ρ26||Δu||2L2♯(Y))≤C10(ℜ˜t(˜η)[u]−α2||u||2L2♯(Y)). $ |
This shows that
(iii) The form
(iv) The form
(v)
(vi)
(vii)
In Section 3, we have proved that the first Bloch eigenvalue and eigenfunction is analytic in a neighbourhood of
We begin by proving that Bloch eigenvalues are Lipschitz continuous in the dual parameter.
Lemma 4.1. For all
Proof. The following form is associated with
$ aρ[η](u,u)=∫YA(∇+iη)u⋅¯(∇+iη)udy+ρ2∫Y(∇+iη)2u¯(∇+iη)2udy. $ | (4.1) |
Hence, for
$ aρ[η]−aρ[η′]=2Re{∫YAi(η−η′)u⋅¯∇udy}+∫YAηu⋅η¯udy+∫YAη′u⋅η′¯udy+ρ2∫Y(|η|2−|η′|2)|u|2dy+4ρ2∫Y|η⋅∇u|2−|η′⋅∇u|2dy+2ρ2iIm{∫Y(|η|2−|η′|2)uΔ¯udy}+4ρ2iRe{∫Y(η−η′)⋅∇uΔ¯udy}+4ρ2iRe{∫Y|η|2u(η⋅∇)¯u−|η′|2u(η′⋅∇)¯udy}≤C|η−η′|||u||2H1♯(Y)+C′|η−η′|ρ2{||Δu||2L2♯(Y)+||u||2L2♯(Y)}, $ |
where
$ λρm(η)≤λρm(η′)+C|η−η′|μm+C′ρ2|η−η′|νm, $ | (4.2) |
where
$ {−Δum+um=μmuminYumisY−periodic, $ |
and
$ {Δ2vm+vm=νmvminYvmisY−periodic. $ |
By interchanging the role of
$ |λρm(η)−λρm(η′)|≤C(μm+ρ2νm)|η−η′|. $ | (4.3) |
Here,
Now, we will prove a spectral gap result, viz. the second Bloch eigenvalue is bounded below.
Lemma 4.2. For all
$ λρm(η)≥αλN2, $ | (4.4) |
where
Proof. Notice that
$ λρ2(η)=infW⊂H2♯(Y)dim(W)=2maxϕ∈Wϕ≠0∫YA∇(eiη⋅yϕ)⋅∇(e−iη⋅y¯ϕ)dy+ρ2∫Y|Δ(eiη⋅yϕ)|2dy∫Y|ϕ|2dy≥infW⊂H2(Y)dim(W)=2maxψ∈Wψ≠0∫YA∇ψ⋅∇¯ψdy+ρ2∫Y|Δψ|2dy∫Y|ψ|2dy≥infW⊂H2(Y)dim(W)=2maxψ∈Wψ≠0∫YA∇ψ⋅∇¯ψdy∫Y|ψ|2dy≥infW⊂H1(Y)dim(W)=2maxψ∈Wψ≠0∫YA∇ψ⋅∇¯ψdy∫Y|ψ|2dy≥αinfW⊂H1(Y)dim(W)=2maxψ∈Wψ≠0∫Y|∇ψ|2dy∫Y|ψ|2dy=αλN2. $ |
The bound obtained in Lemma 4.2 will be useful for the small
Lemma 4.3. For all
$ λρm(η)≥Cρ2κ2−C′, $ | (4.5) |
where
Proof. Recall the following Gå rding type estimate (2.4) for the form
$ aρ[η](u,u)+C∗||u||2L2♯(Y)≥ρ26||Δu||2L2♯(Y)+α2||u||H1♯(Q). $ |
The inequality in Lemma 4.3 follows readily from above by applying the minmax characterization.
Remark 4.4. In Lemma 4.2 and Lemma 4.3, we have avoided estimating the second Bloch eigenvalue by using the spectral problem associated with Neumann bilaplacian as it is known to be ill-posed [30]. Moreover, polyharmonic Neumann eigenvalue problems on polygonal domains (such as
We are finally in a position to prove that the neighbourhood of analyticity of the first Bloch eigenvalue does not depend on the parameter
Theorem 4.5. There exists a neighbourhood
Proof. It was proved in Theorem 3.1 that the first Bloch eigenvalue is analytic in a neighbourhood of
$ |λρ1(η)−λρ2(η)|≥λρ2(η)−|λρ1(η)−λρ1(0)|−|λρ2(η)−λρ2(0)|(4.3)≥λρ2(η)−2(C+ρ2)|η|, $ | (4.6) |
where
● For sufficiently large
$ |λρ1(η)−λρ2(η)|≥λρ2(η)−2(C+ρ2)|η|Lemma4.3≥(C′ρ2−C″)−2(C+ρ2)|η|largeρ≥C‴ρ2−2ρ2|η|>0 $ |
for
● For remaining values of
$ |λρ1(η)−λρ2(η)|≥λρ2(η)−2(C+ρ2)|η|Lemma4.2≥αλN2−2(C+ρ2)|η|≥αλN2−2C|η|>0 $ |
for
Remark 4.6. In the papers [33, 34], an additional artificial parameter is introduced in the Bloch eigenvalue problem to facilitate the homogenization method. Unlike (1.1), these papers employ successive limits of the two parameters instead of simultaneous limits. Therefore, the non-dependence of the neighbourhood of analyticity on the second parameter is not required in [33, 34].
In this section, we will consider the classical cell problem associated with (1.1) and the estimates for the corrector field. This section will allow us to characterize the homogenized tensor for (1.1) and the corrector field in terms of Bloch eigenvalues and eigenfunctions.
