Citation: Sohel Rana, Subramani P, Raul Fangueiro, Antonio Gomes Correia. A review on smart self-sensing composite materials for civil engineering applications[J]. AIMS Materials Science, 2016, 3(2): 357-379. doi: 10.3934/matersci.2016.2.357
[1] | Sun M, Staszewski WJ, Swamy RN (2010) Smart sensing technologies for structural health monitoring of civil engineering structures. Adv Civil Eng 2010: 1–13. |
[2] | Aggelis DG, Alver N, Chai HK (2014) Health monitoring of civil infrastructure and materials. Hindwai Publishing Corporation. |
[3] | Parveen S, Rana S, Fangueiro R (2013) A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J Nanomater 80. |
[4] | Ye XW, Su YH, Han JP (2014) Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review. Sci World J. |
[5] | Chang PC, Flatau A, Liu SC (2003) Review paper: health monitoring of civil infrastructure. Struct Health Monit 2: 257–267. doi: 10.1177/1475921703036169 |
[6] | Han B, Ding S, Yu X (2015) Intrinsic self-sensing concrete and structures: A review. Measurement 59: 110–128. |
[7] | Sun MQ, Staszewski WJ, Swamy RN, et al. (2008) Application of low-profile piezo-ceramic transducers for health monitoring of concrete structures. NDT E Int 41: 589–595. doi: 10.1016/j.ndteint.2008.06.007 |
[8] | Lim YY, Bhalla S, Soh CK (2006) Structural identification and damage diagnosis using self-sensing piezo-impedance transducers. Smart Mater Struct 15: 987–995. doi: 10.1088/0964-1726/15/4/012 |
[9] | Ou J, Zhou Z (2008) Applications of optical fiber sensors of SHM in infrastructures. Smart Sensor Phenomena, Technology, Networks, and Systems, vol. 6933 of Proceedings of SPIE, pp. 10, San Diego, Calif, USA. |
[10] | Wan KT, Leung CKY (2007) Applications of a distributed fiber optic crack sensor for concrete structures. Sens Actuators A 135: 458–464. doi: 10.1016/j.sna.2006.09.004 |
[11] | Rizzo P, Di Scalea FL (2006) Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring. Smart Struct Syst 2: 253–274. doi: 10.12989/sss.2006.2.3.253 |
[12] | Luyckx G, Voet E, Lammens N, Degrieck J (2010) Strain measurements of composite laminates with embedded fibre Bragg gratings: Criticism and opportunities for research. Sensors 11: 384–408. |
[13] | Wang HP, Liu WQ, Zhou Z, et al. (2011) The behavior of a novel raw material-encapsulated FBG sensor for pavement monitoring.Proc. International Conference on Optical Instruments and Technology: Optical Sensors and Applications, Beijing, China. |
[14] | Obitayo W, Liu T (2012) A review: carbon nanotube-based piezoresistive strain sensors. J Sensors. |
[15] | Chung DDL (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50: 3342–3353. |
[16] | Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68: 1227–1249. |
[17] | Park JM, Kwon DJ, Wang ZJ, et al. (2015) Review of self-sensing of damage and interfacial evaluation using electrical resistance measurements in nano/micro carbon materials-reinforced composites. Adv Compos Mater 24: 197–219. |
[18] | Salvado R, Lopes C, Szojda L, et al. (2015) Carbon fiber epoxy composites for both strengthening and health monitoring of structures. Sensors 15: 10753–10770. doi: 10.3390/s150510753 |
[19] | Chung DDL (2016). Self-sensing structural composites in aerospace engineering. In: Advanced Composite Materials for Aerospace Engineering. Rana S, Fangueiro R (Editors). Woodhead Publishing Ltd. |
