This article considered two generalized Nicholson's blowflies equations with iteration term and time delay, as well as with immigration, and Nicholson's blowflies equation with iteration term and time delay, as well as harvesting term, respectively. Under appropriate conditions, the existence and uniqueness of almost periodic positive solutions for these two equations were established, respectively, by employing Banach's fixed point theorem. These results were brand new.
Citation: Youqian Bai, Yongkun Li. Almost periodic positive solutions of two generalized Nicholson's blowflies equations with iterative term[J]. Electronic Research Archive, 2024, 32(5): 3230-3240. doi: 10.3934/era.2024148
This article considered two generalized Nicholson's blowflies equations with iteration term and time delay, as well as with immigration, and Nicholson's blowflies equation with iteration term and time delay, as well as harvesting term, respectively. Under appropriate conditions, the existence and uniqueness of almost periodic positive solutions for these two equations were established, respectively, by employing Banach's fixed point theorem. These results were brand new.
[1] | K. G. Wardhaugh, R. Morton, The incidence of flystrike in sheep in relation to weather conditions, sheep husbandry and the abundance of the Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae), Aust. J. Agric. Res., 41 (1990), 1155–1167. https://doi.org/10.1071/AR9901155 doi: 10.1071/AR9901155 |
[2] | A. J. Nicholson, An outline of the dynamics of animal populations, Aust. J. Zool., 2 (1954), 9–65. https://doi.org/10.1071/ZO9540009 doi: 10.1071/ZO9540009 |
[3] | W. S. C. Gurney, S. P. Blythe, R. M. Nisbet, Nicholsons blowflies revisited, Nature, 287 (1980), 17–21. https://doi.org/10.1038/287017a0 doi: 10.1038/287017a0 |
[4] | H. Huang, B. Liu, Traveling wave fronts for a diffusive Nicholson's Blowflies equation accompanying mature delay and feedback delay, Appl. Math. Lett., 134 (2022), 108321. https://doi.org/10.1016/j.aml.2022.108321 doi: 10.1016/j.aml.2022.108321 |
[5] | F. Long, M. Yang, Positive periodic solutions of delayed Nicholson's blowflies model with a linear harvesting term, Electron. J. Qual. Theory Differ. Equations, 41 (2011), 1–11. https://doi.org/10.14232/ejqtde.2011.1.41 doi: 10.14232/ejqtde.2011.1.41 |
[6] | X. Zhao, C. Huang, B. Liu, J. Cao, Stability analysis of delay patch-constructed Nicholson's blowflies system, Math. Comput. Simulat., In press. https://doi.org/10.1016/j.matcom.2023.09.012 |
[7] | L. Berezansky, E. Braverman, L. Idels, Nicholson's blowflies differential equations revisited: main results and open problems, Appl. Math. Modell., 34 (2010), 1405–1417. https://doi.org/10.1016/j.apm.2009.08.027 doi: 10.1016/j.apm.2009.08.027 |
[8] | S. Abbas, M. Niezabitowski, S. R. Grace, Global existence and stability of Nicholson blowflies model with harvesting and random effect, Nonlinear Dyn., 103 (2021), 2109–2123. https://doi.org/10.1007/s11071-020-06196-z doi: 10.1007/s11071-020-06196-z |
[9] | N. Belmabrouk, M. Damak, M. Miraoui, Stochastic Nicholson's blowflies model with delays, Int. J. Biomathem., 16 (2023), 2250065. https://doi.org/10.1142/S1793524522500656 doi: 10.1142/S1793524522500656 |
[10] | H. El-Metwally, M. A. Sohaly, I. M. Elbaz, Mean-square stability of the zero equilibrium of the nonlinear delay differential equation: Nicholson's blowflies application, Nonlinear Dyn., 105 (2021), 1713–1722. https://doi.org/10.1007/s11071-021-06696-6 doi: 10.1007/s11071-021-06696-6 |