For
(5.1) |
By a simple application of Lax-Milgram lemma on
$ ρ||Δχρj||L2♯(Y)+||χρj||H1♯(Y)≤C. $ | (5.2) |
If we use
$ ρ2||∇3χρj||L2♯(Y)≤C. $ | (5.3) |
We also collect below a few estimates which will be required later. Similar estimates have been proved in [26] to which we refer for more details.
Lemma 5.1. Let
$ ||∇χρ1−∇χρ2||L2(Y)≤C|1−(ρ1/ρ2)2|. $ | (5.4) |
Proof. Define
$ ρ21Δ2z−divA(y)∇z=(ρ22−ρ21)Δ2χρ2. $ | (5.5) |
Now, the quoted estimate readily follows by taking
Lemma 5.2. Let
(5.6) |
Then, there is
$ ||∇χ0j−∇χBj||L2(Y)≤Cϰ $ | (5.7) |
$ ||∇χρ−∇χB||L2(Y)≤C{ρ||χB||H2(Y)+ϰ}, $ | (5.8) |
where
(5.9) |
Proof. Observe that given any
$ ||A-B||_{L^q_{\sharp}(Y)}\leq \varkappa. $ |
For example, this can be achieved by a standard smoothing by convolution. Now, by regularity theory,
$ ρ2Δ2z−divB(y)∇z=−ρ2Δ2χBj+div(A−B)∇χρj. $ | (5.10) |
We test this equation against
$ ρ2∫Y|Δz|2dy+∫YA(y)∇z⋅∇zdy≤ρ2∫Y|ΔχBj||Δz|dy+∫Y|A−B||∇χρj||∇z|dy. $ |
This leads to
$ ρ2||Δz||2L2+α||∇z||2L2≤ρ2||ΔχBj||L2||Δz||L2+||∇z||L2(∫Y|A−B|2|∇χρj|2dy)1/2. $ |
By Young's inequality,
$ ||∇z||L2≤C{ρ||ΔχBj||L2+(∫Y|A−B|2|∇χρj|2dy)1/2}. $ |
On the last term, we apply a form of Meyers estimate for the
For every fixed
$ Aρ,hom:=MY(A+A∇χρ) $ | (5.11) |
Definition 5.3 (Homogenized Tensor for
$ Ahom:={MY(A+A∇χθ)for0<θ<∞whereρ=κε→θ,MY(A+A∇χ0)whenρ=κε→0,MY(A)whenρ=κε→∞. $ | (5.12) |
In this section, we will give a new characterization of the homogenized tensor (see Definition 5.3), and corrector field (5.1) in terms of the first Bloch eigenvalue and eigenfunction. These characterizations are obtained by differentiating the Bloch spectral problem (2.2) with respect to the dual parameter
We recall the Bloch eigenvalue problem for the operator
$ ρ2(∇+iη)4ϕρ1(y;η)−(∇+iη)⋅A(y)(∇+iη)ϕρ1(y;η)=λρ1(η)ϕρ1(y;η). $ | (6.1) |
We know that
We shall normalize the average value of the first Bloch eigenfunction
$ MY(ϕρ1(⋅,η))=(2π)−d/2 $ | (6.2) |
for all
$ MY(∂β0ϕρ1)=0 $ | (6.3) |
for all
$ ∂βηA≡0forall|β|>4, $ | (6.4) |
since
$ Aρ(0)=ρ2∇4−∇⋅A(y)∇∂ej0Aρ=4iρ2ej⋅∇∇2−iej⋅A∇−i∇⋅Aej∂ej+ek0Aρ=−4ρ2δjk∇2−8ρ2∂yj∂yk+2ajk∂ej+ek+el0Aρ=−8iρ2(δjk∂yl+δjl∂yk+δkl∂yj)∂ej+ek+el+em0Aρ=8ρ2(δjkδlm+δjlδkm+δjmδkl), $ | (6.5) |
where
$ ∂β(fg)=∑γ∈Nd∪{0}(βγ)∂γf∂β−γg, $ | (6.6) |
where
Cell problems for
$ Aρ(0)∂β0ϕρ1+d∑j=1βj∂ej0Aρ∂β−ej0ϕρ1+∑j,k(βej+ek)∂ej+ek0Aρ∂β−ej−ek0ϕρ1 $ |
$ +∑j,k,l(βej+ek+el)∂ej+ek+el0Aρ∂β−ej−ek−el0ϕρ1+∑j,k,l,m(βej+ek+el+em)∂ej+ek+el+em0Aρ∂β−ej−ek−el−em0ϕρ1=∑γ∈Nd∪{0}(βγ)∂γ0λρ1∂β−γ0ϕρ1. $ | (6.7) |
Substituting (6.5) in (6.7), we obtain
$ (ρ2∇4−∇⋅A(y)∇)∂β0ϕρ1=d∑j=1βj(−4iρ2ej⋅∇∇2+iej⋅A∇+i∇⋅Aej)∂β−ej0ϕρ1−∑j,k(βej+ek)(−4ρ2δjk∇2−8ρ2∂yj∂yk+2ajk)∂β−ej−ek0ϕρ1+∑j,k,l(βej+ek+el)(8iρ2(δjk∂yl+δjl∂yk+δkl∂yj))∂β−ej−ek−el0ϕρ1−∑j,k,l,m(βej+ek+el+em)(8ρ2(δjkδlm+δjlδkm+δjmδkl))∂β−ej−ek−el−em0ϕρ1+∑γ∈Nd(βγ)∂γ0λρ1∂β−γ0ϕρ1. $ | (6.8) |
Expression for
Rearranging (6.8), we get
$ ∂β0λρ1ϕρ1(0)=(ρ2∇4−∇⋅A(y)∇)∂β0ϕρ1+d∑j=1βj(−4iρ2ej⋅∇∇2+iej⋅A∇+i∇⋅Aej)∂β−ej0ϕρ1−∑j,k(βej+ek)(−4ρ2δjk∇2−8ρ2∂yj∂yk+2ajk)∂β−ej−ek0ϕρ1+∑j,k,l(βej+ek+el)(8iρ2(δjk∂yl+δjl∂yk+δkl∂yj))∂β−ej−ek−el0ϕρ1−∑j,k,l,m(βej+ek+el+em)(8ρ2(δjkδlm+δjlδkm+δjmδkl))∂β−ej−ek−el−em0ϕρ1+∑γ∈Ndγ≠β(βγ)∂γ0λρ1∂β−γ0ϕρ1. $ | (6.9) |
Integrating (6.9) over
$ ∂β0λρ1={2∑j,k(βej+ek)MY(ajk∂β−ej−ek0ϕρ1)−id∑j=1βjMY(ej⋅A∇∂β−ej0ϕρ1)when|β|≠4.2∑j,k(βej+ek)MY(ajk∂β−ej−ek0ϕρ1)−id∑j=1βjMY(ej⋅A∇∂β−ej0ϕρ1)−∑j,k,l,m8ρ2(δjkδlm+δjlδkm+δjmδkl)ϕρ1(0)when|β|=4. $ | (6.10) |
