
Epidemiological and environmental studies demonstrated that the rate of cancer mortality in the Acerra area, better known as "Triangle of Death", and, more in general, in the Neapolitan metropolitan territory are higher than the regional average values. In the "Triangle of Death" the higher rate of mortality has been mostly related to the presence of toxic wastes illegally buried in agricultural areas which have been contaminating soils and groundwater for decades. Thus, collecting a total of 154 samples over an area of about 100 km2, a detailed study was carried out to assess the geochemical-environmental conditions of soils aiming at defining the environmental hazard proceeding from 15 potentially toxic elements (PTEs), 9 polycyclic aromatic hydrocarbons (PAHs) and 14 organochlorine pesticides (OCPs) related with soil contamination. The study was also targeted at discriminating the contamination sources of these pollutants. Results showed that 9 PTEs, 5 PAHs and 6 OCPs are featured by concentrations higher than the guideline values established by the Italian Environmental laws, especially in the proximities of inhabited centers and industrial areas. The contamination source analysis revealed that, as regards the concentrations of chemical elements, they have a dual origin due to both the natural composition of the soils (Co-Fe-V-Tl-Be) and the pressure exerted on the environment by anthropic activities such as vehicular traffic (Pb-Zn-Sb-Sn) and agricultural practices (Cu-P). As far as organic compounds are concerned, the source of hydrocarbons can be mainly attributed to the combustion of biomass (i.e., grass, wood and coal), while for pesticides, although the use of some of them has been prohibited in Italy since the 1980s, it has been found that they are still widely used by local farmers.
Citation: Stefano Albanese, Annalise Guarino. Assessing contamination sources and environmental hazards for potentially toxic elements and organic compounds in the soils of a heavily anthropized area: the case study of the Acerra plain (Southern Italy)[J]. AIMS Geosciences, 2022, 8(4): 552-578. doi: 10.3934/geosci.2022030
[1] | Tao Xie, Wenqing Zheng . Robustness analysis of Cohen-Grossberg neural network with piecewise constant argument and stochastic disturbances. AIMS Mathematics, 2024, 9(2): 3097-3125. doi: 10.3934/math.2024151 |
[2] | Yijia Zhang, Tao Xie, Yunlong Ma . Robustness analysis of exponential stability of Cohen-Grossberg neural network with neutral terms. AIMS Mathematics, 2025, 10(3): 4938-4954. doi: 10.3934/math.2025226 |
[3] | Xingxing Song, Pengfei Zhi, Wanlu Zhu, Hui Wang, Haiyang Qiu . Exponential synchronization control of delayed memristive neural network based on canonical Bessel-Legendre inequality. AIMS Mathematics, 2022, 7(3): 4711-4734. doi: 10.3934/math.2022262 |
[4] | Shuo Ma, Jiangman Li, Qiang Li, Ruonan Liu . Adaptive exponential synchronization of impulsive coupled neutral stochastic neural networks with Lévy noise and probabilistic delays under non-Lipschitz conditions. AIMS Mathematics, 2024, 9(9): 24912-24933. doi: 10.3934/math.20241214 |
[5] | Yinjie Qian, Lian Duan, Hui Wei . New results on finite-/fixed-time synchronization of delayed memristive neural networks with diffusion effects. AIMS Mathematics, 2022, 7(9): 16962-16974. doi: 10.3934/math.2022931 |
[6] | Jiaqing Zhu, Guodong Zhang, Leimin Wang . Quasi-projective and finite-time synchronization of fractional-order memristive complex-valued delay neural networks via hybrid control. AIMS Mathematics, 2024, 9(3): 7627-7644. doi: 10.3934/math.2024370 |
[7] | Qike Zhang, Wenxiang Fang, Tao Xie . Robustness analysis of exponential synchronization in complex dynamic networks with random perturbations. AIMS Mathematics, 2023, 8(9): 20487-20509. doi: 10.3934/math.20231044 |
[8] | Jingyang Ran, Tiecheng Zhang . Fixed-time synchronization control of fuzzy inertial neural networks with mismatched parameters and structures. AIMS Mathematics, 2024, 9(11): 31721-31739. doi: 10.3934/math.20241525 |
[9] | Dong Pan, Huizhen Qu . Finite-time boundary synchronization of space-time discretized stochastic fuzzy genetic regulatory networks with time delays. AIMS Mathematics, 2025, 10(2): 2163-2190. doi: 10.3934/math.2025101 |
[10] | Ruoyu Wei, Jinde Cao, Wenhua Qian, Changfeng Xue, Xiaoshuai Ding . Finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks via non-reduced order method. AIMS Mathematics, 2021, 6(7): 6915-6932. doi: 10.3934/math.2021405 |
Epidemiological and environmental studies demonstrated that the rate of cancer mortality in the Acerra area, better known as "Triangle of Death", and, more in general, in the Neapolitan metropolitan territory are higher than the regional average values. In the "Triangle of Death" the higher rate of mortality has been mostly related to the presence of toxic wastes illegally buried in agricultural areas which have been contaminating soils and groundwater for decades. Thus, collecting a total of 154 samples over an area of about 100 km2, a detailed study was carried out to assess the geochemical-environmental conditions of soils aiming at defining the environmental hazard proceeding from 15 potentially toxic elements (PTEs), 9 polycyclic aromatic hydrocarbons (PAHs) and 14 organochlorine pesticides (OCPs) related with soil contamination. The study was also targeted at discriminating the contamination sources of these pollutants. Results showed that 9 PTEs, 5 PAHs and 6 OCPs are featured by concentrations higher than the guideline values established by the Italian Environmental laws, especially in the proximities of inhabited centers and industrial areas. The contamination source analysis revealed that, as regards the concentrations of chemical elements, they have a dual origin due to both the natural composition of the soils (Co-Fe-V-Tl-Be) and the pressure exerted on the environment by anthropic activities such as vehicular traffic (Pb-Zn-Sb-Sn) and agricultural practices (Cu-P). As far as organic compounds are concerned, the source of hydrocarbons can be mainly attributed to the combustion of biomass (i.e., grass, wood and coal), while for pesticides, although the use of some of them has been prohibited in Italy since the 1980s, it has been found that they are still widely used by local farmers.
The memristors were initially introduced by Chua in 1971 to describe the relationship between charge and magnetic flux [1]. It was predicted to be the fourth fundamental circuit element, distinct from resistors, capacitors and inductors. In 2008, the research team at HP laboratories successfully created a practical memristor device with valuable applications [2]. Similar to conventional resistors, the memristors can handle safe currents through the device. Furthermore, its value changes based on the amount of charge passing through it, therefore the memristors have memory functionality [3,4,5,6,7]. As a result, an increasing number of researchers have been using memristors instead of traditional resistors to serve as connection weights between neurons and for self-feedback connection weights, forming a state-dependent nonlinear switching system known as a memristive neural networks (MNNs). Compared to conventional artificial neural networks (NNs), MNNs possess stronger computational capabilities and information capacity, thereby enhancing the applications of NNs in associative memory, signal processing and image processing [8,9,10,11,12,13].
The dynamic behavior of MNNs is fundamental to their applications; therefore, it necessary to analyze their dynamic characteristics [10,14]. Among the various dynamic behaviors of MNNs, synchronization is an important and fundamental feature. The synchronization of MNNs has garnered extensive attention from researchers due to its numerous potential applications in artificial intelligence, information science, secure communications and various other fields [15,16,17]. In [5], Du et al. derived finite-time (FNT) synchronization criteria for fractional-order MNNs with delays using the fractional-order Gronwall inequality. The FNT/fixed time (FXT) stability of MNNs was tudied in [18], by designing a synovial membrane controller, the MNNs reaches the sliding-mode surface in FNT/FXT. In [10,11,12,13,14,15,16,17,18], synchronization criteria were obtained for MNNs with either delays or random interference. The above discussions mostly focus on the synchronization of MNNs with time delays, and few have considered the exponential synchronization (ESy) of MNNs with deviating arguments (DAs).
The theory of DAs differential equations was proposed by Shah and Wiener in 1983 [19]. In [20], by transforming these equations into equivalent integral equations, new stability conditions were obtained. These equations involve DAs, combining the properties of discrete and continuous equations [21,22,23]. During the system's operation, the relevant arguments characteristics can be altered, allowing the system to become a combination of lag and advance equations [24,25]. As a result, systems with DAs have broader applications compared to systems with time delays. Reference [26] investigates recurrent neural networks with DAs and establishes criteria for the global exponential stability. In order to further explore the impact of DAs on the exponential stability (ESt) of the systems, the robustness analysis of a fuzzy cellular neural networks with DAs and stochastic disturbance is discussed in [23]. The signals transmitted between MNNs are inevitably subject to stochastic perturbations (SPs) caused by environmental uncertainties [27,28,29,30,31]. For systems with SPs, the feature can significantly impact the dynamic behavior of the system, leading to either synchronization or desynchronization under certain levels of SPs [32,33,34]. For example, for the following simple linear systems dx(t)=ax(t)dt and dy(t)=ay(t)dt, the error system is de(t)=ae(t)dt. The system is stable only when a<0. However, the stability of the system is affected by SPs. Therefore, consider the following system de(t)=ae(t)dt+be(t)dB(t). The system is almost surely ESt if and only if the condition b2>2a is satisfied [35]. Then, the error system is ESt, it implies that x(t) and y(t) are exponential synchronization (ESy). Based on the above discussions, we reach the following conclusion: SPs can disrupt the ESy of a system that was synchronized or facilitate the ESy of a system that was initially unsynchronized. If a MNNs with SPs are ESy, can we obtain upper bounds such that the MNNs remains ESy when the SPs are smaller than the bounds?
Based on the discussion above, MNNs can lose synchronization when subjected to disturbances from external perturbations and DAs, provided that the intensity of perturbations and the width of arguments exceed certain limits. In [27,30,31,32,33,34,36,37], there are important results regarding the synchronization of MNNs under external disturbances. In [21,22,23], scholars research on MNNs with DAs. It is important to note that the aforementioned literature primarily focuses on the synchronization of MNNs than its robustness. Therefore, an interesting question arises: Under the control strategy, how much argument length and perturbation intensity can MNNs with ESy endure without losing synchronization?
The major contributions of this paper include the following aspects:
∙ Compared to the references [5,6,7,11,16], we focus on the synchronization of MNNs with DAs. The systems with DAs have broader applications compared to traditionally time-delayed systems.
∙ The references [8,9,10,11,12,13,14,15,16,17] extensively investigated MNNs with time delays, providing various stability and synchronization criteria. In references [28,29,33,34], the robustness of ESt in systems with both time delays and SPs was further explored. In references [23,27], Fang et al. studied the robustness of ESt in fuzzy cellular neural networks with DAs. In contrast to the aforementioned literatures, we focus on the robustness of ESy in MNNs, utilizing the set-valued mapping method, differential inclusion theory and Gronwall inequalities, we derive the upper bounds for the DAs and SPs.
∙ Compared to the references [22,23,24,25,32,33,34]. The MNNs with state switching that we consider and results in a more complex system structure.
The paper is organized as follows. In Section Ⅱ, we introduce the model, assumptions and some preliminary lemmas. In Section Ⅲ, we present the theorems and lemmas derived in this paper. In Section Ⅵ, we provide several examples to validate the feasibility of our results. Finally, in Section Ⅴ, we have summarized the work carried out in this paper.
In the paper, Rn is Euclidean space, N represents integers, ||χ(t)|| is the norm of vector χ(t), where χ(t)∈Rn and ||χ(t)||=∑np=1|χ(t)|, the norm ||A|| of the matrix A is given by ||A||, where A=max1≤q≤n∑np=1|apq|. For two real-valued sequences ρk,ηk, where k∈N, it holds that ρk<ρk+1, ρk≤ηk≤ρk+1 for all k∈N with ηk→∞ as k→∞.
Let (Ω,F,{Ft}t≥t0,P) is a complete probability space with a filtration {Ft}t≥t0 (the filtration contains all P-null sets and is right continuous). LPF0([−τ,0];Rn) is the family of all F0-measurable C([−τ,0];Rn), the state variable ξ={ξ(s);τ≤ξ(s)≤0} satisfies sup−τ≤s≤0E(||ξ(s)||P)≤∞. E(⋅) is the mathematical expectation in the probability space.
Consider the MNNs as the derive system with the SPs,
dwp(t)=[−dpwp(t)+n∑q=1apq(wq(t))fq(wq(t))+Ip(t)]dt+σwp(t)dω(t), | (2.1) |
where p=1,2,⋯,n, wp(t) are the state variables, and fq(wq(t)) are the activation functions; dp>0 is a self-feedback connection weights and Ip(t) is the external inputs, apq(wq(t)) is the memristive connection weights, σ is the interference intensity. ωi(t) represents Brownian motion on the compete space.