[20] | Wen S, Chung DDL (2007) Electrical-resistance based damage self-sensing in carbon fiber reinforced cement. Carbon 45: 710–716. doi: 10.1016/j.carbon.2006.11.029 |
[21] | Wang W, Dai H, Wu S (2008) Mechanical behaviour and electrical property of CFRC-strengthened RC beams under fatigue and monotonic loading. Mater Sci Eng A 479: 191–196. doi: 10.1016/j.msea.2007.06.046 |
[22] | Chen B, Liu J (2008) Damage in carbon fiber-reinforced concrete, monitored by both electrical resistance measurement and acoustic emission analysis. Constr Build Mater 22: 2196–2201. doi: 10.1016/j.conbuildmat.2007.08.004 |
[23] | Rosado KP, Rana S, Pereira C, et al. (2013) Self-sensing hybrid composite rod with braided reinforcement for structural health monitoring. Mater Sci Forum 730–732: 379–384. |
[24] | Ogi K, Takao Y (2005) Characterization of piezoresistance behavior in a CFRP unidirectional laminate. Compos Sci Technol 65: 231–239. |
[25] | Wang X, Chung DDL (1996) Continuous carbon fibre epoxy-matrix composite as a sensor of its own strain. Smart Mater Struct 5: 796. doi: 10.1088/0964-1726/5/6/009 |
[26] | Schulte K, Baron C (1989) Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Compos Sci Technol 36: 63–76. |
[27] | Irving PE, Thiagarajan C (1998) Fatigue damage characterization in carbon fibre composite materials using an electrical potential technique. Smart Mater Struct 7: 456. |
[28] | Abry JC, Choi YK, Chateauminois A, et al. (2001) In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements. Compos Sci Technol 61: 855–864. doi: 10.1016/S0266-3538(00)00181-0 |
[29] | Todoroki A, Tanaka M, Shimamura Y (2002) Measurement of orthotropic electric conductance of CFRP laminates and analysis of the effect on delamination monitoring with an electric resistance change method. Compos Sci Technol 62: 619–628. |
[30] | Selvakumaran L, Long Q, Prudhomme S, et al. (2015) On the detectability of transverse cracks in laminated composites using electrical potential change measurements. Compos Struct 121: 237–246. |
[31] | Bakis CE, Nanni A, Terosky JA, et al. (2001) Self-monitoring, pseudo-ductile, hybrid FRP reinforcement rods for concrete applications. Compos Sci Technol 61: 815–823. |
[32] | Muto N, Yanagida H, Nakatsuji T, et al. (1993) Preventing Fatal Fractures in Carbon‐Fiber–Glass‐Fiber‐Reinforced Plastic Composites by Monitoring Change in Electrical Resistance. J Am Ceramic Soc 76: 875–879. |
[33] | Nanni F, Auricchio F, Sarchi F, et al. (2006) Self-sensing CF-GFRP rods as mechanical reinforcement and sensors of concrete beams. Smart Mater Struct 15: 182–186. doi: 10.1088/0964-1726/15/1/047 |
[34] | Nanni F, Ruscito G, Forte G, et al. (2007) Design, manufacture and testing of self-sensing carbon fiber-glass fibre reinforced polymer rods. Smart Mater Struct 16: 2368–2374. doi: 10.1088/0964-1726/16/6/041 |
[35] | Okuhara Y, Matsubara H (2005) Memorizing maximum strain in carbon-fiber-reinforced plastic composites by measuring electrical resistance under pre-tensile stress. Compos Sci Technol 65: 2148–2155. doi: 10.1016/j.compscitech.2005.05.004 |
[36] | Nanni F, Ruscito G, Nad L, et al. (2009) Self-sensing nanocomposite CnP-GFRP rods as reinforcement and sensors of concrete beams. J Intell Mater Syst Struct 20: 1615–1623. doi: 10.1177/1045389X09337171 |
[37] | Rana S, Zdraveva E, Pereira C, et al. (2014) Development of hybrid braided composite rods for reinforcement and health monitoring of structures. Sci World J Article ID 170187: 1–9. |