We specialize to
On the other hand, if we set
$ (−∇⋅A(y)∇+ρ2Δ2)∂ϕρ1∂ηl(0)=∇⋅A(y)eliϕρ1(0). $ |
Comparing with (5.1), we conclude that
We also specialize to
$ 12∂2λρ1∂ηk∂ηl(0)=1|Y|∫Y(ek⋅Ael+12ek⋅A∇χρl+12el⋅A∇χρk)dy. $ | (6.11) |
On comparing (6.11) with (5.11), we obtain the following theorem:
Theorem 6.1. The first Bloch eigenvalue and eigenfunction satisfy:
1.
2. The eigenvalue
$ ∂λρ1∂ηl(0)=0,∀l=1,2,…,d. $ | (6.12) |
3. For
4. The Hessian of the first Bloch eigenvalue at
$ 12∂2λρ1∂ηk∂ηl(0)=ek⋅Aρ,homel. $ | (6.13) |
Now, we will prove the stability of homogenized tensor in the limits
Lemma 6.2. Let
Proof. The fact that the first Bloch eigenvalues
$ |λρ1(η)|≤|λρ1(η)−λρ1(0|(4.3)≤C(μ1+ν1ρ2)|η|<C′forallη∈K, $ |
where
$ aρ[η](u,u)=∫YA(∇+iη)u⋅¯(∇+iη)udy+ρ2∫Y(∇+iη)2u¯(∇+iη)2udy=aθ[η](u,u)+(ρ2−θ2)∫Y(∇+iη)2u¯(∇+iη)2udy $ |
we obtain the following inequality:
$ λρ1(η)−λθ1(η)≤(ρ2−θ2)ϑ1(η), $ |
where
$ aρ[η](u,u)≥aθ[η](u,u)forρ≥θ, $ |
so that an application of minmax characterization yields:
$ λρ1(η)≥λθ1(η)forρ≥θ. $ |
Thus, we obtain
$ 0≤λρ1(η)−λθ1(η)≤(ρ2−θ2)ϑ1(η)forρ≥θ. $ |
As a consequence, for each
Theorem 6.3. Let
Proof.
Case 1.
$ Aρ,hom=12∇2ηλρ1(0)→12∇2ηλθ1(0)=Ahomasρ↓θ∈[0,∞). $ |
Case 2.
$ |Aρ,hom−MY(A)|=|∫YA(y)∇χρ(y)dy|≤C||∇χρ||L2♯(Y)≤Cρ2, $ |
where the last inequality follows from Poincaré inequality and (5.3). Therefore, as
$ Aρ,hom→MY(A)=Ahomasρ↑∞. $ |
Remark 6.4. As a consequence of Lemma 6.2 and the discussion in Case
$ |λρ1(η)|+C∗≥λρ1(η)+C∗=aρ[η](ϕρ1(η),ϕρ1(η))+C∗≥α2||ϕρ1(η)||2H1♯(Y). $ |
Recall that the number
We end this section by finding boundedness estimates for higher order derivatives of the first Bloch eigenvalue and eigenfunction in the dual parameter in the regime
Theorem 6.5. For
1.
2.
3.
4.
5.
Proof. The estimates are computed in tandem from the equations (6.8) and (6.10). One begins by proving the estimate on the derivative of the first Bloch eigenfunction at
In this section, we will relate the Bloch spectral problem (2.2) to the Bloch spectral problem at the
$ {Aκ,ε(η)ϕκ,ε:=κ2(∇+iξ)4ϕκ,ε(x)−(∇+iξ)⋅A(xε)(∇+iξ)ϕκ,ε(x)=λκ,ε(ξ)ϕκ,ε(x)ϕκ,ε(x+2πpε)=ϕκ,ε(x),p∈Zd,ξ∈Y′ε. $ | (7.1) |
Comparing to (2.2), by homothety and
$ λκ,ε(ξ)=ε−2λρ(εξ)andϕκ,ε(x,ξ)=ϕρ(xε;εξ). $ | (7.2) |
Now, we can state the Bloch decomposition theorem of
Theorem 7.1. Let
$ Bκ,εmg(ξ):=∫Rdg(x)e−ix⋅ξ¯ϕκ,εm(x;ξ)dx,m∈N,ξ∈Y′ε. $ | (7.3) |
1. The following inverse formula holds
$ g(x)=∫Y′ε∞∑m=1Bκ,εmg(ξ)ϕκ,εm(x;ξ)eix⋅ξdξ. $ | (7.4) |
2. Parseval's identity
$ ||g||2L2(Rd)=∞∑m=1∫Y′ε|Bκ,εmg(ξ)|2dξ. $ | (7.5) |
3. Plancherel formula For
$ ∫Rdf(x)¯g(x)dx=∞∑m=1∫Y′εBκ,εmf(ξ)¯Bκ,εmg(ξ)dξ. $ | (7.6) |
4. Bloch Decomposition in
$ Bκ,εmF(ξ)=∫Rde−ix⋅ξ{u0(x)¯ϕκ,εm(x;ξ)+iN∑j=1ξjuj(x)¯ϕκ,εm(x;ξ)}dx−∫Rde−ix⋅ξN∑j=1uj(x)∂¯ϕκ,εm∂xj(x;ξ)dx. $ | (7.7) |
The definition above is independent of the particular representative of
5. Finally, for
$ Bκ,εm(Aκ,εg)(ξ)=λκ,εm(ξ)Bκ,εmg(ξ). $ | (7.8) |
In order to compute the homogenization limit, we need to know the limit of Bloch Transform of a sequence of functions. The following theorem proves that for a sequence of functions convergent in a suitable way, the first Bloch transform converges to the Fourier transform of the limit.