For convenience, we use wp,wq, apq(wq),up, ω to replace wp(t),wq(t),apq(wq(t)),up(t), ω(t), respectively. The initial conditions of (2.1) is
wp(t0)=φp. |
The corresponding response system,
dvp(t)=[−dpvp(t)+n∑q=1apq(vq(t))fq(vq(t))+Ip(t)+up(t)]dt+σvp(t)dω(t). | (2.2) |
For convenience, we use vp,vq, apq(vq),up to replace vp(t),vq(t),apq(vq(t)),up(t), respectively. Then, the memristive parameter of (2.1) and (2.2) are expressed as
aij(wq)={ˊapq,|wq|≤Tq,ˊapq,|wq|>Tq,aij(vq)={ˊapq,|vq|≤Tq,ˊapq,|vq|>Tq, |
where i,j∈N, weights ´apq, ˊapq and switching jumps Tq>0. The initial value of (2) are
vp(t0)=ϕp. |
The linear feedback controller up is designed as follows
up(t)=−ξp(vp(t)−wp(t)). |
The error system between the drive system (2.1) and the response system (2.2) is defined as
ep=vp−wp,ψ1p=ϕp−φp,p∈N. | (2.3) |
Remark 1. We can observe that MNNs can be categorized as discontinuous switched systems, which necessitates considering the solution to MNNs (1) using the Filippov's sense. In the following, we will introduce certain definitions pertaining to set-valued maps and the Filippov solution.
Definition 1. (Set-valued map [38]) Consider a set E∈Rn. A set-valued map is defined as follows: For each point x in the set E, there exists a nonempty set F(x)∈Rn such that x is mapped to F(x).
Definition 2. (Differential inclusion [38]) For a discontinuous differential system ˙r(t)=F(t,rt), t≥0, the function rt is the solution of the differential equation in the Filippov sense, t∈[0,t1], t1≥0, if is absolutely continuous and satisfies the following differential inclusion:
˙r∈G(t,rt), |
where t∈[0,+∞], r∈Rn, the initial condition r(0)=r0∈C([−τ,0],Rn). The G(t,rt) is a set-valued mapping, satisfies
G(t,rt)=⋂Γ>0⋂δ(N)=0¯co[f(B(rt,Γ)∖N)], |
where ¯co is the convex closure hull of a set, B(rt,Γ)={x:‖, \varGamma > 0 and \delta(\mathbb{N}) is Lebesgue measure of set \mathbb{N} .
The set value mapps of memristive parameters is as follows:
K\left[a_{pq}\left(w_{q}\right)\right] = \left\{\begin{array}{ll} \acute{a}_{pq}, & \left|w_{q}\right| < T_{q}, \\ \overline{\operatorname{co}}\left\{\acute{a}_{pq}, \grave{a}_{pq}\right\}, & \left|w_{q}\right| = T_{q}, \\ \grave{a}_{pq}, & \left|w_{q}\right| > T_{q}, \end{array}\right.\; K\left[a_{pq}\left(v_{q}\right)\right] = \left\{\begin{array}{ll} \acute{a}_{pq}, & \left|v_{q}\right| < T_{q}, \\ \overline{\operatorname{co}}\left\{\acute{a}_{pq}, \grave{a}_{pq}\right\}, & \left|v_{q}\right| = T_{q}, \\ \grave{a}_{pq}, & \left|w_{q}\right| > T_{q}, \end{array}\right. |
where p, q\in \mathbb{N} . K[a_{pq} (w_{q})] and K[a_{pq}(v_{q})] are all closed, convex and compact about w_{q} , v_{q} .
According to Definitions 1 and 2, the Filippov solution of the systems (1) and (2) can be written as:
\begin{equation} \begin{aligned} dw_{p}(t)\in&[-d_{p}w_{p} +\sum\limits_{q = 1}^{n}K[a_{pq}(w_{q})] f_{q}(w_{q})+I_{p}]ds +\sigma w_{p}d\omega. \end{aligned} \end{equation} | (2.4) |
\begin{equation} \begin{aligned} dv_{p}(t)\in&[-d_{p}v_{p} +\sum\limits_{q = 1}^{n}K[a_{pq}(v_{q})]f_{q}(v_{q}) +I_{p}+u_{p}]dt+\sigma w_{p}(t) d\omega.\\ \end{aligned} \end{equation} | (2.5) |
Similarly, there exist
\begin{array}{ll} \bar{a}_{pq}\left(w_{q}\right) \in K\left[a_{pq} \left(w_{q}\right)\right],\; \check{a}_{pq}\left(v_{q}\right) \in K\left[a_{pq} \left(v_{q}\right)\right], \end{array} |
such that
\begin{equation} \begin{aligned} dw_{p} = &[-d_{p}w_{p} +\sum\limits_{q = 1}^{n}\bar{a}_{pq}(w_{q})f_{q}(w_{q})+I_{p}]ds +\sigma w_{p}d\omega,\\ d{v}_{p} = &[-d_{p}v_{p} +\sum\limits_{q = 1}^{n}\check{a}_{pq}(v_{q})f_{q}(v_{q}) +I_{p}+u_{p}]dt+\sigma w_{p}d\omega.\\ \end{aligned} \end{equation} | (2.6) |
From (6), let e_{p} = v_{p}-w_{p} ,
\begin{equation} \begin{aligned} de_{p} = -[(d_{p}+\xi_{p})e_{p} +\sum\limits_{q = 1}^{n}\hat{a}_{pq}(e_{q}) f_{q}(e_{p})]dt +\sigma e_{p}d\omega, \end{aligned} \end{equation} | (2.7) |
where \hat{a}_{pq}(e_{q})f_{q}(e_{q}) = \bar{a}_{pq}(w_{q})f_{q}(w_{q}) -\check{a}_{pq}(v_{q})f_{q}({v_{q}}) .
The following error system without random disturbance:
\begin{equation} \begin{aligned} \dot{z}_{p} = &-(d_{p}+\xi_{p})z_{p} +\sum\limits_{q = 1}^{n}\hat{a}_{pq}(z_{q})f_{q}(z_{q}).\\ \end{aligned} \end{equation} | (2.8) |
The initial conditions is
\begin{aligned} z_{p}(t_{0}) = \psi_{p}^{2},\; p = 1,\cdots,n. \end{aligned} |
The (2.7) and (2.8) can be rewritten as
\begin{equation} \begin{array}{l} de(t) = [-(D+C)e(t)+\hat{A} F(e(t))]dt +\sigma e(t) d\omega(t)\\ \dot{z}(t) = -(D+C)z(t)+\hat{A}F(z(t)), \end{array} \end{equation} | (2.9) |
where e(t) = (e_{1}(t), \cdots, e_{n}(t))\; ^{T} , z(t) = (z_{1}(t), \cdots, z_{n}(t))^{T} , C = \operatorname{diag}\left\{\xi_{1}, \xi_{2}, \; \cdots\; , \xi_{n}\right\} , D = \operatorname{diag}\left\{d_{1}, d_{2}, \; \cdots\; , d_{n}\right\} , \hat{A} = \left(\hat{a}_{pq}\right)_{n \times n} , F(e(t)) = (f_{1}(e_{1}(t)), \cdots, f_{n}(e_{n}(t)))^{T} .
The mian result of the paper are base on the following definitions, assumptions and lemmas.
Definition 3. (Exponential synchronization (ESy)) If the error system \chi(t) is exponential stability (ESt). Then, the MNNs (2.1) and (2.2) are described as ESy, there exsit two nonnegative constant \alpha and \beta ,
\begin{array}{c} ||\chi(t)||\le \alpha||\psi^{1}||\exp(-\beta(t-t_{0})), \end{array} |
where \psi^{1} = (\psi^{1}_{1}, \cdots, \psi^{1}_{n})^{T} is any initial condition, t\le 0 .
Definition 4. (Mean square exponential synchronization (MSESy)) The state \chi(t) of system (2.7) is said to be MSESt. Then the MNNs (2.1) and (2.2) are described as MSESy, if for any t_{0}\in\mathbb{R}^{+} , \psi^{1}\in\mathbb{R}^{n} , there exist \theta > 0 and \vartheta > 0 such that
\begin{aligned} E||\chi(t)||^{2}\le \theta||\psi^{1}||^{2}\exp\{-2\vartheta(t-t_{0})\}. \end{aligned} |
Assumption 1. The activation functions f_{q}(\cdot) and g_{q}(\cdot) satisfy
\begin{aligned} ||f_{q}(w_{p}) -f_{q}(v_{p})||\le f^{*}_{q}||w_{p}-v_{p}||,\; ||g_{q}(w_{p}) -f_{q}(v_{p})||\le g^{*}_{q}||w_{p}-v_{p}||, \end{aligned} |
where f^{*}_{q}, g^{*}_{q} > 0 are Lipschitz constants, w_{p}, v_{p}\in \mathbb{R}^{n} .
Under Assumption 1, we have the following conclude: The MSESt of system (2.7) implies the almost sure ESt of system (2.7), see [39].
Assumption 2. f_{q}\left(\pm T_{q}\right) = g_{q}\left(\pm T_{q}\right) = 0 .
Lemma 1. [14] From Assumptions 1 and 2, then
\begin{array}{l} \left|K\left[a_{pq}\left(v_{q}\right)\right] f_{q}\left(v_{q}\right)-K\left[a_{pq}\left(w_{q}\right)\right] f_{q}\left(w_{q}\right)\right| \leq a_{pq}^{*} f_{q}^{*} \left|v_{q}-w_{q}\right| \end{array} |
for i, j \in \mathbb{N} .
That is, for any \bar{a}_{pq}\left(w_{q}\right) \in K\left[a_{pq} \left(w_{q}\right)\right], \check{a}_{pq}\left(v_{q}\right) \in K\left[a_{pq}\left(v_{q}\right)\right] .
\begin{array}{c} \left|\check{a}_{j}\left(v_{q}\right) f_{q} \left(v_{q}\right)-\bar{a}_{pq}\left(w_{q}\right) f_{q}\left(w_{q}\right)\right| \leq a_{pq}^{*} f_{q}^{*}\left|v_{q}-w_{q}\right|, \end{array} |
where a_{pq}^{*} = \max\left\{\left|\acute{a}_{pq}\right|, \left|\grave{a}_{pq}\right|\right\} .
Lemma 2. [40] (Granwall inequalities) Suppose \vartheta(t) , \theta(t) and u(t) are continuous real-valued functions, and \theta(t) is integrable over the interval I = [t_{0}, t] , if \vartheta (t)\geq 0 and u (t) satisfies
\begin{aligned} u(t) \leq \theta(t)+\int_{t_{0}}^{t}\vartheta (s) u(s) d s, \end{aligned} |
then,
\begin{aligned} u(t) \leq \theta(t)+\int_{t_{0}}^{t} \theta(s) \vartheta (s) \exp \left(\int_{s}^{t} \vartheta (r) d r\right) d s, \end{aligned} |
where t > t_{0} .
In addition, if \theta(t) is non-decreasing, then
\begin{aligned} u(t) \leq \theta(t) \exp \left(\int_{t_{0}}^{t} \vartheta (s) d s\right) . \end{aligned} |
Assumption 3. There exists a nonnegative constant \rho that satisfies, \rho_{k+1}-\rho_{k}\le \rho , for all k\in\mathbb{N} .
Assumption 4. h_{1}\rho+h_{2}\rho (1+h_{1}\rho)\exp\{h_{2}\rho\} < 1 ,
where h_{1} = ||B^{*}||||G^{*}||\rho , h_{2} = ||C||+||D||+||A^{*}||||F^{*}|| .
Assumption 5. \rho(3l_{1}+9l_{2}+l_{1}^{2} +3l_{1}l_{2}) < 1 ,
where l_{1} = 9\rho^{2}||B^{*}||^{2}||G^{*}||^{2} , l_{2} = 3\rho(2||C||^{2} +2||D||^{2}+||A^{*}||^{2}||F^{*}||^{2}) +\theta^{2} .
Under the influence of the linear controller, the error system (2.7) can achieve ESt, that is, systems (2.1) and (2.2) can achieve ESy. The next question is how much the SPs and DAs intensities can make the system can maintain ESy.
Theorem 1. Let Assumption 1 hold, MNNs (2.8) is ESt. Then MNNs (2.7) is ESt, that is, the master system MNNs (2.1) and the slave system MNNs (2.2) are ESy. if |\sigma|\le\bar\sigma , \bar\sigma is the unique nonnegative solution of the transcendental equation below.
\begin{equation} \begin{aligned} &(24\mathbb{T}||A^{*}||^{2} ||F^{*}||^{2} +2\sigma^{2})\theta/\vartheta \exp\{8\mathbb{T}(4\mathbb{T}(||D||^{2}\\ &+||C||^{2}+3||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2})\} +2\theta \exp\{-4\vartheta \mathbb{T}\} = 1, \end{aligned} \end{equation} | (3.1) |
where \mathbb{T} > \ln(2\theta)/(4\vartheta) > 0 , A^{*} = (a_{pq}^{*})_{n\times n} , F^{*} = \max_{j\in\mathbb{N}}\{f_{q}^{*}\} , \mathbb{T} is the time interval.