[38] | Fangueiro R, Rana S, Correia AG (2013). Braided composite rods: innovative fibrous materials for geotechnical applications. Geomechanics Eng 5: 87–97. doi: 10.12989/gae.2013.5.2.087 |
[39] | Goldfeld Y, Rabinovitch O, Fishbain B, et al. (2015) Sensory carbon fiber based textile-reinforced concrete for smart structures. J Intell Mater Syst Struct: 1–21. |
[40] | Rana S, Alagirusamy R, Joshi M (2009) A review on carbon epoxy nanocomposites. J Reinf Plast Comp 28: 461–87. |
[41] | Nanni F, Ruscito G, Nad L, et al. (2009) Self-sensing nanocomposite CnP-GFRP rods as reinforcement and sensors of concrete beams. J Intell Mater Syst Struct 20: 1615–1623. doi: 10.1177/1045389X09337171 |
[42] | Gao D, Sturm M, Mo YL (2009) Electrical resistance of carbon-nanofiber concrete. Smart Mater Struct 18: 1–7. |
[43] | Howser RN, Dhonde HB, Mo YL (2011) Self-sensing of carbon nanofiber concrete columns subjected to reversed cyclic loading. Smart Mater Struct 20: 1–13. |
[44] | Azhari F, Banthia N (2012) Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cem Concr Compos 34: 866–873. doi: 10.1016/j.cemconcomp.2012.04.007 |
[45] | Yu X, Kwon E (2012) Carbon Nanotube Based Self-sensing Concrete for Pavement Structural Health Monitoring. Research report–Univ of Minnesota Duluth, Contract Number: US DOT: DTFH61-10-C-00011. |
[46] | Rana S, Alagirusamy R, Joshi M (2011a) Development of carbon nanofibre incorporated three phase carbon/epoxy composites with enhanced mechanical, electrical and thermal properties. Compos Part A 42: 439–45. |
[47] | Rana S, Alagirusamy R, Joshi M (2011b) Single-walled carbon nanotube incorporated novel three phase carbon/epoxy composite with enhanced properties. J Nanosci Nanotechno 11: 7033–6. |
[48] | Bhattacharyya A, Rana S, Parveen S, et al. (2013). Mechanical and thermal transmission properties of carbon nanofiber‐dispersed carbon/phenolic multiscale composites. J Appl Polym Sci 129: 2383–2392. doi: 10.1002/app.38947 |
[49] | Rana S, Alagirusamy R, Fangueiro R, et al. (2012). Effect of carbon nanofiber functionalization on the in‐plane mechanical properties of carbon/epoxy multiscale composites. J Appl Polym Sci 125: 1951–1958. doi: 10.1002/app.36302 |
[50] | Kim KJ, Yu W, Lee JS, et al. (2010) Damage characterization of 3D braided composites using carbon nanotube-based in situ sensing. Compos Part A 41: 1531–1537. doi: 10.1016/j.compositesa.2010.06.016 |
[51] | Wan L, Guo J (2015) Damage Analysis of Three‐Dimensional Braided Composite Material Using Carbon Nanotube Threads. Experimental Techniques. |
[52] | Rana S, Fangueiro R (Eds). (2015) Braided structures and composites: Production, properties, mechanics and technical applications. CRC Press. |
[53] | Subramani P, Rana S, Oliveira DV, et al. (2014) Development of novel auxetic structures based on braided composites. Mater Des 61: 286–295. doi: 10.1016/j.matdes.2014.04.067 |
[54] | Cunha F, Rana S, Fangueiro R, et al. (2014) Excellent bonding behaviour of novel surface-tailored fiber composite rods with cementitious matrix. Bull Mater Sci 37: 1013–1016. doi: 10.1007/s12034-014-0039-9 |
[55] | Pichandi S, Rana R, Oliveira D, et al. (2013) Fibrous and composite materials for blast protection of structural elements – A state-of-the-art review. J Reinf Plast Compos 32: 1477–1500. |