Theorem 7.2. Let
in denotes the characteristic function of the set
Proof. In Theorem 4.5, the existence of the set
$ Bκ,ε1gε(ξ)=∫Rdg(x)e−ix⋅ξ¯ϕκ,ε1(x;0)dx+∫Rdg(x)e−ix⋅ξ(¯ϕρ1(xε;εξ)−¯ϕρ(xε;0))dx. $ |
Now, we need to distinguish between the regimes:
Case 1.
Case 2.
In this section, we will prove the qualitative homogenization result for the singularly perturbed homogenization problem. There are three regimes according to convergence of
Theorem 8.1. Let
$ Aκ,εuε=finΩ, $ | (8.1) |
where
1. For all
$ A(xε)∇uε(x)⇀Ahom∇u∗(x)in(L2(Ω))d−weak. $ | (8.2) |
2. The limit
$ Ahomu∗=−∇⋅Ahom∇u∗=finΩ. $ | (8.3) |
Remark 8.2. In the spirit of H-convergence [24], we do not impose any boundary condition on the equation. The H-convergence compactness theorem concerns convergence of sequences on which certain differential constraints have been imposed. In homogenization, the weak convergence of solutions is a consequence of uniform bounds on them, which follow from boundary conditions imposed on the equation. In the theorem quoted above, the uniform boundedness on
The proof of Theorem 8.1 is divided into the following steps. We begin by localizing the equation (8.1) which is posed on
Let
$ Aκ,ε(ψ0uε)(x)=ψ0f(x)+gε(x)+hε(x)+4∑m=1lκ,εm(x)inRd, $ | (8.4) |
where
$ gε(x):=−∂ψ0∂xk(x)aεkl(x)∂uε∂xl(x), $ | (8.5) |
$ hε(x):=−∂∂xk(∂ψ0∂xl(x)aεkl(x)uε(x)), $ | (8.6) |
$ lκ,ε1(x):=κ2∂4ψ0∂x4k(x)uε(x). $ | (8.7) |
$ lκ,ε2(x):=4κ2∂3ψ0∂x3k(x)∂uε∂xk(x). $ | (8.8) |
$ lκ,ε3(x):=2κ2∂2ψ0∂x2k(x)∂2uε∂x2k(x). $ | (8.9) |
$ lκ,ε4(x):=4κ2∂ψ0∂xk(x)∂3uε∂x3k(x)+4κ2∂2ψ0∂x2k(x)∂2uε∂x2k(x)=4κ2∂∂xk(∂ψ0∂xk∂2uε∂x2k). $ | (8.10) |
While the sequence
$ λκ,ε1(ξ)Bκ,ε1(ψ0uε)(ξ)=Bκ,ε1(ψ0f)(ξ)+Bκ,ε1gε(ξ)+Bκ,ε1hε(ξ)+4∑m=1Bκ,ε1lκ,εm(ξ). $ | (8.11) |
We shall now pass to the limit
We expand the first Bloch eigenvalue about
$ (12∂2λρ1∂ηs∂ηt(0)ξsξt+O(ε2))Bκ,ε1(ψ0uε). $ |
The higher order derivatives of
$ es⋅Ahomet∂ηs∂ηt(0)ξsξt^ψou∗(ξ). $ | (8.12) |
An application of Lemma 7.2 yields the convergence of
The sequence
$ χε−1U(ξ)Bκ,ε1gε(ξ)⇀−(∂ψ0∂xk(x)σ∗k(x))^(ξ). $ | (8.13) |
We have the following weak convergence in
$ limε→0χε−1U(ξ)Bκ,ε1hε(ξ)=−iξka∗kl(∂ψ0∂xl(x)u∗(x))^(ξ) $ | (8.14) |
We shall prove this in the following steps.