Proof. z(t) and e(t) have the same initial value, \psi^{1} = \psi^{2} ,
\begin{aligned} z(t)-e(t) = &\int_{t_{0}}^{t} [-D(z(s)-e(s))+\hat{A}F(z(s))-\hat{A}F(e(s)) -C(z(s)-e(s))]dt-\int_{t_{0}}^{t}\sigma e(s)d\omega (t).\\ \end{aligned} |
The ESt of the MNNs (2.8), when t > t_{0} ,
\begin{aligned} \int_{t_{0}}^{t}E||z(s)||^{2} = & \int_{t_{0}}^{t}\theta ||\psi^{2}||\exp\{-2\vartheta(t-t_{0})\} \le \theta ||\psi^{2}||^{2}/2\vartheta.\\ \end{aligned} |
When t\le t_{o}+2\mathbb{T} , by utilizing the Cauchy-Schwarz inequalities and Lemma 1, we can conclude the following:
\begin{aligned} E||z(t)-e(t)||^{2}\le& 2E||\int_{t_{0}}^{t} \left[-D\left(z(s)-e(s)\right)+\hat{A}F(z(s)) -\hat{A}F(e(s)) -C(z(s)-e(s))\right]ds||^{2}\\ &-2E||\int_{t_{0}}^{t}\sigma e(t)d\omega (s)||^{2}\\ \le&2E\int_{t_{0}}^{t}1ds\int_{t_{0}}^{t} \left[||-D(z(s)-e(s)) +\hat{A}F(z(s))-\hat{A}F(e(s)) -C(z(s) -e(s))||\right]^{2}dt\\ &+2\sigma^{2}\int_{t_{0}}^{t} E||e(s) -z(s)+z(s)||^{2}ds\\ \le&4\mathbb{T}E\int_{t_{0}}^{t} 4(||D||^{2}||z(s)-e(s)||^{2} +||A^{*}||^{2} ||F^{*}||^{2}||z(s)||^{2} +||A^{*}||^{2} ||F^{*}||^{2}||e(s)||^{2}\\ &+||C||^{2} ||z(s)-e(s)||^{2})ds+2\sigma^{2}\int_{t_{0}}^{t} E||e(s) -z(s)+z(s)||^{2}ds.\\ \end{aligned} |
Then,
\begin{equation} \begin{aligned} E||z(t)-e(t)||^{2}\le&\left[16\mathbb{T}(||D||^{2} +||C||^{2}+2||A^{*}||^{2}||F^{*}||^{2}) +4\sigma^{2}\right] \int_{t_{0}}^{t}E||z(s)-e(s)||^{2}ds\\ &+\left(16\mathbb{T}(3||A^{*}||^{2}||F^{*}||^{2}) +4\sigma^{2}\right)\int_{t_{0}}^{t} E||z(s)||^{2}ds\\ \le&\left[16\mathbb{T}(||D||^{2} +||C||^{2}+2||A^{*}||^{2}||F^{*}||^{2}) +4\sigma^{2}\right] \int_{t_{0}}^{t}E||z(s)-e(s)||^{2}ds\\ &+\left(8\mathbb{T}(3||A^{*}||^{2}||F^{*}||^{2}) +2\sigma^{2}\right)\theta||\psi^{2}|| ^{2}/\vartheta, \end{aligned} \end{equation} | (3.2) |
When t_{0}+\mathbb{T}\le t\le t_{0}+2\mathbb{T} , by applying Lemma 2,
\begin{equation} \begin{aligned} E||z(t)-e(t)||^{2} \le& \left(8\mathbb{T}(3||A^{*}||^{2}||F^{*}||^{2}) +2\sigma^{2}\right)\theta||\psi^{2}|| ^{2}/\vartheta \exp\Big\{(16\mathbb{T}(||D||^{2}\\ &+||C||^{2}+2||A^{*}||^{2}||F^{*}||^{2}) +4\sigma^{2})(t-t_{0})\Big\}\\ \le&\left(24\mathbb{T}||A^{*}||^{2} ||F^{*}||^{2} +2\sigma^{2}\right)\theta/\vartheta \exp\Big\{8\mathbb{T}(4(||D||^{2} +||C||^{2}+2||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2}\Big\}\\ &\times\biggl(\sup\limits_{t_{0}\le t\le t_{0}+2\mathbb{T}}E||z(t)||^{2}\biggr). \end{aligned} \end{equation} | (3.3) |
When t_{0}+\mathbb{T}\le t\le t_{0}+2\mathbb{T} ,
\begin{equation} \begin{aligned} E||e(t)||^{2}\le& 2E||z(t)-e(t)||^{2} +2E||z(t)||^{2}\\ \le&\biggl((24\mathbb{T}||A^{*}||^{2} ||F^{*}||^{2} +2\sigma^{2})\theta/\vartheta \exp\{8\mathbb{T}(4\mathbb{T}(||D||^{2} +||C||^{2}+2||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2})\}\biggr)\\ &\times\biggl(\sup\limits_{t_{0}\le t\le t_{0}+\mathbb{T}}E||z(t)||^{2}\biggr) +2\theta ||\psi^{2}||^{2}\exp\{-2\vartheta (t-t_{0})\}\\ \le&\biggl(\Big(24\mathbb{T}||A^{*}||^{2} ||F^{*}||^{2} +2\sigma^{2}\Big)\theta/\vartheta \exp\{8\mathbb{T}(4\mathbb{T}(||D||^{2} +||C||^{2}+2||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2})\}\\ &+2\theta \exp\{-4\vartheta \mathbb{T}\}\biggr) \times\biggl(\sup\limits_{t_{0}\le t\le t_{0}+\mathbb{T}}||e(t)||^{2}\biggr). \end{aligned} \end{equation} | (3.4) |
From (11), when |\sigma| < \bar\sigma ,
\begin{aligned} &(24\mathbb{T}||A^{*}||^{2} ||F^{*}||^{2} +2\sigma^{2})\theta/\vartheta \exp\{8\mathbb{T}(4\mathbb{T}(||D||^{2} +||C||^{2}+3||A^{*}||^{2}k^{2}) +\sigma^{2})\} +2\theta \exp\{-4\vartheta \mathbb{T}\} < 1. \end{aligned} |
Let
\begin{aligned} \gamma = -\ln\biggl\{(24\mathbb{T}||A^{*}||^{2} ||F^{*}||^{2} +2\sigma^{2})\theta/\vartheta \exp\{8\mathbb{T}(4\mathbb{T}(||D||^{2} +||C||^{2}+3||A^{*}||^{2}k^{2}) +\sigma^{2})\} +2\theta \exp\{-4\vartheta \mathbb{T}\} \biggr\}/\mathbb{T}. \end{aligned} |
So, \gamma > 0 ,
\begin{equation} \begin{aligned} \sup _{t_{0}+\mathbb{T} \leq t \leq t_{0} +2 \mathbb{T}}||e(t)|| \leq \exp (-\gamma \mathbb{T}) \left(\sup _{t_{0} \leq t \leq t_{0}+\mathbb{T}}||e(t)||\right). \end{aligned} \end{equation} | (3.5) |
Then, for any nonnegative integer \mathbb{M} = 1, 2, \cdots , when t\geq t_{0}+(\mathbb{M}-1)\mathbb{T} ,
\begin{equation} \begin{aligned} e\left(t ; t_{0}, e_{0}\right) = e\left(t ; t_{0}+(\mathbb{M}-1)\mathbb{T}, e(t_{0}+(\mathbb{M}-1)\mathbb{T})\right). \end{aligned} \end{equation} | (3.6) |
From (3.5) and (3.6)
\begin{aligned} \sup\limits_{t_{0}+\mathbb{M}\mathbb{T} \leq t \leq t_{0} +(m+1)\mathbb{T}}||e\left(t ; t_{0}, e_{0}\right)|| & = \Biggl(\sup _{t_{0}+(\mathbb{M}-1)\mathbb{T}+\mathbb{T} \leq t \leq t_{0}+(\mathbb{M}-1)\mathbb{T}+2 T} ||e\left(t ; t_{0}+(\mathbb{M}-1)\mathbb{T}, e\left(t_{0}+(\mathbb{M}-1)\mathbb{T} ; t_{0}, e_{0} \right)\right)|| \Biggr) \\ &\leq \exp (-\gamma \mathbb{T})\left(\sup _{t_{0}+(\mathbb{M}-1)\mathbb{T} \leq t \leq t_{0} +m\mathbb{T}}||e\left(t ; t_{0}, e_{0}\right)||\right) \\ &\leq \exp (-\gamma \mathbb{M}\mathbb{T})\left(\sup _{t_{0} \leq t \leq t_{0}+\mathbb{T}}||e\left(t ; t_{0}, e_{0}\right)||\right) \\ & = \aleph \exp (-\gamma \mathbb{M}\mathbb{T}), \\ \end{aligned} |
where
\begin{aligned} \aleph = \sup\limits_{t_{0} \leq t \leq t_{0}+\mathbb{T}}||e\left(t ; t_{0}, e_{0}\right)||. \end{aligned} |
So for \forall t > t_{0}+\mathbb{T} , there have a nonnegative integer \mathbb{M} such that t_{0}+\mathbb{M}\mathbb{T} \leq t \leq t_{0}+(\mathbb{M}+1)\mathbb{T} ,
\begin{array}{l} ||e\left(t ; t_{0}, e_{0}\right)|| \leq \aleph \exp \left(-\gamma t+\gamma t_{0}+\gamma T\right) = (\aleph \exp (\gamma T)) \exp \left(-\gamma\left(t-t_{0}\right)\right) . \end{array} |
The condition is also genuine when t_{0} \leq t \leq t_{0}+\mathbb{T} . So system (2.7) is ESt.
The following analysis considers the influence of the DAs on the ESy of the master-slave system.
Consider the derive system with the DAs,
\begin{equation} \begin{aligned} \dot{w}_{p}(t) = &-d_{p}w_{p}(t) +\sum\limits_{q = 1}^{n}a_{pq}(w_{q}(t))f_{q}(w_{q}(t)) +\sum\limits_{q = 1}^{n}b_{pq}(w_{q}(\gamma(t)))g_{q}(w_{q}(\gamma(t))) +I_{p}(t)\\ w_{p}(t_{0}) = &\varphi _{0}, \end{aligned} \end{equation} | (3.7) |
where g_{q}(w_{q}(t)) is the activation functions with DAs, a_{pq}(w_{q}(t)) and b_{pq}(w_{q}(\gamma(t))) are the memristive connection weights without and with DAs respectively.
The corresponding response system:
\begin{equation} \begin{aligned} &\dot{v}_{p}(t) = -d_{p}v_{p}(t) +\sum\limits_{q = 1}^{n}a_{pq}(v_{q}(t)) f_{q}(v_{q}(t)) +\sum\limits_{q = 1}^{n}b_{pq}(v_{q}(\gamma(t))) g_{q}(v_{q}(\gamma(t))) +I_{p}(t)+u_{p}(t)\\ &v_{p}(t_{0}) = \phi_{0}. \end{aligned} \end{equation} | (3.8) |
The Filippov solution of the systems (3.7) and (3.8) are
\begin{equation} \begin{aligned} \dot{w}_{p}\in&-d_{p}w_{p} +\sum\limits_{q = 1}^{n}K[a_{pq}(w_{q})] f(w_{q}) +\sum\limits_{q = 1}^{n}K[b_{pq}(w_{q}(\gamma))] g(w_{q}(\gamma))+w_{p}, \end{aligned} \end{equation} | (3.9) |
\begin{equation} \begin{aligned} \dot{v}_{p}\in&-d_{p}v_{p} +\sum\limits_{q = 1}^{n}K[a_{pq}(v_{q})]f(v_{q}) +\sum\limits_{q = 1}^{n}K[b_{pq}(v_{q}(\gamma))] g(v_{q}(\gamma))+w_{p}+u_{p},\\ \end{aligned} \end{equation} | (3.10) |
in which w(\gamma) = w(\gamma(t)) , v(\gamma) = v(\gamma(t)) .
The set-valued maps be defined as follows
K\left[b_{pq}\left(\tilde{w}_{q}\right)\right] = \left\{\begin{array}{ll} \acute{b}_{pq}, & \left|\tilde{w}_{q}\right| < T_{q}, \\ \overline{\operatorname{co}}\left\{\acute{b}_{pq}, \grave{b}_{pq}\right\}, & \left|\tilde{w}_{q}\right| = T_{q}, \\ \grave{b}_{pq}, & \left|\tilde{w}_{q}\right| > T_{q}, \end{array}\right. K\left[b_{pq}\left(\tilde{v}_{q}\right)\right] = \left\{\begin{array}{ll} \acute{b}_{pq}, & \left|\tilde{v}_{q}\right| < T_{q}, \\ \overline{\operatorname{co}}\left\{\acute{b}_{pq}, \grave{b}_{pq}\right\}, & \left|\tilde{v}_{q}\right| = T_{q}, \\ \grave{b}_{pq}, & \left|\tilde{v}_{q}\right| > T_{q}, \end{array}\right. |
where \tilde{w}_{q}, \tilde{v}_{q} to replace w_{q}(\gamma), v_{q}(\gamma) . K[a_{pq} (\tilde{w}_{q})] and K[a_{pq}(\tilde{v}_{q})] are all closed, convex and compact about \tilde{w}_{q} , \tilde{v}_{q} .
There exist
\begin{array}{ll} \bar{a}_{pq}\left(w_{q}\right) \in K\left[a_{pq} \left(w_{q}\right)\right], & \bar{b}_{pq} \left(\tilde{w}_{q}\right) \in K\left[b_{pq}\left(\tilde{w}_{q}\right)\right], \\ \\\check{a}_{pq}\left(v_{q}\right) \in K\left[a_{pq} \left(v_{q}\right)\right], &\check{b}_{pq}\left(\tilde{v}_{q}\right) \in K\left[b_{pq} \left(\tilde{v}_{q}\right)\right]. \end{array} |
Let e_{p} = v_{p}-w_{p} ,
\begin{equation} \begin{aligned} \dot{e}_{p} = &-(d_{p}+\xi_{p})e_{q} +\sum\limits_{q = 1}^{n}\hat{a}_{pq}(e_{q}) f_{q}(e_{q}) +\sum\limits_{q = 1}^{n}\hat{b}_{pq} (e_{q}(\gamma)) g_{q}(e_{p}(\gamma)), \end{aligned} \end{equation} | (3.11) |
where \hat{b}_{pq}(e_{q})g_{q}(e_{p}) = \bar{b}_{pq}(w_{q})g_{q}(w_{p}) -\check{b}_{pq}(v_{q})g_{q}({v_{p}}) .
