Citation: Luther Mahoney, Shivatharsiny Rasalingam, Chia-Ming Wu, Rui Peng, Ranjit T Koodali. Aging dependent phase transformation of mesostructured titanium dioxide nanomaterials prepared by evaporation-induced self-assembly process: Implications for solar hydrogen production[J]. AIMS Materials Science, 2015, 2(3): 230-242. doi: 10.3934/matersci.2015.3.230
[1] |
Bai J, Zhou BX (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114: 10131-10176. doi: 10.1021/cr400625j
![]() |
[2] |
Bai Y, Mora-Sero I, De Angelis F, et al. (2014) Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev 114: 10095-10130. doi: 10.1021/cr400606n
![]() |
[3] |
Ma Y, Wang XL, Jia YS, et al. (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114: 9987-10043. doi: 10.1021/cr500008u
![]() |
[4] |
Sang LX, Zhao YX, Burda C (2014) TiO2 nanoparticles as functional building blocks. Chem Rev 114: 9283-9318. doi: 10.1021/cr400629p
![]() |
[5] |
Schneider J, Matsuoka M, Takeuchi M, et al. (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114: 9919-9986. doi: 10.1021/cr5001892
![]() |
[6] |
Soler-Illia GJdAA, Sanchez C, Lebeau B, et al. (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102: 4093-4138. doi: 10.1021/cr0200062
![]() |
[7] |
Shen X, Zhang J, Tian B (2011) Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile. J Hazard Mater 192: 651-657. doi: 10.1016/j.jhazmat.2011.05.066
![]() |
[8] |
Parayil SK, Psota RJ, Koodali RT (2013) Modulating the textural properties and photocatalytic hydrogen production activity of TiO2 by high temperature supercritical drying. Int J Hydrogen Energ 38: 10215-10225. doi: 10.1016/j.ijhydene.2013.06.015
![]() |
[9] |
You X, Chen F, Zhang J (2005) Effects of calcination on the physical and photocatalytic properties of TiO2 powders prepared by sol-gel template method. J Sol-Gel Sci Techn 34: 181-187. doi: 10.1007/s10971-005-1358-5
![]() |
[10] |
Hwang K-J, Yoo S-J, Kim S-S, et al. (2008) Photovoltaic performance of nanoporous tio2 replicas synthesized from mesoporous materials for dye-sensitized solar cells. J Nanosci Nanotechno 8: 4976-4981. doi: 10.1166/jnn.2008.1199
![]() |
[11] |
Hwang K-J, Shim W-G, Jung S-H, et al. (2010) Analysis of adsorption properties of N719 dye molecules on nanoporous TiO2 surface for dye-sensitized solar cell. Appl Surf Sci 256: 5428-5433. doi: 10.1016/j.apsusc.2009.12.128
![]() |
[12] | Cassiers K, Linssen T, Meynen V, et al. (2003) A new strategy towards ultra stable mesoporous titania with nanosized anatase walls. Chem Comm 21: 1178-1179. |
[13] |
Meynen V, Cool P, Vansant EF (2009) Verified syntheses of mesoporous materials. Micropor Mesopor Mat 125: 170-223. doi: 10.1016/j.micromeso.2009.03.046
![]() |
[14] | Kho YK, Iwase A, Teoh WY, et al. (2010) Photocatalytic H2 Evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile. J Phys Chem C 114: 2821-2829. |
[15] |
Andronic L, Perniu D, Duta A (2013) Synergistic effect between TiO2 sol-gel and Degussa P25 in dye photodegradation. J Sol-Gel Sci Techn 66: 472-480. doi: 10.1007/s10971-013-3034-5
![]() |
[16] | Li G, Dimitrijevic NM, Chen L, et al. (2008) The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites. J Am Chem Soc 130: 5402-5403. |
[17] |
Chen L, Yao B, Cao Y, et al. (2007) Synthesis of well-ordered mesoporous titania with tunable phase content and high photoactivity. J Phys Chem C 111: 11849-11853. doi: 10.1021/jp072070z
![]() |
[18] |
Dai S, Wu Y, Sakai T, et al. (2010) Preparation of highly crystalline TiO2 nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethyammonium bromide nanoskeleton. Nanoscale Res Lett 5: 1829-1835. doi: 10.1007/s11671-010-9720-0
![]() |
[19] | Yan M, Chen F, Zhang J, et al. (2005) Preparation of controllable crystalline titania and study on the photocatalytic properties, J Phys Chem B 109: 8673-8678. |
[20] |
Teleki A, Pratsinis SE, Kalyanasundaram K, et al. (2006) Sensing of organic vapors by flame-made TiO2 nanoparticles. Sensor Actuat B-Chem 119: 683-690. doi: 10.1016/j.snb.2006.01.027
![]() |
[21] |
Meyer S, Gorges R, Kreisel G (2004) Preparation and characterisation of titanium dioxide films for catalytic applications generated by anodic spark deposition. Thin Solid Films 450: 276-281. doi: 10.1016/j.tsf.2003.11.168
![]() |
[22] |
Grosso D, Cagnol F, Soler-Illia G, et al. (2004) Fundamentals of mesostructuring through Evaporation-Induced Self-Assembly. Adv Funct Mater 14: 309-322. doi: 10.1002/adfm.200305036
![]() |
[23] |
Crepaldi EL, Soler-Illia GJdAA, Grosso D, et al. (2003) Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO2. J Am Chem Soc 125: 9770-9786. doi: 10.1021/ja030070g
![]() |
[24] |
Wang C-C, Ying JY (1999) Sol-Gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem Mater 11: 3113-3120. doi: 10.1021/cm990180f
![]() |
[25] |
Yanagisawa K, Ovenstone J (1999) Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature. J Phys Chem B 103: 7781-7787. doi: 10.1021/jp990521c
![]() |
[26] |
Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13: 3169-3183. doi: 10.1021/cm0101069
![]() |