Step 1. By the definition of the Bloch transform (7.7) for elements of
$ Bκ,ε1hε(ξ)=−iξk∫Rde−ix⋅ξ∂ψ0∂xl(x)aεkl(x)uε(x)¯ϕρ1(xε;εξ)dx+∫Rde−ix⋅ξ∂ψ0∂xl(x)aεkl(x)uε(x)∂¯ϕρ1∂xk(xε;εξ)dx. $ | (8.15) |
Step 2. The first term on RHS of (8.15) is the Bloch transform of the expression
Step 3. Now, we analyze the second term on RHS of (8.15). To this end, we make use of analyticity of first Bloch eigenfunction with respect to the dual parameter
$ ϕρ1(y;η)=ϕρ1(y;0)+ηs∂ϕρ1∂ηs(y;0)+γρ(y;η). $ | (8.16) |
We know that
$ ϕκ,ε1(x;ξ)=ϕρ1(xε;εξ)=ϕρ1(xε;0)+εξs∂ϕρ1∂ηs(xε;0)+γρ(xε;εξ). $ | (8.17) |
Differentiating the last equation with respect to
$ ∂∂xkϕρ1(xε;εξ)=ξs∂∂yk∂ϕρ1∂ηs(xε;0)+ε−1∂γρ∂yk(xε;εξ). $ | (8.18) |
For
$ ∂γρ∂yk(⋅;εξ)=O(|εξ|2)=ε2O(|ξ|2)≤CM2ε2. $ | (8.19) |
As a consequence,
$ ε−2∂γρ∂yk(x/ε;εξ)∈L∞loc(Rdξ;L2♯(εY)). $ | (8.20) |
The second term on the RHS of (8.15) is given by
$ χε−1U(ξ)∫Ke−ix⋅ξ∂ψ0∂xl(x)akl(xε)uε(x)∂∂xk(¯ϕρ1(xε;εξ))dx. $ | (8.21) |
Substituting (8.18) in (8.21), we obtain
$ χε−1U(ξ)∫Ke−ix⋅ξ∂ψ0∂xl(x)akl(xε)uε(x)[ξs∂∂yk∂ϕρ1∂ηs(xε;0)+ε−1∂γρ∂yk(xε;εξ)]dx. $ | (8.22) |
In the last expression, the term involving
$ MY(akl(y)∂χθs∂yk(y))ξs∫Rde−ix⋅ξ∂ψ0∂xl(x)u∗(x)dx. $ | (8.23) |
To see this, we write the second term as
$ ∫Ke−ix⋅ξ∂ψ0∂xl(x)akl(xε)uε(x)ξs∂∂yk∂ϕρ1∂ηs(xε;0)dx=∫Ke−ix⋅ξ∂ψ0∂xl(x)akl(xε)uε(x)ξs∂χρs∂yk(xε)dx=∫Ke−ix⋅ξ∂ψ0∂xl(x)akl(xε)uε(x)ξs(∂χθs∂yk(xε)+[∂χρs∂yk(xε)−∂χθs∂yk(xε)])dx. $ |
The first term in parantheses goes to (8.23) due to strong convergence of
Step 4. By Theorem 6.1 and Remark 6.2, it follows that
$ MY(akl(y)∂∂yk(∂ϕθ1∂ηs(y;0)))=−i(2π)−d/2MY(akl(y)∂χθs∂yk(y)). $ | (8.24) |
Therefore, we have the following convergence in
$ χε−1U(ξ)Bκ,ε1hε(ξ)⇀−iξs{MY(akl)+MY(akl(y)∂χθs∂yk(y))}(∂ψ0∂xl(x)u∗(x))^(ξ)=−iξsa∗kl(∂ψ0∂xl(x)u∗(x))^(ξ) $ | (8.25) |
We shall prove that
$ limε→0Bκ,ε1lκ,ε1=0. $ | (8.26) |
Observe that
$ Bκ,ε1lκ,ε1(ξ)=κ2∫Rde−ix⋅ξ∂4ψ0∂x4k(x)uε(x)¯ϕκ,ε(x,ξ)dx. $ | (8.27) |
The integral is the Bloch transform of
We shall prove that
$ limε→0Bκ,ε1lκ,ε2=0. $ | (8.28) |
Observe that
$ Bκ,ε1lκ,ε2(ξ)=4κ2∫Rde−ix⋅ξ∂3ψ0∂x3k(x)∂uε∂xk(x)¯ϕκ,ε(x,ξ)dx. $ | (8.29) |
The integral is the Bloch transform of
We shall prove that
$ limε→0Bκ,ε1lκ,ε3=0. $ | (8.30) |
Observe that
$ Bκ,ε1lκ,ε3(ξ)=2κ∫Rde−ix⋅ξ∂2ψ0∂x2k(x)κ∂2uε∂x2k(x)¯ϕκ,ε(x,ξ)dx. $ | (8.31) |
The integral is the Bloch transform of
We shall prove that
$ limε→0Bκ,ε1lκ,ε4=0. $ | (8.32) |
Observe that
$ lκ,ε4(x)=4κ∂∂xk(∂ψ0∂xkκ∂2uε∂x2k) $ |
belongs to
$ Bκ,ε1lκ,ε4(ξ)=−4iκξk∫Rde−ix⋅ξ∂ψ0∂xl(x)κ∂2uε∂xk(x)¯ϕρ1(xε;εξ)dx+4κ∫Rde−ix⋅ξ∂ψ0∂xl(x)κ∂2uε∂x2k(x)∂¯ϕρ1∂xk(xε;εξ)dx. $ | (8.33) |
The analysis of the first term is the same as that of
Finally, passing to the limit in (8.11) as
$ a∗klξkξl^ψou∗(ξ)=^ψ0f−(∂ψ0∂xk(x)σ∗k(x))^(ξ)−iξka∗kl(∂ψ0∂xl(x)u∗(x))^(ξ). $ | (8.34) |
In this regime, the convergence proofs for
We expand the first Bloch eigenvalue about
$ (12∂2λρ1∂ηs∂ηt(0)ξsξt+ε24!∂es+et+eu+ev0λρ1ξsξtξuξv+O(ε4))Bκ,ε1(ψ0uε). $ |
The fourth order derivative is of order
$ (12∂2λρ1∂ηs∂ηt(0)ξsξt+O(ε2ρ2)+O(ε4))Bκ,ε1(ψ0uε)=(12∂2λρ1∂ηs∂ηt(0)ξsξt+O(κ2)+O(ε4))Bκ,ε1(ψ0uε) $ |
Now, we can pass to the limit
$ es⋅Ahomet∂ηs∂ηt(0)ξsξt^ψou∗(ξ). $ |
$ limε→0χε−1U(ξ)Bκ,ε1hε(ξ)=−iξka∗kl(∂ψ0∂xl(x)u∗(x))^(ξ) $ |
We shall prove this in the following steps.