The following error system without DAs,
\begin{equation} \begin{aligned} \dot{z}_{p} = -(d_{p}+\xi_{p})z_{p} +\sum\limits_{q = 1}^{n}\hat{a}_{pq}(z_{q})f_{q}(z_{q}) +\sum\limits_{q = 1}^{n}\hat{b}_{pq}(z_{q})g_{q}(z_{q}).\\ \end{aligned} \end{equation} | (3.12) |
The (3.11) and (3.12) can be rewritten as
\begin{equation} \begin{aligned} &\dot{e}(t) = -De(t)+\hat{A}Fe(t)+\hat{B}G(e(\gamma(t)))-Ce(t),\\ \end{aligned} \end{equation} | (3.13) |
\begin{equation} \begin{aligned} &\dot{z}(t) = -Dz(t)+\hat{A}Fz(t)+\hat{B}G(e(t))-Cz(t),\\ \end{aligned} \end{equation} | (3.14) |
where \hat{B} = \left(\hat{b}_{pq}\right)_{n \times n} , G(e(t)) = (g_{1}(e_{1}(t)), \cdots, g_{n}(e_{n}(t)))^{T} .
Lemma 3. Consider the MNNs (3.11) with DAs and the Assumptions 3 and 4 hold, the following inequality is established,
\begin{equation} \begin{aligned} e(\gamma(t))\le \mu e(t). \end{aligned} \end{equation} | (3.15) |
Proof. For \gamma(t) = \eta_{k} and \eta_{k} \in [\rho_{k}, \rho_{k+1}] ,
\begin{aligned} e(t) = &e(\eta_{k})+\int_{\eta_{k}}^{t} (-De(s)+\hat{A}F(e(s)) +\hat{B}(G(e(s)))-Ce(s))ds. \end{aligned} |
Utilizing Lemmas 1 and 2,
\begin{aligned} ||e(t)||\le& ||e(\eta_{k})||+||\int_{\eta_{k}}^{t} (-De(s)+\hat{A}F(e(s)) +\hat{B}Ge(\eta_{k})-Ce(s))ds||\\ \le&(1+||B^{*}||||G^{*}||\rho)||e(\eta_{k})||+\int_{\eta_{k}}^{t} (||C||+||D|| +||A^{*}||||F^{*}||)||e(s)||ds\\ \le& [(1+||B^{*}||G^{*}||\rho)||e(\eta_{k})||] \exp\{(||C||+||D|| +||A^{*}||||F^{*}||)\rho\},\\ \end{aligned} |
where B^{*} = (b_{pq}^{*})_{n\times n} , G^{*} = \max_{q\in\mathbb{N}}\{g_{q}^{*}\} , then
\begin{aligned} ||e(\eta_{k})||\le&||e(t)||+\rho||B^{*}||||G^{*}|| ||e(\eta_{k})|| +\int_{\eta_{k}}^{t}(||C||+||D||+ ||A^{*}||||F^{*}||)||e(s)||ds\\ \le&||e(t)||+(h_{1}\rho+h_{2}\rho(1+h_{1}\rho)) ||e(\eta_{k})||\exp\{h_{2}\rho\}, \end{aligned} |
where h_{1} = ||B^{*}||||G^{*}|| , h_{2} = ||C||+||D||+||A^{*}||||F^{*}|| .
\begin{aligned} \biggl(1-(h_{1}\rho+h_{2}\rho (1+h_{1}\rho)\exp\{h_{2}\rho\})\biggr)||e(\eta_{k})|| \le||e(t)||. \end{aligned} |
Therefore, for Assumption 4,
\begin{equation} \begin{aligned} ||e(\eta_{k})||\le& \biggl(1-(h_{1}\rho+h_{2}\rho (1+h_{1}\rho)\exp\{h_{2}\rho\})\biggr)^{-1}||e(t)||\\ = &\mu ||e(t)||, \end{aligned} \end{equation} | (3.16) |
where \mu = \biggl(1-(h_{1}\rho+h_{2}\rho (1+h_{1}\rho)\exp\{h_{2}\rho\})\biggr)^{-1} , for t \in [\rho_{k}, \rho_{k+1}] . With regards to arbitrary values of t and k , (3.16) holds for t\in \mathbb{R}^{+} .
Remark 2. When considering MNNs (3.11) on the interval [\rho_{k}, \rho_{k+1}] , where k\in\mathbb{N} , if \rho_{k}\le t < \eta_{k} , MNNs (3.11) behaves as an advanced system. Conversely, if \eta_{k} < t \le \rho_{k+1} , MMN (3.11) behaves as a retarded system.
Theorem 2. If Assumptions 1–4 hold, MNNs (3.11) is ESt. Then MMNs (3.12) is ESt, that is, the derive system MNNs (3.7) and the response system MNNs (3.8) are ESy. If |\rho|\le \min\{\bar{\rho}, \tilde{\rho}\} , where \bar{\rho} is a unique nonnegative solution of the transcend equation:
\begin{equation} \begin{aligned} k_{2}\alpha/\beta\exp\{2k_{1}\mathbb{T}\}+ \alpha\exp\{-\beta \mathbb{T}\} = 1, \end{aligned} \end{equation} | (3.17) |
where \mathbb{T} > \ln(\alpha)/\beta , k_{1} = ||C||+||D||+||A^{*}||||F^{*}||+ \mu||B^{*}||||G^{*}|| , k_{2} = (1+\mu)||B^{*}||||G^{*}|| .
The \tilde{\rho} is a unique positive solution of the transcend equation:
\begin{equation} \begin{aligned} (h_{1}\rho+h_{2}\rho (1+h_{1}\rho)\exp\{h_{2}\rho\}) = 1. \end{aligned} \end{equation} | (3.18) |
Proof. Utilizing Lemmas 1 and 3, initial value \psi^{1} = \psi^{2} , we can conclude the following
\begin{equation} \begin{aligned} ||z(t)-e(t)||\le&||\int_{t_{0}}^{t} \left[-(C+D)(z(s)-e(s))+\hat{A}F(z(s)) -\hat{A}F(e(s))+\hat{B}G(z(s))- \hat{B}G((\gamma(s)))\right]ds\\ \le&\int_{t_{0}}^{t} \left((||C||+||D|| +||A^{*}|||F^{*}||) ||z(s)-e(s)||ds +||B^{*}||||G^{*}|| ||z(s)|| +||B^{*}||||G^{*}||||e(\gamma(s))||\right)ds\\ \le&\int_{t_{0}}^{t} ((||C||+||D||+||A^{*}|||F^{*}||)||z(s) -e(s)||\\ &+||B^{*}||||G^{*}|| ||z(s)|| +\mu||B^{*}||||G^{*}||||e(s)-z(s)+z(s)||)ds\\ \le&\int_{t_{0}}^{t} (||C||+||D||+||A^{*}|||F^{*}|| +\mu||B^{*}||||G^{*}||) ||z(s)-e(s)||ds\\ &+\int_{t_{0}}^{t}((1+\mu)||B^{*}||||G^{*}||) ||z(s)||ds\\ \le&\int_{t_{0}}^{t}k_{1}(z(s)-e(s))ds +k_{2}||\psi^{2}||\alpha/\beta, \end{aligned} \end{equation} | (3.19) |
where k_{1} = ||C||+||D||+||A^{*}||||F^{*}||+ \mu||B^{*}||||G^{*}|| , k_{2} = (1+\mu)||B^{*}||||G^{*}|| .
By Lemma 2, when t_{0}+\mathbb{T}-\rho\le t\le t_{0}+2\mathbb{T} ,
\begin{aligned} ||e(t)-z(t)||\le k_{2}\alpha/\beta||\psi^{2}||\exp\{2k_{1} \mathbb{T}\}. \end{aligned} |
So, when t_{0}+\mathbb{T} -\rho\le t\le t_{0}+2\mathbb{T} , from (3.19) and the global exponential stability of (3.12),
\begin{equation} \begin{aligned} ||e(t)|| = &||e(t)-z(t)+z(t)||\\ \le&k_{2}\alpha/\beta||\psi^{2}||\exp\{2k_{1}\mathbb{T}\} +\alpha||\psi^{2}||\exp\{-\beta \mathbb{T}\}\\ \le&\Big(k_{2}\alpha/\beta\exp\{2k_{1}\mathbb{T}\} +\alpha\exp\{-\beta \mathbb{T}\}\Big) \biggl(\sup _{t_{0}-\rho \leq t \leq t_{0} +\mathbb{T}}||e(t)||\Biggr). \end{aligned} \end{equation} | (3.20) |
From (3.20), when |\rho|\le\bar{\rho} ,
\begin{aligned} k_{2}\alpha/\beta\exp\{2k_{1}T\}+ \alpha\exp\{-\beta T\} < 1. \end{aligned} |
Let \kappa_{1} = -(\ln (k_{2}\alpha/\beta\exp\{2k_{1}T\}+ \alpha\exp\{-\beta T\}))/\mathbb{T}, \kappa_{1} > 0 , when t_{0}-\rho+\mathbb{T}\le t\le t_{0}+ 2\mathbb{T} ,
\begin{equation} \begin{aligned} \sup\limits_{t_{0}-\rho+\mathbb{T}\le t\le t_{0}+2\mathbb{T}}||e(t)|| \le \exp (-\rho \mathbb{T}) \sup\limits_{t_{0}-\rho\le t\le t_{0}+\mathbb{T}}||e(t)||. \end{aligned} \end{equation} | (3.21) |
Consider the existence and uniqueness of the solution e(t) of (8), when t > t_{0}-\xi+(\mathbb{M}-1)\mathbb{T} ,
\begin{equation} \begin{aligned} e(t,t_{0},x_{0}) = &e(t,t_{0}-\xi+(\mathbb{M}-1)\mathbb{T}, e(t_{0}-\xi+(\mathbb{M}-1)\mathbb{T},t_{0},x_{0})). \end{aligned} \end{equation} | (3.22) |
From (3.21) and (3.22),
\begin{aligned} \sup\limits_{t_{0}-\rho+m\mathbb{T}\le t\le t_{0}+(m+1)\mathbb{T} }||e(t,t_{0},e_{0})|| & = \sup\limits_{t_{0}-\rho+(\mathbb{M}-1)\mathbb{T}+\mathbb{T} \le t\le t_{0}+(\mathbb{M}-1)\mathbb{T}+2\mathbb{T}} ||e(t,t_{0}-\rho+(\mathbb{M}-1)\mathbb{T}, \\e(t_{0}-\rho +(\mathbb{M}-1)\mathbb{T} ;t_{0},e_{0}))|| &\le \exp(-\rho \mathbb{T})\sup\limits_{t_{0}-\rho+(\mathbb{M}-1)\mathbb{T} \le t\le t_{0}+m\mathbb{T}} ||e(t;t_{0},e_{0})||\\ &\le \exp (-\rho m\mathbb{T})\sup\limits_{t_{0}-\rho\le t\le t_{0}+ \mathbb{T}}||e(t;t_{0},e_{0})||\\ & = \kappa_{2} \exp {-\rho m\mathbb{T}}, \end{aligned} |
where \kappa_{2} = \sup_{t_{0}-\rho\le t\le t_{0}+\mathbb{T}} ||e(t; t_{0}, e_{0})|| .
To go a step further, there is the only scalar m\in \mathbb{N} such that t_{0}-\rho +(\mathbb{M}-1)\mathbb{T} \le t\le t_{0}+\mathbb{M}\mathbb{T} ,
\begin{equation} \begin{aligned} ||e(t;t_{0},x_{0})||&\le \kappa_{2}\exp(-\rho \mathbb{M}\mathbb{T} ) \le \kappa_{2}\exp(\rho\mathbb{T})\exp(-\rho(t-t_{0})). \end{aligned} \end{equation} | (3.23) |
Clerly, (3.23) holds for t_{0}-\rho\le t\le t_{0}+\mathbb{T} .
The following consider MNNs with SPs and DAs,
\begin{equation} \begin{aligned} dw_{p}(t) = &[-d_{p}w_{p}(t) +\sum\limits_{q = 1}^{n}a_{pq}(w_{q}(t))f_{q}(w_{q}(t)) +\sum\limits_{q = 1}^{n}b_{pq}(w_{q}(\gamma(t))) g_{q}(w_{q}(\gamma(t)))+w_{p}(t)]dt +\sigma w_{p}(t)d\omega(t).\\ \end{aligned} \end{equation} | (3.24) |
The corresponding response system,
\begin{equation} \begin{aligned} d{v}_{p}(t) = &[-d_{p}v_{p}(t) +\sum\limits_{q = 1}^{n}a_{pq}(v_{q}(t))f(v_{q}(t))+\sum\limits_{q = 1}^{n}b_{pq}(v_{q}(\gamma(t))) g_{q}(v_{q}(\gamma(t)))+w_{p}(t)+u_{p}(t)]ds\\ & +\sigma v_{p}(t)d\omega(t).\\ \end{aligned} \end{equation} | (3.25) |
Let e_{p} = v_{p}-w_{p} ,
\begin{equation} \begin{aligned} de_{p} = &[-d_{p}e_{p}+\sum\limits_{q = 1}^{n} \hat{a}_{pq}(e_{q})f_{q}(e_{p}) +\sum\limits_{q = 1}^{n}\hat{b}_{pq}(e_{q}(\gamma)) g_{q}(e_{q}(\gamma))-\xi_{p}e_{p}]ds +\sigma e_{p}d\omega.\\ \end{aligned} \end{equation} | (3.26) |
The original system is
\begin{equation} \begin{aligned} \dot{z}_{p} = &-d_{p}z_{p}+\sum\limits_{q = 1}^{n} \hat{a}_{pq}(z_{q})f_{q}(z_{q}) +\hat{b}_{pq}(z_{q}) g_{q}(z_{q})-\xi_{p}e_{p}.\\ \end{aligned} \end{equation} | (3.27) |
Further,
\begin{aligned} &de(t) = [-De(t)+\hat{A}Fe(t)+\hat{B}G((\gamma(t))) -Ce(t)]dt+\sigma e(t)d\omega(t)\\ &\dot{z}(t) = -De(t)+\hat{A}Fe(t)+\hat{B}G((t))-Ce(t). \end{aligned} |
Lemma 4. Let Assumptions 3 and 5 hold, then the following inequality
\begin{equation} \begin{aligned} E||e(\gamma(t))||^{2}\le \lambda ||e(t)||^{2} \end{aligned} \end{equation} | (3.28) |
holds for all t\in \mathbb{R}^{+} , where \lambda = 3(1-\varpi)^{-1} , \varpi = \rho(3l_{1}+9l_{2}+l_{1}^{2} +3l_{1}l_{2}) .