Step 1. As before, we have
$ Bκ,ε1hε(ξ)=−iξk∫Rde−ix⋅ξ∂ψ0∂xl(x)aεkl(x)uε(x)¯ϕρ1(xε;εξ)dx+∫Rde−ix⋅ξ∂ψ0∂xl(x)aεkl(x)uε(x)∂¯ϕρ1∂xk(xε;εξ)dx. $ | (8.35) |
Step 2. As before, the first term on RHS of (8.35) is the Bloch transform of the expression
$ −iξkMY(akl)(∂ψ0∂xl(x)u∗(x))=−iξka∗kl(∂ψ0∂xl(x)u∗(x)) $ |
where the last equality is due to Definition 5.3.
Step 3. Now we shall prove that the second term on RHS of (8.35) goes to zero. As before, we make use of analyticity of first Bloch eigenfunction with respect to the dual parameter
$ ϕρ1(y;η)=ϕρ1(y;0)+ηs∂ϕρ1∂ηs(y;0)+γρ(y;η). $ |
We know that
$ ϕκ,ε1(x;ξ)=ϕρ1(xε;εξ)=ϕρ1(xε;0)+εξs∂ϕρ1∂ηs(xε;0)+γρ(xε;εξ). $ |
Differentiating the last equation with respect to
$ ∂∂xkϕρ1(xε;εξ)=ξs∂∂yk∂ϕρ1∂ηs(xε;0)+ε−1∂γρ∂yk(xε;εξ). $ | (8.36) |
For
$ ∂γρ∂yk(⋅;εξ)=O(|εξ|2)=ε2O(|ξ|2)≤CM2ε2. $ | (8.37) |
As a consequence,
$ ε−2∂γρ∂yk(x/ε;εξ)∈L∞loc(Rdξ;L2♯(εY)). $ |
The second term on the RHS of (8.35) is given by
$ χε−1U(ξ)∫Ke−ix⋅ξ∂ψ0∂xl(x)akl(xε)uε(x)∂∂xk(¯ϕρ1(xε;εξ))dx. $ | (8.38) |
Substituting (8.36) in (8.38), we obtain
$ χε−1U(ξ)∫Ke−ix⋅ξ∂ψ0∂xl(x)akl(xε)uε(x)[ξs∂∂yk∂ϕρ1∂ηs(xε;0)+ε−1∂γρ∂yk(xε;εξ)]dx. $ | (8.39) |
In the last expression, the term involving
The other term also goes to zero as
$ \frac{\partial}{\partial x_k}\left(\frac{\partial\phi^{\rho}_1}{\partial\eta_s}(x/ \varepsilon;0)\right) = O\left(\frac{1}{\rho^2}\right), $ |
as shown in Theorem 6.5.
The analysis is the same as before, however the uniform-in-
Hence, for the regime
In this regime, all the convergence proofs are the same as in the regime
For this limit, all steps except the third are the same, hence we only explain the part of Step
$ χε−1U(ξ)∫Ke−ix⋅ξ∂ψ0∂xl(x)akl(xε)uε(x)[ξs∂∂yk∂ϕρ1∂ηs(xε;0)+ε−1∂γρ∂yk(xε;εξ)]dx. $ | (8.40) |
In the last expression, the term involving
$ MY(akl(y)∂χ0s∂yk(y))ξs∫Rde−ix⋅ξ∂ψ0∂xl(x)u∗(x)dx. $ | (8.41) |
To see this, we write
$ ∂∂yk∂ϕρ1∂ηs(xε;0)=∂χρs∂yk(xε)=∂χ0s∂yk(xε)⏟I+[∂χρs∂yk(xε)−∂χBs∂yk(xε)]⏟II+[∂χ0s∂yk(xε)−∂χBs∂yk(xε)]⏟III. $ |
The first term
For the expressions
This completes the modification required for the regime
$ a∗klξkξl^ψou∗(ξ)=^ψ0f−(∂ψ0∂xk(x)σ∗k(x))^(ξ)−iξka∗kl(∂ψ0∂xl(x)u∗(x))^(ξ)+O(ϰ). $ |
However, since
Taking the inverse Fourier transform in the equation (8.34), we obtain the following:
$ (Ahom(ψ0u∗)(x))=ψ0f−∂ψ0∂xk(x)σ∗k(x)−a∗kl∂∂xk(∂ψ0∂xl(x)u∗(x)), $ | (8.42) |
where the operator
$ (Ahom(ψ0u∗)(x))=(ψ0(x)Ahomu∗(x))−a∗kl∂∂xk(∂ψ0∂xl(x)u∗(x))−a∗kl∂ψ0∂xk(x)∂u∗∂xl(x) $ | (8.43) |
Using equations (8.42) and (8.43), we obtain
$ ψ0(x)(Ahomu∗−f)(x)=∂ψ0∂xk[a∗kl∂u∗∂xl(x)−σ∗k(x)]. $ | (8.44) |
Let
$ ψ0(x)[a∗kl∂u∗∂xl(x)−σ∗k(x)]=0. $ | (8.45) |
Let
$ fork=1,2,…,d,[a∗kl∂u∗∂xl(x)−σ∗k(x)]=0 $ | (8.46) |
However,
$ Ahomu∗=fandσ∗k(x)=a∗kl∂u∗∂xl(x). $ | (8.47) |
Thus, we have obtained the limit equation in the physical space. This finishes the proof of Theorem 8.1.