Proof. For \gamma(t) = \eta_{k} , t\in [\rho_{k}, \rho_{k+1}] , \forall t\in \mathbb{R}^{+} , \exists k\in \mathbb{N} , we have
\begin{aligned} E||e(t)||^{2}\le& E||e(\eta_{k})+ \int_{\eta_{k}}^{t} \left[-(C+D)e(s) +\hat{A}F(e(s)) +\hat{B}G((\eta_{k}))\right]ds +\int_{\eta_{k}}^{t}\sigma e(s)d\omega(s)||^{2}\\ \le&3\left[E||e(\eta_{k})||^{2}+E||\int_{\eta_{k}}^{t} \left[-(C+D)e(s)+\hat{A}F(e(s)) +\hat{B}G((\eta_{k}))\right]ds||^{2}+E||\int_{\eta_{k}}^{t} \sigma e(s)d\omega(s)||^{2}\right]\\ \le &3\Big[E||e(\eta_{k})||^{2}+3\rho E\int_{\eta_{k}} ^{t}2(||C||^{2}+||D||^{2})||e(s)||^{2} +||A^{*}||^{2}||F^{*}||^{2}||e(s)||^{2}\\ &+||B^{*}||^{2}||G^{*}||^{2}||e(\eta_{k})||^{2} +\sigma^{2}\int_{\eta_{k}}^{t}E||e(s)||^{2}ds\Big]\\ \le&3(1+3\rho^{2}||B^{*}||^{2}||G^{*}||^{2})E||e(\eta_{k})||^{2} +3(3\rho(2||C||^{2}+2||D||^{2}+ ||A^{*}||^{2} ||F^{*}||^{2}) +\sigma^{2})\int_{\eta_{k}}^{t}E||e(s)|| ^{2}ds.\\ \end{aligned} |
Applying Lemma 2,
\begin{aligned} E||e(t)||^{2}\le&(3+9\rho^{2}||B^{*}||^{2}||G^{*}||^{2}) E||e(\eta_{k})||^{2} \exp\{3\rho(3\rho(2||C||^{2} +2||D||^{2} +||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2})\}\\ = &(3+l_{1})E||e(\eta_{k})||^{2}\exp\{3\rho l_{2}\}, \end{aligned} |
where l_{1} = 9\rho^{2}||B^{*}||^{2}||G^{*}||^{2} , l_{2} = 3\rho(2||C||^{2} +2||D||^{2}+||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2} .
Similarly, for t \in [\rho_{k}, \rho_{k+1}] ,
\begin{aligned} E||e(\eta_{k})||^{2}\le&3\biggl[E||e(s)||^{2} +E||\int_{eta_{k}}^{t}(-(C+D)e(s) +\hat{A}Fe(s)+\hat{B}Ge(s))ds||^{2} +E||\int_{\eta_{k}}^{t}\sigma e(s)d\omega(s)||^{2} \biggr]\\ \le&3\biggl[E||e(s)||^{2} +3\rho E\int_{eta_{k}}^{t}(2(||C||^{2} +||D||^{2})||e(s)||^{2} +||A^{*}||^{2}||F^{2}||||e(s)||^{2}\\ &+||B^{*}||^{2}||G^{*}||^{2}||e(\eta_{k})||^{2})ds +\sigma^{2}\int_{\eta_{k}}^{t} E||e(s)||^{2}ds\biggr]\\ = &3E||e(s)||^{2}+9\rho^{2}||B^{*}||^{2} ||G^{*}||^{2}||e(\eta_{k})||^{2} +3(3\rho((2||C^{*}||^{2}+2||D^{*}||^{2})\\ &+||A^{*}||^{2}||F^{*}||^{2}) +\sigma^{2})\int_{\eta_{k}}^{t} E||e(s)||^{2}ds\\ = &3E||e(s)||^{2}+\rho(3l_{1}+9l_{2}+l_{1}^{2} +3l_{1}l_{2})\exp\{3\rho l_{2}\} ||e(\eta_{k})||^{2}. \end{aligned} |
By the Assumption 5,
\begin{equation} \begin{aligned} E||e(\eta_{k})||^{2}\le&3(1-\varpi)^{-1} E||e(s)||^{2}\\ = &\lambda E||e(s)||^{2},\\ \end{aligned} \end{equation} | (3.29) |
where \varpi = \rho(3l_{1}+9l_{2}+l_{1}^{2} +3l_{1}l_{2}) , \lambda = 3(1-\varpi)^{-1} . Therefore, (3.29) holds for t \in [\rho_{k}, \rho_{k+1}] . By the randomicities of t and k , (3.29) holds for all t\in\mathbb{R} .
In the following, we investigate the effects of DAs and SPs on the robustness of ESy of MNNs (3.26).
Theorem 3. If {Assumptions 3–5} and {Definition 4} hold, MNNs (3.27) is ESt. Then MMNs (3.26) is ESt, that is, the derive system MNNs (3.24) and the response system MNNs (3.25) are ESy. If |\sigma|\le \bar{\sigma} , |\rho| \le\min\{\bar{\rho}, \tilde{\rho}\} where \bar{\rho} is a unique nonnegative solution of the transcend equation:
\begin{equation} \begin{array}{c} \upsilon_{2}\theta ||\psi^{2}||^{2} /\beta\exp\{2\upsilon_{1}\mathbb{T}\} +2\theta ||\psi^{2}||^{2}\exp\{-2\mathbb{T}\beta\} = 1, \end{array} \end{equation} | (3.30) |
where \upsilon_{1} = (24\mathbb{T}(||C||^{2}+||D||^{2} +2||A^{*}||^{2}||F^{*}||^{2} +2\lambda^{2}||B^{*}||^{2}||G^{*}||^{2})+4\sigma^{2}) , \upsilon_{2} = (12\mathbb{T}(2+2\lambda^{2}) ||B^{*}||^{2}||G^{*}||^{2} +2\sigma^{2}) . The \tilde{\rho} is a unique nonnegative solution of the transcend equation:
\begin{equation} \begin{aligned} l_{1} +9\rho l_{1}l_{2}\exp\{3\rho l_{2}\} = 1. \end{aligned} \end{equation} | (3.31) |
The \bar{\sigma} is a unique nonnegative solution of the transcend equation:
\begin{equation} \begin{aligned} &(36\mathbb{T}(||A^{*}||^{2} ||F^{*}||^{2}+||B^{*}||^{2}||G^{*}||^{2}) +2\sigma^{2})\theta/\vartheta \exp\{12\mathbb{T}(4\mathbb{T}(||D||^{2}\\ &+||C||^{2}+3||A^{*}||^{2}||F^{*}||^{2} +3||B^{*}||^{2}||G^{*}||^{2}) +\sigma^{2})\} +2\theta \exp\{-4\vartheta \mathbb{T}\} = 1. \end{aligned} \end{equation} | (3.32) |
Proof. When t_{0}-\rho\le t\le t_{0}+2\mathbb{T} , By applying Lemma 4, initial value \psi^{1} = \psi^{2} ,
\begin{aligned} E||z(t)-e(t)||^{2}\le& 2E||\int_{t_{0}}^{t} [-(C+D)(z(s)-e(s)) +\hat{A}F(z(s))-\hat{A}F(e(s)) +\hat{B}G(z(s))-\hat{B}G((\gamma(s)))]ds||^{2}\\ &+2E||\int_{t_{0}}^{t} \sigma e(s)d\omega(s)||^{2}\\ \le&2E\int_{t_{0}}^{t}1^{2}ds\int_{t_{0}}^{t} 6[(||C||^{2}+||D||^{2}) +||A^{*}||^{2}||F^{*}||^{2} ||z(s)||^{2} +||A^{*}||^{2}||F^{*}||^{2}||e(s)||^{2}\\ & +||B^{*}||^{2}||G^{*}||^{2}||z(s)||^{2}+||B^{*}||^{2}||G^{*}||^{2}|| e(\gamma(s))||^{2}]ds +2\sigma^{2}||\int_{t_{0}}^{t}\ E|| e(s)||^{2}ds\\ \le&4\mathbb{T}E\int_{t_{0}}^{t} 6[(||C||^{2}+||D||^{2} +2||A^{*}||^{2}||F^{*}||^{2}) ||z(s)-e(s)||^{2} +(2||A^{*}||^{2}||F^{*}||^{2}\\ &+||B^{*}||^{2}||G^{*}||^{2})||z(s)||^{2} +2\lambda^{2}||B^{*}||^{2}||G^{*}||^{2}|| e(s)-z(s)+z(s)||^{2}]ds\\ &+2\sigma^{2}\int_{t_{0}}^{t}\ E|| e(s)-z(s)+z(s)||^{2}ds\\ \le&(24\mathbb{T}(||C||^{2}+||D||^{2} +2||A^{*}||^{2}||F^{*}||^{2} +2\lambda^{2}||B^{*}||^{2}||G^{*}||^{2})+4\sigma^{2}) \int_{t_{0}}^{t}E||z(s)-e(s)||^{2}\\ &+(24\mathbb{T}(2+2\lambda^{2})||B^{*}||^{2}||G^{*}||^{2} +4\sigma^{2})\int_{t_{0}}^{t}E||e(s)||^{2}\\ \le&(24\mathbb{T}(||C||^{2}+||D||^{2} +2||A^{*}||^{2}||F^{*}||^{2} +2\lambda^{2}||B^{*}||^{2}||G^{*}||^{2})+4\sigma^{2}) \int_{t_{0}}^{t}E||z(s) -e(s)||^{2}\\ &+(12\mathbb{T}(2+2\lambda^{2})||B^{*}||^{2}||G^{*}||^{2} +2\sigma^{2})\theta ||\psi^{2}||^{2}/\vartheta \\ = &\upsilon _{1}\int_{t_{0}}^{t}E||z(s)-e(s)||^{2}ds +\upsilon_{2}\theta ||\psi^{2}||^{2}/\vartheta, \end{aligned} |
where \upsilon_{1} = (24\mathbb{T}(||C||^{2}+||D||^{2} +2||A^{*}||^{2}||F^{*}||^{2} +2\lambda^{2}||B^{*}||^{2}||G^{*}||^{2})+4\sigma^{2}) , \upsilon_{2} = (12\mathbb{T}(2+2\lambda^{2}) ||B^{*}||^{2}||G^{*}||^{2} +2\sigma^{2}) .
When t_{0}-\rho\le t\le t_{0}+2\mathbb{T} , By applying Lemma 2,
\begin{aligned} E||z(t)-e(t)||^{2} \le &\upsilon_{2}\theta ||\psi^{2}||^{2} /\vartheta \exp\{2\upsilon_{1}\mathbb{T}\} \times \sup\limits_{t_{0}-\rho\le t\le t_{0}+\mathbb{T}} E||z(t)||^{2}. \end{aligned} |
Then,
\begin{aligned} E||e(t)||^{2}\le&2E||z(t)-e(t)||^{2}+2E||z(t)||^{2}\\ \le&\upsilon_{2}\theta ||\psi^{2}||^{2} /\vartheta \exp\{2\upsilon_{1}\mathbb{T}\} \sup\limits_{t_{0}-\rho\le t\le t_{0}+\mathbb{T}} E||z(t)||^{2} +2\theta ||\psi^{2}||^{2}\exp\{-2\vartheta (t-t_{0})\}\\ \le&(\upsilon_{2}\theta ||\psi^{2}||^{2} /\vartheta \exp\{2\upsilon_{1}\mathbb{T}\} +2\theta\exp\{-2\mathbb{T}\vartheta \}) \sup\limits_{t_{0}-\rho\le t\le t_{0}+\mathbb{T}} E||e(t)||^{2}.\\ \end{aligned} |
When |\rho|\le\min\{\bar{\rho}, \tilde{\rho}\} , |\sigma|\le\bar{\sigma} ,
\begin{aligned} \upsilon_{2}\theta ||\psi^{2}||^{2} /\vartheta \exp\{2\upsilon_{1}\mathbb{T}\} +2\theta ||\psi^{2}||^{2}\exp\{-2\mathbb{T}\beta\}\le 1. \end{aligned} |
We demonstrate the aforementioned theoretical results through three numerical simulations.
Example 1. Consider two dimensional MNNs with SPs.
\begin{equation} \begin{aligned} dw_{p}(t) = &[-d_{p}w_{p}(t) +\sum\limits_{q = 1}^{2}a_{pq}(w_{q}(t))f_{q}(w_{q}(t)) +w_{p}(t)]dt+\sigma w_{p}(t)d\omega(t),\; i = 1,2,\\ \end{aligned} \end{equation} | (4.1) |
where
a_{11}\left(w_{1}\right) = \left\{ \begin{array}{l} 0.1, \quad\left|w_{1}\right| \leq 1, \\ -0.1, \quad\left|w_{1}\right| > 1, \end{array}\right. a_{12}\left(w_{2}\right) = \left\{ \begin{array}{l} 0.2, \quad\left|w_{2}\right| \leq 1, \\ -0.2, \quad\left|w_{2}\right| > 1, \end{array}\right. |
a_{21}\left(w_{1}\right) = \left\{ \begin{array}{l} 0.1, \quad\left|w_{1}\right| \leq 1, \\ -0.1, \quad\left|w_{1}\right| > 1, \end{array}\right. a_{22}\left(w_{2}\right) = \left\{ \begin{array}{l} 0.2, \quad\left|w_{2}\right| \leq 1, \\ -0.2, \quad\left|w_{2}\right| > 1, \end{array}\right. |
w_{1} = (w_{1}, w_{2}) , d_{1} = d_{2} = 1, q = 1, 2 , f_{q}(w_{q}) = tanh(w_{q}) , w_{1} = w_{2} = 0 , \phi_{1} = (0.3, 0.35)^{T}, \phi_{2} = (0.2, 0.25)^{T} .
The response system is
\begin{equation} \begin{aligned} dv_{p}(t) = &[-d_{p}v_{p}(t) +\sum\limits_{q = 1}^{2}a_{pq}(v_{q}(t))f(v_{q}(t)) +w_{p}(t)+u_{p}(t)]dt +\sigma w_{p}(t)d\omega(t),\; i = 1,2,\\ \end{aligned} \end{equation} | (4.2) |
where \varphi_{1} = (-0.1, -0.15)^{T}, \varphi_{2} = (-0.2, -0.25)^{T} .
Let \theta = 1.1 , \vartheta = 0.2 , \mathbb{T}\le\ln(\theta)/\vartheta = 0.01 , ||A^{*}|| = 0.1, ||F^{*}|| = 1, ||C|| = 0.7, ||D|| = 1 .
Solving the following transcedental equation,
\begin{aligned} 2.2(24&\times0.01\times0.01+2\sigma)\exp\{ 0.08(0.04(1+0.49 +0.03)+\sigma)\} +2.2\exp\{-4.4\times 0.2\} = 1. \end{aligned} |
We can obtain \bar{\sigma} = 0.1364 , let \sigma = 0.04 , \sigma = 0.06 , \sigma = 0.1 , The state trajectories of MMNs (4.1) and MNNs (4.2) are shown in Figures 1–3, respectively. It can be seen from the figures that when time tends to infinity, the states of a and b tend to 0 This can show that when the perturbations intensity \sigma is less than \bar{\sigma} , the drive-response systems can achieve Esy. When \sigma = 0.25 , The states are illustrated in Figure 4.
Example 2. Consider two-dimensional MNNs with DAs,
\begin{equation} \begin{aligned} \dot{w}_{p}(t) = &-d_{p}w_{p}(t) +\sum\limits_{q = 1}^{2}a_{pq}(w_{q}(t)) f_{q}(w_{q}(t)) +\sum\limits_{q = 1}^{2}b_{pq}(w_{q}(\gamma(t))) g_{q}(w_{q}(\gamma(t))) +w_{p}(t),\; i = 1,2,\\ \end{aligned} \end{equation} | (4.3) |
where
a_{11}\left(w_{1}\right) = \left\{ \begin{aligned} 0.125, &\quad\left|w_{1}\right| \leq 1, \\ -0.125, &\quad\left|w_{1}\right| > 1, \end{aligned}\right.\; a_{12}\left(w_{2}\right) = \left\{ \begin{aligned} 0.15, &\quad\left|w_{2}\right| \leq 1, \\ -0.15, &\quad\left|w_{2}\right| > 1, \end{aligned}\right. |
a_{21}\left(w_{1}\right) = \left\{ \begin{aligned} 0.125, &\quad\left|w_{1}\right| \leq 1, \\ -0.125, &\quad\left|w_{1}\right| > 1, \end{aligned}\right.\; a_{22}\left(w_{2}\right) = \left\{ \begin{aligned} 0.15, &\quad\left|w_{2}\right| \leq 1, \\ -0.15, &\quad\left|w_{2}\right| > 1, \end{aligned}\right. |
b_{11}\left(\tilde{w}_{1}\right) = \left\{ \begin{aligned} 0.2, &\quad\left|\tilde{w}_{1}\right| \leq 1, \\ -0.2, &\quad\left|\tilde{w}_{1}\right| > 1, \end{aligned}\right.\; b_{12}\left(\tilde{w}_{2}\right) = \left\{ \begin{aligned} 0.1, &\quad\left|\tilde{w}_{2}\right| \leq 1, \\ -0.1, &\quad\left|\tilde{w}_{2}\right| > 1, \end{aligned}\right. |
b_{21}\left(\tilde{w}_{1}\right) = \left\{ \begin{aligned} 0.2, \quad\left|\tilde{w}_{1}\right| \leq 1, \\ -0.2, \quad\left|\tilde{w}_{1}\right| > 1, \end{aligned}\right.\; b_{22}\left(\tilde{w}_{2}\right) = \left\{ \begin{aligned} 0.1, &\quad\left|\tilde{w}_{2}\right| \leq 1, \\ -0.1, &\quad\left|\tilde{w}_{2}\right| > 1, \end{aligned}\right. |
where \tilde{w}_{q} = w_{q}(\gamma) , w_{1} = (w_{1}, w_{2}) , d_{1} = d_{2} = 1, q = 1, 2 , f_{q}(w_{q}) = tanh(w_{q}) , g_{q}(w_{q}) = |w_{q}+1|-|w_{q}-1| , w_{1} = w_{2} = 0 , \phi_{1} = (3, 4)^{T}, \phi_{2} = (1, 2)^{T} .
The response system is
\begin{equation} \begin{aligned} \dot{v}_{p}(t) = &-d_{p}v_{p}(t) +\sum\limits_{q = 1}^{2}a_{pq}(v_{q}(t)) f_{q}(v_{q}(t)) +\sum\limits_{q = 1}^{2}b_{pq}(v_{q}(\gamma(t))) g_{q}(v_{q}(\gamma(t))) +w_{p}(t)+u_{p}(t),\; i = 1,2,\\ \end{aligned} \end{equation} | (4.4) |
where \varphi_{1} = (-3, -4)^{T}, \varphi_{2} = (-1, -2)^{T} .
Let \alpha = 1.1 , \beta = 0.5 , \mathbb{T}\le\ln(\theta)/\vartheta = 0.01 , ||A^{*}|| = 0.726, ||B^{*}||^{2} = 0.1 ||F^{*}|| = 1, ||G^{*}|| = 1 ||C|| = 0.01, ||D|| = -1 .
Solving the following transcedental equations,
\begin{aligned} 0.001\rho+1.772\rho(1+1.772\rho) \exp\{1.772\rho\} = 1, \end{aligned} |
\begin{aligned} &0.22(1+\mu)\exp\{0.02(1.772+0.1\mu)\} +1.1\exp\{-0.5\times0.01\} = 1. \end{aligned} |
We can obtain \bar{\rho} = 0.2506 , \tilde{\rho} = 0.3314 , let \rho = 0.2 , \rho = 0.15 , \rho = 0.1 , \rho = 0.25 , when the length of the DAs in the systems is less than the calculated upper bound, we have that MNNs (4.3) and (4.4) with the controllers is ESy. The states of the MNNs (4.3) and (4.4) are shown in Figures 4–8, respectively.
Example 3. Consider two-dimensional MNNs with DAs and SPs.
\begin{equation} \begin{aligned} dw_{p}(t) = &-[d_{p}w_{p}(t) +\sum\limits_{q = 1}^{2}a_{pq}(w_{q}(t)) f_{q}(w_{q}(t)) +\sum\limits_{q = 1}^{2}b_{pq}(w_{q}(\gamma(t))) g_{q}(w_{q}(\gamma(t)))\\ &+w_{p}(t)]dt+\sigma w_{p}d\omega(t).\; i = 1,2.\\ \end{aligned} \end{equation} | (4.5) |
All other parameters remain the same as in Example 2. The response system is,
\begin{equation} \begin{aligned} dv_{p}(t) = &-[d_{p}v_{p}(t) +\sum\limits_{q = 1}^{2}a_{pq}(v_{q}(t)) f_{q}(v_{q}(t)) +\sum\limits_{q = 1}^{2}b_{pq}(v_{q}(\gamma(t))) g_{q}(v_{q}(\gamma(t)))\\ &+w_{p}(t)+u_{p}(t)]dt+\sigma v_{p}d\omega(t),\; i = 1,2.\\ \end{aligned} \end{equation} | (4.6) |
Solving the transcedental equations. We can obtain \bar{\rho} = 0.1567 , \tilde{\rho} = 0.4374 , \bar{\sigma} = 0.2463 , let \rho = 0.1 , \sigma = 0.04 , we have that MNNs (4.5) and (4.6) is ESy, the state trajectories are shown in Figure 9. when \rho = 0.05 , \sigma = 0.04 , the state trajectories are shown in Figure 10. When \rho = 0.9 , \sigma = 0.1 , the state trajectories are shown in Figure 11.