The proof of the qualitative homogenization theorem only requires the first Bloch transform. It is not clear whether the higher Bloch modes make any contribution to the homogenization limit. In this section, we show that they do not. We know that Bloch decomposition is the isomorphism
$ Bκ,εmAκ,εuε(ξ)=Bκ,εmf(ξ)∀m≥1,∀ξ∈ε−1Y′. $ |
We claim that one can neglect all the equations corresponding to
Proposition 9.1. Let
$ v^{\kappa, \varepsilon}(x) = \int_{ \varepsilon^{-1}Y^{'}}\sum\limits_{m = 2}^{\infty}\mathcal{B}^{\kappa, \varepsilon}_m u^ \varepsilon(\xi)\phi_m^{\kappa, \varepsilon}(x;\xi)e^{ix\cdot\xi}\,d\xi, $ |
then
Proof. Due to boundedness of the sequence
$ ∫RdAκ,εuε¯uε≤C. $ | (9.1) |
However, by Plancherel Theorem (7.6), we have
$ ∫RdAκ,εuε¯uε=∞∑m=1∫ε−1Y′(Bκ,εmAκ,εuε)(ξ)¯Bκ,εmuε(ξ)dξ≤C $ |
Using (7.8), we have
$ ∞∑m=1∫ε−1Y′λκ,εm(ξ)|Bκ,εmuε(ξ)|2dξ≤C. $ |
Now, by Lemma 4.2
$ λρm(η)≥αλN2>0∀m≥2∀η∈Y′, $ | (9.2) |
where
$ ∞∑m=2∫ε−1Y′|Bκ,εmuε(ξ)|2dξ≤Cε2. $ |
By Parseval's identity (7.5), the LHS equals
The author gratefully acknowledges the careful examination of the editor and the anonymous referees. The author would also like to thank Ayan Roychowdhury for a discussion about formation of shear bands.
[1] |
Fox MA (1999) Fundamentals in the Design of Molecular Electronic Devices: Long- Range Charge Carrier Transport and Electronic Coupling. Acc Chem Res 32: 201–207. doi: 10.1021/ar9600953
![]() |
[2] |
Liu C-Y, Pan H-L, Fox MA, et al. (1993) High-Density Nanosecond Charge Trapping in Thin-Films of the Photoconductor ZnODEP. Science 261: 897–899. doi: 10.1126/science.261.5123.897
![]() |
[3] |
Adams DM, Kerimo J, Liu C-Y, et al. (2000) Electric field modulated near-field photo-luminescence of organic thin films. J Phys Chem B 104: 6728–6736. doi: 10.1021/jp994457a
![]() |
[4] |
Kimura M, Saito Y, Ohta K, et al. (2002) Self-Organization of Supramolecular Complex Composed of Rigid Dendritic Porphyrin and Fullerene. J Am Chem Soc 124: 5274–5275. doi: 10.1021/ja012614p
![]() |
[5] |
Burrows HD, Gonsalves AMR, Leitao MLP, et al. (1997) Phase transitions and self-assembly in meso-tetrakis(undecyl)porphyrin. Supramolec Sci 4: 241–246. doi: 10.1016/S0968-5677(97)00010-2
![]() |
[6] |
Tsuda A, Osuka A (2001) Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared. Science 293: 79–82. doi: 10.1126/science.1059552
![]() |
[7] | Reimers JR, Hall LE, Crossley MJ, et al. (1999) Rigid fused Oligoporphyrins as Potential Versatile Molecular Wires. 2. B3LYP and SCF Calculated Geometric and Electronic Properties of 98 Oligoporphyrin and Related Molecules. J Phys Chem A 103: 4385–4397. |
[8] |
Jiao J, Anariba F, Tiznado H, et al. (2006) Stepwise Formation and Characterization of Covalently Linked Multiporphyrin-Imid Architectures on Si(100). J Am Chem Soc 128: 6965–6974. doi: 10.1021/ja060906q
![]() |
[9] | Roth KM, Liu Z, Gryko DT, et al. (2003) Charge-Retention Characteristics of Self-Assembled Monolayers of Molecular-Wire-Linked Porphyrins on Gold (Chapter 5). In: Lieberman M, editor. Molecules as Components of Electronic Devices. Washington DC: Oxford University Press. |
[10] |
Liu C-Y, Pan HL, Fox MA, et al. (1997) Reversible charge trapping/detrapping in a photoconductive insulator of liquid crystal zinc porphyrin. Chem Mater 9: 1422–1429. doi: 10.1021/cm970039b
![]() |
[11] | Roth KM, Dontha N, Dabke RB, et al. (2000) Molecular approach toward information storage based on the redox properties of porphyrins in self-assembled monolayers. J Vac Sci Technol 18: 2359–2364. |
[12] |
Malinski T, Taha Z (1992) Nitric-Oxide Release from a Single Cell Measured In Situ by a Porphyrinic-Based Microsensor. Nature 358: 676–678. doi: 10.1038/358676a0
![]() |
[13] | Filippini D, Alimelli A, Natale CD, et al. (1999) Chemical Sensing with Familiar Devices. Angew Chem Int Ed 45: 3800–3803. |
[14] |
Maree CHM, Roosendaal SJ, Savenije TJ, et al. (1996) Photovoltaic effects in porphyrin polymer films and heterojunctions. J Appl Phys 80: 3381–3389. doi: 10.1063/1.363203
![]() |
[15] |
Murata K, Ito S, Takahashi K, et al. (1997) Photocurrent from photocorrosion of aluminum electrode in porphyrin/Al Schottky-barrier cells. Appl Phys Lett 71: 674–676. doi: 10.1063/1.119826
![]() |
[16] |
Harima Y, Okazaki H, Kunugi Y, et al. (1996) Formation of Schottky barriers at interfaces between metals and molecular semiconductors of p- and n-type conductances. Appl Phys Lett 69: 1059–1061. doi: 10.1063/1.116930
![]() |
[17] |
Chowdhury A, Chowdhury J, Pal P, et al. (1998) Light-emitting diodes from molecularly thin porphyrin derivative: Effect of molecular packing. Solid State Commun 107: 725–729. doi: 10.1016/S0038-1098(98)00289-0