In this paper, the robustness analysis of MNNs exponential synchronization problem with DAs and SPs is studied by using the Granwall inequalities and inequality techniques, and a method different from Linear Matrix Inequality method (LMI) and Lyapunov theory is used to solve the synchronization robustness of MNNs.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] | Albanese S, Breward N (2011) Sources of Anthropogenic Contaminants in the Urban Environment, In: Johnson CC, Author, Mapping the chemical environment of urban areas, Wiley, 116–127. |
[2] |
Albanese S, Cicchella D (2012) Legacy problems in urban geochemistry. Elements 8: 423–428. https://doi.org/10.2113/gselements.8.6.423 doi: 10.2113/gselements.8.6.423
![]() |
[3] | WHO, Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulphur dioxide—Global update 2005—Summary of risk assessment. World Health Organization, Geneva, Switzerland, 2006. |
[4] | Ali H, Khan E, Ilahi I (2019) Environmental chemistry andecotoxicology of hazardous heavy metals: environmental per-sistence, toxicity, and bioaccumulation. J Chem, 1–14. |
[5] | Liu J, Goyer RA, Waalkes MP (2007) Toxic effects of metals, In: Klaassen CD, Author, Casarett and Doull's Toxicology: The Basic Science of Poisons, 7 Eds., New York: McGraw-Hill Professional, 931–980. |
[6] |
Antoniadis V, Shaheen SM, Levizou E, et al. (2019) A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment?—A review. Environ Int 127: 819–847. https://doi.org/10.1016/j.envint.2019.03.039 doi: 10.1016/j.envint.2019.03.039
![]() |
[7] | Fengpeng H, Zhihuan Z, Yunyang W, et al. (2009) Polycyclic aromatic hydrocarbons in soils of Beijing and Tianjin region: Vertical distribution, correlation with TOC and transport mechanism. J Environ Sci 21: 675–685. |
[8] |
Manoli E, Kouras A, Samara C (2004) Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere 56: 867–878. https://doi.org/10.1016/j.chemosphere.2004.03.013 doi: 10.1016/j.chemosphere.2004.03.013
![]() |
[9] | ATSDR, Toxicity of Polycyclic Aromatic Hydrocarbons (PAHs). Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta GA, 2009. Available from: https://www.atsdr.cdc.gov/csem/pah/docs/pah.pdf. |
[10] | Eisler R (2000) Handbook of Chemical Risk Assessment: Health Hazards to Humans, Plants and Animals, Boca Raton: Lewis Publishers. |
[11] | USEPA, Ambient water quality criteria for polynuclear aromatic hydrocarbons. United States Environmental Protection Agency (USEPA), Washington, DC, 1980. Available from: https://www.epa.gov/sites/default/files/2019-03/documents/ambient-wqc-pah-1980.pdf. |
[12] | Sparling DW (2016) Ecotoxicology Essentials. Polycyclic Aromatic Hydrocarbons. 1 Eds., Amsterdam: Elsevier, 193–221. |
[13] | Schaefer C, Peters P, Miller RK (2015) Drugs During Pregnancy and Lactation. 3 Eds., Amsterdam: Elsevier. |
[14] | ISPRA, Impatto sugli ecosistemi e sugli esseri viventi delle sostanze sintetiche utilizzate nella profilassi anti-zanzara. Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 2015. Available from: https://www.isprambiente.gov.it/files/pubblicazioni/quaderni/ambiente-societa/Quad_AS_10_15_ProfilassiAntiZanzare.pdf. |
[15] |
Lushchak VI, Matviishyn TM, Husak VV, et al. (2018) Pesticide toxicity: A mechanistic approach. EXCLI J 1: 1101–1136. https://doi.org/10.17179/excli2018-1710 doi: 10.17179/excli2018-1710
![]() |
[16] |
Balmer JE, Morris AD, Hung H, et al. (2019) Levels and trends of current-use pesticides (CUPs) in the arctic: an updated review, 2010–2018. Emerg Contam 5: 70–88. https://doi.org/10.1016/j.emcon.2019.02.002 doi: 10.1016/j.emcon.2019.02.002
![]() |
[17] | Sparling DW (2016) Ecotoxicology Essentials. Organochlorine Pesticides. 1 Eds., Amsterdam: Elsevier, 69–107. |
[18] |
Kim KH, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575: 525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009 doi: 10.1016/j.scitotenv.2016.09.009
![]() |
[19] | Stockholm Convention on Persistent Organic Pollutants, Worldwide found, Stockholm convention "new POPs": screening additional POPs candidates, 2005. Available from: http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx. |
[20] | Stockholm Convention on Persistent Organic Pollutants, 2011. Available from: http://chm.pops.int/. |
[21] | IARC, Monographs evaluate DDT, lindane, and 2, 4-D. Press Release Number 236. International Agency for Research on Cancer (IARC), 2015. Available from: https://www.iarc.who.int/wp-content/uploads/2018/07/pr236_E.pdf. |
[22] |
Senior K, Mazza A (2004) Italian "Triangle of death" linked to waste crisis. Lancet Oncol 5: 525–527. https://doi.org/10.1016/s1470-2045(04)01561-x doi: 10.1016/s1470-2045(04)01561-x
![]() |
[23] | Flora A (2015) La Terra dei Fuochi: ambiente e politica industriale nel Mezzogiorno. Riv Econ Del Mezzogiorno Trimest Svimez 1–2: 89–122. |
[24] |
Albanese S, De Vivo B, Lima A, et al. (2007) Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). J Geochem Explor 93: 21–34. https://doi.org/10.1016/j.gexplo.2006.07.006 doi: 10.1016/j.gexplo.2006.07.006
![]() |
[25] | Albanese S, De Luca ML, De Vivo B, et al. (2008) Relationships between heavy metals distribution and cancer mortality rates in the Campania Region, Italy, In: De Vivo B, Belkin HE, Lima A, Authors, Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, Amsterdam: Elsevier, 391–404. |
[26] | Albanese S, Cicchella D, De Vivo B, et al. (2011) Advancements in urban geochemical mapping of the Naples metropolitan area: color composite maps and results from an urban brownfield site, In: Johnson CC, Demetriades A, Locutura J, Authors, Mapping The Chemical Environment of Urban Areas, UK: John Wiley Publisher, 410–423. |
[27] |
Bove M, Ayuso RA, De Vivo B, et al. (2011) Geochemical and isotopic study of soils and waters from an Italian contaminated site: Agro Aversano (Campania). J Geochem Explor 109: 38–50. https://doi.org/10.1016/j.gexplo.2010.09.013 doi: 10.1016/j.gexplo.2010.09.013
![]() |
[28] |
Catani V, Zuzolo D, Esposito L, et al. (2020) A New Approach for Aquifer Vulnerability Assessment: the Case Study of Campania Plain. Water Resour Manage 34: 819–834. https://doi.org/10.1007/s11269-019-02476-5 doi: 10.1007/s11269-019-02476-5
![]() |
[29] |
Cicchella D, De Vivo B, Lima A, et al. (2008) Heavy metal pollution and Pb isotopes in urbansoils of Napoli, Italy. Geochem Explor Environ Anal 8: 103–112. https://doi.org/10.1144/1467-7873/07-148 doi: 10.1144/1467-7873/07-148
![]() |
[30] | De Vivo B, Lima A, Albanese S, et al. (2006) Atlante geochimico-ambientale dei suoli dell'area urbana e della provincia di Napoli, Roma: Aracne Editrice. |
[31] | De Vivo B, Lima A, Albanese S, et al. (2016) Atlante geochimico-ambientale dei suoli della Campania, Roma: Aracne Editrice. |
[32] | De Vivo B, Albanese S, Lima A, et al. (2021) Composti Organici Persistenti: Idrocarburi Policiclici Aromatici, Policlorobifenili, Pesticidi, Monitoraggio Geochimico-Ambientale dei suoli della Regione Campania, Roma: Aracne Editrice. |
[33] | De Vivo B, Cicchella D, Lima A, et al. (2021) Elementi Potenzialmente Tossici e loro Biodisponibilità, Elementi Maggiori e in Traccia; distribuzione in suoli superficiali e profondi, Monitoraggio Geochimico-Ambientale dei suoli della Regione Campania, Roma: Aracne Editrice. |
[34] | De Vivo B, Cicchella D, Albanese S, et al. (2022) Idrocarburi Policiclici Aromatici (IPA), Policlorobifenili (PCB), Pesticidi (OCP), Eteri di Polibromobifenili (PBDE), Elementi Potenzialmente Tossici (EPT), Monitoraggio geochimico-ambientale della matrice aria della Regione Campania. Il Piano Campania Trasparente, Roma: Aracne Editrice. |
[35] |
Grezzi G, Ayuso RA, De Vivo B, et al. (2011) Lead isotopes in soils and ground waters as tracers of the impact of human activities on the surface environment: the Domizio-flegreo littoral (Italy) case study. J Geochem Explor 109: 51–58. https://doi.org/10.1016/j.gexplo.2010.09.012 doi: 10.1016/j.gexplo.2010.09.012
![]() |
[36] | Lima A, Giaccio L, Cicchella D, et al. (2012) Atlante geochimico ambientale del S.I.N-Litorale Domizio flegreo e Agro aversano, Roma: Aracne editrice. |
[37] |
Minolfi G, Albanese S, Lima A, et al. (2018) Human health risk assessment in Avellino-Salerno metropolitan areas, Campania Region, Italy. J Geochem Explor 195: 97–109. https://doi.org/10.1016/j.gexplo.2017.12.011 doi: 10.1016/j.gexplo.2017.12.011
![]() |
[38] |
Minolfi G, Petrik A, Albanese S, et al. (2019) The distribution of Pb, Cu and Zn in topsoil of the Campanian Region, Italy. Geochem: Explor Environ Anal 19: 205–215. https://doi.org/10.1144/geochem2017-074 doi: 10.1144/geochem2017-074
![]() |
[39] |
Petrik A, Albanese S, Lima A, et al. (2018) The spatial pattern of beryllium and its possible origin using compositional data analysis on a high-density topsoil data set from the Campania Region (Italy). Appl Geochem 91: 162–173. https://doi.org/10.1016/j.apgeochem.2018.02.008 doi: 10.1016/j.apgeochem.2018.02.008
![]() |
[40] |
Petrik A, Thiombane M, Albanese S, et al. (2018) Source patterns of Zn, Pb, Cr and Ni potentially toxic elements (PTEs) through a compositional discrimination analysis: A case study on the Campanian topsoil data. Geoderma 331: 87–99. https://doi.org/10.1016/j.geoderma.2018.06.019 doi: 10.1016/j.geoderma.2018.06.019
![]() |
[41] |
Petrik A, Albanese S, Lima A, et al. (2018) Spatial pattern recognition of arsenic in topsoil using high-density regional data. Geochem Explor Environ Anal 18: 319–330. https://doi.org/10.1144/geochem2017-060 doi: 10.1144/geochem2017-060
![]() |
[42] |
Petrik A, Albanese S, Lima A, et al. (2018) Spatial pattern analysis of Ni and its concentrations in topsoils in the Campania region (Italy). J Geochem Explor 195: 130–142. https://doi.org/10.1016/j.gexplo.2017.09.009 doi: 10.1016/j.gexplo.2017.09.009
![]() |
[43] |
Petrik A, Thiombane M, Lima A, et al. (2018) Soil Contamination Compositional Index: a new approach to quantify contamination demonstrated by assessing compositional source patterns of potentially toxic elements in the Campania Region (Italy). Appl Geochem 96: 264–276. https://doi.org/10.1016/j.apgeochem.2018.07.014 doi: 10.1016/j.apgeochem.2018.07.014
![]() |
[44] |
Qu C, Albanese S, Chen W, et al. (2016) The status of organochlorine pesticide contamination in the soils of the Campanian Plain, southern Italy, and correlations with soil properties and cancer risk. Environ Pollut 216: 500–511. https://doi.org/10.1016/j.envpol.2016.05.089 doi: 10.1016/j.envpol.2016.05.089
![]() |
[45] |
Qu C, Albanese S, Lima A, et al. (2017) Residues of hexachlorobenzene and chlorinated cyclodiene pesticides in the soils of the Campanian Plain, southern Italy. Environ Pollut 231: 1497–1506. https://doi.org/10.1016/j.envpol.2017.08.100 doi: 10.1016/j.envpol.2017.08.100
![]() |
[46] |
Qu C, Albanese S, Lima A, et al. (2019) The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: Implications for sources and environmental processes. Environ Int 124: 89–97. https://doi.org/10.1016/j.envint.2018.12.031 doi: 10.1016/j.envint.2018.12.031
![]() |
[47] |
Qu C, Albanese S, Lima A, et al. (2018) Polycyclic aromatic hydrocarbons in the sediments of the Gulfs of Naples and Salerno, Southern Italy: status, sources and ecological risk. Ecotoxicol Environ Saf 161: 156–163. https://doi.org/10.1016/j.ecoenv.2018.05.077 doi: 10.1016/j.ecoenv.2018.05.077
![]() |
[48] |
Qu C, De Vivo B, Albanese S, et al. (2021) High spatial resolution measurements of passive-sampler derived air concentrations of persistent organic pollutants in the Campania region, Italy: Implications for source identification and risk analysis. Environ Pollut 286: 117248. https://doi.org/10.1016/j.envpol.2021.117248 doi: 10.1016/j.envpol.2021.117248
![]() |
[49] | Qu C, Doherty AL, Xing X, et al. (2018) Polyurethane foam-based passive air samplers in monitoring persistent organic pollutants: Theory and application, In: De Vivo B, Belkin HE, Lima A, Authors, Environmental Geochemistry—Site Characterization, Data Analysis and Case Histories, Elsevier. |
[50] |
Qu C, Sun Y, Albanese S, et al. (2018) Organochlorine pesticides in sediments from Gulfs of Naples and Salerno, Southern Italy. J Geochem Explor 195: 87–96. https://doi.org/10.1016/j.gexplo.2017.12.010 doi: 10.1016/j.gexplo.2017.12.010
![]() |
[51] |
Rezza C, Albanese S, Ayuso R, et al. (2018) Geochemical and Pb isotopic characterization of soil, groundwater, human hair, and corn samples from the Domizio Flegreo and Agro Aversano area (Campania region, Italy). J Geochem Explor 184: 318–332. https://doi.org/10.1016/j.gexplo.2017.01.007 doi: 10.1016/j.gexplo.2017.01.007
![]() |
[52] |
Rezza C, Petrik A, Albanese S, et al. (2018) Mo, Sn and W patterns in topsoils of the Campania Region, Italy. Geochem Explor Environ Anal 18: 331–342. https://doi.org/10.1144/geochem2017-061 doi: 10.1144/geochem2017-061
![]() |
[53] |
Thiombane M, Albanese S, Di Bonito M, et al. (2019) Source patterns and contamination level of polycyclic aromatic hydrocarbons (PAHs) in urban and rural areas of Southern Italian soils. Environ Geochem Health 41: 507–528. https://doi.org/10.1007/s10653-018-0147-3 doi: 10.1007/s10653-018-0147-3
![]() |
[54] |
Thiombane M, Martín-Fernández JA, Albanese S, et al. (2018) Exploratory analysis of multielement geochemical patterns in soil from the Sarno River Basin (Campania region, southern Italy) through Compositional Data Analysis (CODA). J Geochem Explor 195: 110–120. https://doi.org/10.1016/j.gexplo.2018.03.010 doi: 10.1016/j.gexplo.2018.03.010