![]() |
[18] |
Baldo MA, O'Brien DF, You Y, et al. (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395: 151–154. doi: 10.1038/25954
![]() |
[19] |
Kwong RC, Sibley S, Dubovoy T, et al. (1999) Efficient, saturated red organic light emitting devices based on phosphorescent platinum(II) porphyrins. Chem Mater 11: 3709–3713. doi: 10.1021/cm9906248
![]() |
[20] |
Sendt K, Johnston LA, Hough WA, et al. (2002) Switchable Electronic Coupling in Model Oligoporphyrin Molecular Wires Examined through the Measurement and Assignment of Electronic Absorption Spectra. J Am Chem Soc 124: 9299–9309. doi: 10.1021/ja020081u
![]() |
[21] |
Reimers JR, Lu TX, Crossley MJ, et al. (1996) Molecular electronic properties of fused rigid porphyrin-oligomer molecular wires. Chem Phys Lett 256: 353–359. doi: 10.1016/0009-2614(96)00435-6
![]() |
[22] |
Robertson N, McGowan CA (2003) A comparison of potential molecular wires as components for molecular electronics. Chem Soc Rev 32: 96–103. doi: 10.1039/b206919a
![]() |
[23] |
Hao E, Jensen TJ, Courtney BH, et al. (2005) Synthesis and cellular studies of porphyrin−cobaltacarborane conjugates. Bioconjugate Chem 16: 1495–1502. doi: 10.1021/bc0502098
![]() |
[24] | Hao E, Sibrian-Vazquez M, Serem W, et al. (2007) Synthesis, aggregation and cellular investigations of porphyrin–cobaltacarborane conjugates. Chem A Eur J 13: 9035–9042. |
[25] |
Hao E, Zhang M, E W, et al. (2008) Synthesis and spectroelectrochemistry of N-cobaltacarborane porphyrin conjugates. Bioconjugate Chem 19: 2171–2181. doi: 10.1021/bc800265w
![]() |
[26] | Hao E, Vicente MGH (2005) Expeditious synthesis of porphyrin-cobaltacarborane conjugates. Chem Commun 1306–1308. |
[27] |
Sibrian-Vazquez M, Hao E, Jensen TJ, et al. (2006) Enhanced cellular uptake with a cobaltacarborane−porphyrin−HIV-1 Tat 48−60 conjugate. Bioconjugate Chemistry 17: 928–934. doi: 10.1021/bc060047v
![]() |
[28] |
Friedbacher G, Fuchs H (1999) Classification of scanning probe microscopies - (Technical report). Pure Appl Chem 71: 1337–1357. doi: 10.1351/pac199971071337
![]() |
[29] |
Ogunrinde A, Hipps KW, Scudiero L (2006) A scanning tunneling microscopy study of self-assembled nickel(II) octaethylporphyrin deposited from solutions on HOPG. Langmuir 22: 5697–5701. doi: 10.1021/la060233p
![]() |
[30] |
Palermo V, Palma M, Samori P (2006) Electronic characterization of organic thin films by Kelvin probe force microscopy. Adv Mater 18: 145–164. doi: 10.1002/adma.200501394
![]() |
[31] |
Kronik L, Shapira Y (1999) Surface photovoltage phenomena: theory, experiment, and applications. Surf Sci Rep 37: 1–206. doi: 10.1016/S0167-5729(99)00002-3
![]() |
[32] |
Matey JR, Blanc J (1985) Scanning capacitance microscopy. J Appl Phys 57: 1437–1444. doi: 10.1063/1.334506
![]() |
[33] | Xu S, Arnsdorf MF (1995) Electrostatic force microscope for probing surface charges in aqueous solutions. Proc Natl Acad Sci 92: 10384–10388. |
[34] |
Afsharimani N, Nysten B (2013) Scanning probe microscopy study of electronic properties in alkyl-substituted oligothiophene-based field-effect transitors. Vacuum 90: 17–24. doi: 10.1016/j.vacuum.2012.09.014
![]() |
[35] |
Jean MS, Hudlet S, Guthmann C, et al. (1999) Van der Waals and capacitive forces in atomic force microscopies. J Appl Phys 86: 5245–5248. doi: 10.1063/1.371506
![]() |
[36] | Kodera M, Yoshimizu Y, Uchida K (2012) Potential Characterization of Interconnect Corrosion by Kelvin Probe and Electrostatic Force Microscopies. Japan J Appl Phys 51. |
[37] | Necas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10: 181–188. |
[38] | Hao E (2007) Syntheseses and evaluation of porphyrin derivatives for applications in medicine and in material science. Baton Rouge, LA: Dissertation, Louisiana State University. |
[39] |
Matsumoto K, Ishii M, Segawa K, et al. (1996) Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system. Appl Phys Lett 68: 34–36. doi: 10.1063/1.116747
![]() |
[40] |
Kim TW, Choo DC, Shim JH, et al. (2001) Nanocrystals acting as Coulomb islands operating at room temperature created using a focused ion-beam process. Appl Phys Lett 79: 120–122. doi: 10.1063/1.1378052
![]() |
[41] |
Wakayama Y, Kubota T, Suzuki H, et al. (2003) Molecular Coulomb islands for single-electron tunneling in SiO2/molecular layer/SiO2 multilayers on Si(100). J Appl Phys 94: 4711–4713. doi: 10.1063/1.1605249
![]() |
1. | Nikolai N. Nefedov, Lutz Recke, A common approach to singular perturbation and homogenization II: Semilinear elliptic systems, 2024, 0022247X, 129099, 10.1016/j.jmaa.2024.129099 |