![]() |
[55] |
Thiombane M, Petrik A, Di Bonito M, et al. (2018) Status, sources and contamination levels of organochlorine pesticide residues in urban and agricultural areas: a preliminary review in central–southern Italian soils. Environ Sci Pollut Res 25: 26361–26382. https://doi.org/10.1007/s11356-018-2688-5 doi: 10.1007/s11356-018-2688-5
![]() |
[56] |
Zuzolo D, Cicchella D, Albanese S, et al. (2018) Exploring uni-element geochemical data under a compositional perspective. Appl Geochemistry 91: 174–184. https://doi.org/10.1016/j.apgeochem.2017.10.003 doi: 10.1016/j.apgeochem.2017.10.003
![]() |
[57] |
Zuzolo D, Cicchella D, Doherty AL, et al. (2018) The distribution of precious metals (Au, Ag, Pt, and Pd) in the soils of the Campania Region (Italy). J Geochem Explor 192: 33–44. https://doi.org/10.1016/j.gexplo.2018.03.009 doi: 10.1016/j.gexplo.2018.03.009
![]() |
[58] |
Zuzolo D, Cicchella D, Lima A, et al. (2020) Potentially toxic elements in soils of Campania region (Southern Italy): Combining raw and compositional data. J Geochem Explor 213: 106524. https://doi.org/10.1016/j.gexplo.2020.106524 doi: 10.1016/j.gexplo.2020.106524
![]() |
[59] |
Albanese S, Taiani MV, De Vivo B, et al. (2013) An environmental epidemiological study based on the stream sediment geochemistry of the Salerno province (Campania region, Southern Italy). J Geochem Explor 131: 59–66. https://doi.org/10.1016/j.gexplo.2013.04.002 doi: 10.1016/j.gexplo.2013.04.002
![]() |
[60] |
Giaccio L, Cicchella D, De Vivo B, et al. (2012) Does heavy metals pollution affects semen quality in men? A case of study in the metropolitan area of Naples (Italy). J Geochem Explor 112: 218–225. https://doi.org/10.1016/j.gexplo.2011.08.009 doi: 10.1016/j.gexplo.2011.08.009
![]() |
[61] |
Albanese S, Fontaine B, Chen W, et al. (2015) Polycyclic aromatic hydrocarbons in the soils of a densely populated region and associated human health risks: the Campania Plain (Southern Italy) case study. Environ Geochem Health 37: 1–20. https://doi.org/10.1007/s10653-014-9626-3 doi: 10.1007/s10653-014-9626-3
![]() |
[62] |
De Vivo B, Rolandi G, Gans PB, et al. (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineral Petrol 73: 47–65. https://doi.org/10.1007/s007100170010 doi: 10.1007/s007100170010
![]() |
[63] | di Gennaro A (2002) I sistemi di terre della Campania, Firenze: Risorsa srl Selca. |
[64] | Budetta P, Celico P, Corniello A, et al. (1994) Carta idrogeologica della Campania 1/200.000 e relativa memoria illustrativa, Atti IV Geoengineering International Congress: Soil and Groundwater Protection, Geda, 565–586. |
[65] | Celico P, de Paola P (1992) La falda dell'area napoletana: ipotesi sui meccanismi naturali di protezione e sulle modalità di inquinamento. Gruppo Scient. It. Studi e Ricerche. Atti Giornate di studio "Acque per uso potabile-Proposte per la tutela ed il controllo della qualità", 387–412. |
[66] | Celico P, de Gennaro M, Esposito L, et al. (1994) La falda ad oriente della città di Napoli: idrodinamica e qualità delle acque. Geol Rom 30: 653–660. |
[67] | Celico P, Esposito L, Guadagno FM (1997) Sulla qualità delle acque sotteranee nell'acquifero del settore orientale della Piana Campana. Geologia Tecnica ed Ambientale 4: 17–27. |
[68] | Corniello A, Ducci D, Napolitano P (1997) Comparison between parametric methods to evaluate aquifer pollution vulnerability using a GIS: an example in the "Piana Campana", southern Italy, Engineering Geology and the Environment, Rotterdam: Balkema, 1721–1726. |
[69] | Corniello A, Ducci D (2009) Possible sources of nitrate in groundwater of Acerra area (Piana Campana). Eng Hydro Environ Geol 12: 155–164. |
[70] | D'Alisa G, Burgalassi D, Healy H, Walter M, (2010) Conflict in Campania: Waste emergency or crisis of democracy. Ecol Econ 70: 239–249. |
[71] | Salminen R, Tarvainen T, Demetriades A, et al. (1998) FOREGS Geochemical Mapping Field Manual. Geological Survey of Finland, Espoo Guide 47. Available from: http://www.gtk.fi/foregs/eochem/fieldmanan.pdf. |
[72] | Legislative Decree 152/2006 Decreto Legislativo 3 aprile, Norme in materia ambientale. Gazzetta Ufficiale della Repubblica Italiana, 2006. Available from: https://www.gazzettaufficiale.it/dettaglio/codici/materiaAmbientale. |
[73] | Ministerial Decree 46/2019 Decreto Ministeriale 1 marzo, Regolamento relativo agli interventi di bonifica, di ripristino ambientale e di messa in sicurezza, d'emergenza, operativa e permanente, delle aree destinate alla produzione agricola e all'allevamento, ai sensi dell'articolo 241 del D.Lgs 152/2006. Gazzetta Ufficiale della Repubblica Italiana, 2019. Available from: https://www.gazzettaufficiale.it/eli/id/2019/06/07/19G00052/sg. |
[74] | Cheng Q (1994) Multifractal modelling and spatial analysis with GIS: Gold potential estimation in the Mitchell-Sulphurets area. Northwestern British Columbia. Unpublished PhD thesis. University of Ottawa, Ottawa, 268. |
[75] |
Cheng Q (1999) Spatial and scaling modelling for geochemical anomaly separation. J Geochem Explor 65: 175–194. https://doi.org/10.1016/S0375-6742(99)00028-X doi: 10.1016/S0375-6742(99)00028-X
![]() |
[76] |
Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51: 109–130. https://doi.org/10.1016/0375-6742(94)90013-2 doi: 10.1016/0375-6742(94)90013-2
![]() |
[77] |
Cheng Q, Agteberg FP, Bonham-Carter GF (1996) A spatial analysis method for geochemical anomaly separation. J Geochem Explor 56: 183–195. https://doi.org/10.1016/S0375-6742(96)00035-0 doi: 10.1016/S0375-6742(96)00035-0
![]() |
[78] | Cheng Q, Xu Y, Grunsky E (1999) Integrated spatial and spectrum analysis for geochemical anomaly separation, Proceedings of the International Association for Mathematical Geology Meeting, Trondheim (Norway), 87–92. |
[79] |
Cheng, Q, Xu Y, Grunsky E (2000) Integrated spatial and spectrum method for geochemical anomaly separation. Nat Resour Res 9: 43–56. https://doi.org/10.1023/A:1010109829861 doi: 10.1023/A:1010109829861
![]() |
[80] | Cheng Q, Bonham-Carter GF, Raines GL (2001) GeoDAS: A new GIS system for spatial analysis of geochemical data sets for mineral exploration and environmental assessment. 20th Int Geochem Explor Symposium, 42–43. |
[81] |
Lima A, De Vivo B, Cicchella D, et al. (2003) Multifractal IDW interpolation and fractal filtering method in environmental studies: an application on regional stream sediments of Campania Region (Italy). Appl Geochem 18: 1853–1865. https://doi.org/10.1016/S0883-2927(03)00083-0 doi: 10.1016/S0883-2927(03)00083-0
![]() |
[82] | Cicchella D, De Vivo B, Lima A (2005) Background and baseline concentration values of harmful elements in the volcanic soils of metropolitan and Provincial areas of Napoli (Italy). Geochem Explor Environ Anal 5: 1–12. |
[83] |
Zuo R, Wang J (2019) ArcFractal: An ArcGIS Add-In for Processing Geoscience Data Using Fractal/Multifractal Models. Nat Resour Res 29: 3–12. https://doi.org/10.1007/s11053-019-09513-5 doi: 10.1007/s11053-019-09513-5
![]() |
[84] |
Zhengle X, Zhigao S, Zhang H, et al. (2014) Contamination assessment of arsenic and heavy metals in a typical abandoned estuary wetland-a case study of the Yellow River Delta Nature Reserve. Environ Monit Assess 186: 7211–7232. https://doi.org/10.1007/s10661-014-3922-3 doi: 10.1007/s10661-014-3922-3
![]() |
[85] |
Golia EE, Dimirkou A, Floras SA (2015) Spatial monitoring of arsenic and heavy metals in the Almyros area, Central Greece. Statistical approach for assessing the sources of contamination. Environ Monit Assess 187: 399–412. https://doi.org/10.1007/s10661-015-4624-1 doi: 10.1007/s10661-015-4624-1
![]() |
[86] |
Bourliva A, Christoforidis C, Papadopoulou L, et al. (2017) Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environ Geochem Health 39: 611–634. https://doi.org/10.1007/s10653-016-9836-y doi: 10.1007/s10653-016-9836-y
![]() |
[87] | Field A (2009) Discovering Statistics Using SPSS, 3 Eds., London: Sage Publications Ltd. |
[88] |
Jolliffe IT (1972) Discarding variables in a principal component analysis, Ⅰ: Artificial data. J R Stat Soc Appl Stat Ser C 21: 160–173. https://doi.org/10.2307/2346488 doi: 10.2307/2346488
![]() |
[89] | Jolliffe IT (1986) Principal component analysis, New York: Springer. |
[90] |
Tobiszewski M, Namiesnik J (2011) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162: 110–119. https://doi.org/10.1016/J.ENVPOL.2011.10.025 doi: 10.1016/J.ENVPOL.2011.10.025
![]() |
[91] |
Mostert MMR, Ayoko GA, Kokot S (2010) Application of chemometrics to analysis of soil pollutants. Trends Anal Chem 29: 430–435. https://doi.org/10.1016/j.trac.2010.02.009 doi: 10.1016/j.trac.2010.02.009
![]() |
[92] |
Zhang W, Zhang S, Wan C, et al. (2008) Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environ Pollut 153: 594–601. https://doi.org/10.1016/j.envpol.2007.09.004 doi: 10.1016/j.envpol.2007.09.004
![]() |
[93] |
Pies C, Hoffmann B, Petrowsky J, et al. (2008) Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 72: 1594–1601. https://doi.org/10.1016/j.chemosphere.2008.04.021 doi: 10.1016/j.chemosphere.2008.04.021
![]() |
[94] |
Akyüz M, Çabuk H (2010) Gas and particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci Total Environ 408: 5550–5558. https://doi.org/10.1016/j.scitotenv.2010.07.063 doi: 10.1016/j.scitotenv.2010.07.063
![]() |
[95] |
De La Torre-Roche RJ, Lee W-Y, Campos-Díaz SI (2009) Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. J Hazard Mater 163: 946–958. https://doi.org/10.1016/j.jhazmat.2008.07.089 doi: 10.1016/j.jhazmat.2008.07.089
![]() |
[96] |
Yunker MB, Macdonald RW, Vingarzan R, et al. (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33: 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5 doi: 10.1016/S0146-6380(02)00002-5
![]() |
[97] |
Katsoyiannis A, Terzi E, Cai QY (2007) On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere 69: 1337–1339. https://doi.org/10.1016/j.chemosphere.2007.05.084 doi: 10.1016/j.chemosphere.2007.05.084
![]() |
[98] |
Jiang YF, Wang XT, Jia Y, et al. (2009) Occurrence, distribution and possible sources of organochlorine pesticides in agricultural soil of Shanghai, China. J Hazard Mater 170: 989–997. https://doi.org/10.1016/j.jhazmat.2009.05.082 doi: 10.1016/j.jhazmat.2009.05.082
![]() |
[99] |
Qiu X, Zhu T, Yao B, et al. (2005) Contribution of dicofol to the current DDT pollution in China. Environ Sci Technol 39: 4385–4390. https://doi.org/10.1021/es050342a doi: 10.1021/es050342a
![]() |
[100] |
Iwata H, Tanabe S, Ueda K, et al. (1995) Persistent organochlorine residues in Air, Water, Sediments, and Soils from the Lake Baikai Region, Russia. Environ Sci Technol 29: 792–801. https://doi.org/10.1021/es00003a030 doi: 10.1021/es00003a030
![]() |
[101] |
Zhang ZL, Huang J, Yu G, et al. (2004) Occurrence of PAHs, PCBs and organochlorine pesticides in Tonghui River of Beijing, China. Environ Pollut 130: 249–261. https://doi.org/10.1016/j.envpol.2003.12.002 doi: 10.1016/j.envpol.2003.12.002
![]() |
[102] |
Zhang A, Liu W, Yuan H, et al. (2011) Spatial distribution of hexachlorocyclohexanes in agricultural soils in Zhejiang province, China, and correlations with elevation and temperature. Environ Sci Technol 45: 6303–6308. https://doi.org/10.1021/es200488n doi: 10.1021/es200488n
![]() |
[103] |
Bidleman TF, Jantunen LLM, Helm PA, et al. (2000) Chlordane enantiomers and temporal trends of chlordane isomers in Arctic air. Environ Sci Technol 36: 539–544. https://doi.org/10.1021/es011142b doi: 10.1021/es011142b
![]() |
[104] | WHO, Environmental Health Criteria 40: Endosulfan. World Health Organization, Geneva, 1984. Available from: https://apps.who.int/iris/bitstream/handle/10665/39390/WHO_EHC_40.pdf?sequence=1&isAllowed=y. |
[105] | Albanese S, Guarino A, Pizzolante A, et al. (2022) The use of natural geochemical background values for the definition of local environmental guidelines: the case study of the Vesuvian plain, In: Baldi D, Uricchio F, Authors, Le bonifiche ambientali nell'ambito della transizione ecologica, Società Italiana di Geologia Ambientale (SIGEA) and Consiglio Nazionale delle Ricerche (CNR), 15–25. |
[106] |
Aruta A, Albanese S, Daniele L, et al. (2022). A new approach to assess the degree of contamination and determine sources and risks related to PTEs in an urban environment: the case study of Santiago (Chile). Environ Geochem Health. https://doi.org/10.1007/s10653-021-01185-6 doi: 10.1007/s10653-021-01185-6
![]() |
[107] |
Stančić Z, Fiket Ž, Vuger A (2022) Tin and Antimony as Soil Pollutants along Railway Lines-A Case Study from North-Western Croatia. Environments 9: 10. https://doi.org/10.3390/environments9010010 doi: 10.3390/environments9010010
![]() |
[108] |
Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology 2011: 2090–4614. https://doi.org/10.5402/2011/402647 doi: 10.5402/2011/402647
![]() |
[109] |
Qiu YW, Zhang G, Liu GQ, et al. (2009) Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China. Estuar Coast Shelf Sci 83: 60–66. https://doi.org/10.1016/j.ecss.2009.03.018 doi: 10.1016/j.ecss.2009.03.018
![]() |
[110] | ATSDR, Toxicological Profile for DDT, DDE, and DDD. Dept Health Human Services. Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta GA, 2002. Available from: https://www.atsdr.cdc.gov/toxprofiles/tp35.pdf. |