[11] | C. Huang, X. Ding, Dynamics of the diffusive Nicholson's blowflies equation with two distinct distributed delays, Appl. Math. Lett., 145 (2023), 0893–9659. https://doi.org/10.1016/j.aml.2023.108741 doi: 10.1016/j.aml.2023.108741 |
[12] | A. Bouakkaz, R. Khemis, Positive periodic solutions for revisited Nicholson's blowflies equation with iterative harvesting term, J. Math. Anal. Appl., 494 (2021), 124663. https://doi.org/10.1016/j.jmaa.2020.124663 doi: 10.1016/j.jmaa.2020.124663 |
[13] | R. Khemis, Existence, uniqueness and stability of positive periodic solutions for an iterative Nicholson's blowflies equation, J. Appl. Math. Comput., 69 (2023), 1903–1916. https://doi.org/10.1007/s12190-022-01820-0 doi: 10.1007/s12190-022-01820-0 |
[14] | A. Bouakkaz, Positive periodic solutions for a class of first-order iterative differential equations with an application to a hematopoiesis model, Carpathian J. Math., 38 (2022), 347–355. https://doi.org/10.37193/CJM.2022.02.07 doi: 10.37193/CJM.2022.02.07 |
[15] | M. Khemis, A. Bouakkaz, Existence, uniqueness and stability results of an iterative survival model of red blood cells with a delayed nonlinear harvesting term, J. Math. Modell., 10 (2022), 515–528. https://doi.org/10.22124/JMM.2022.21577.1892 doi: 10.22124/JMM.2022.21577.1892 |
[16] | B. Liu, C. Tunç, Pseudo almost periodic solutions for a class of first order differential iterative equations, Appl. Math. Lett., 40 (2015), 29–34. https://doi.org/10.1016/j.aml.2014.08.019 doi: 10.1016/j.aml.2014.08.019 |
[17] | L. Duan, L. Huang, Pseudo almost periodic dynamics of delay Nicholson's blowflies model with a linear harvesting term, Math. Meth. Appl. Sci., 38 (2015), 1178–1189. https://doi.org/10.1002/mma.3138 doi: 10.1002/mma.3138 |
[18] | L. Li, X. Ding, W. Fan, Almost periodic stability on a delay Nicholson's blowflies equation, J. Exp. Theor. Artif. Intell., 2023. https://doi.org/10.1080/0952813X.2023.2165718 doi: 10.1080/0952813X.2023.2165718 |
[19] | Y. Tang, S. Xie, Global attractivity of asymptotically almost periodic Nicholson's blowflies models with a nonlinear density-dependent mortality term, Int. J. Biomath., 11 (2018), 1850079. https://doi.org/10.1142/S1793524518500791 doi: 10.1142/S1793524518500791 |
[20] | F. Long, Positive almost periodic solution for a class of Nicholson's blowflies model with a linear harvesting term, Nonlinear Anal.: Real World Appl., 13 (2012), 686–693. https://doi.org/10.1016/j.nonrwa.2011.08.009 doi: 10.1016/j.nonrwa.2011.08.009 |
[21] | F. Chérif, Pseudo almost periodic solution of Nicholson's blowflies model with mixed delays, Appl. Math. Modell., 39 (2015), 5152–5163. https://doi.org/10.1016/j.apm.2015.03.043 doi: 10.1016/j.apm.2015.03.043 |
[22] | C. Huang, R. Su, Y. Hu, Global convergence dynamics of almost periodic delay Nicholson's blowflies systems, J. Biol. Dyn., 14 (2020), 633–655. https://doi.org/10.1080/17513758.2020.1800841 doi: 10.1080/17513758.2020.1800841 |
[23] | A. M. Fink, Almost Periodic Differential Equation, Springer-Verlag, New York, 1974. https://doi.org/10.1007/BFb0070324 |
[24] | Y. Li, J. Xiang, B. Li, Almost periodic solutions of quaternion-valued neutral type high-order Hopfield neural networks with state-dependent delays and leakage delays, Appl. Intell., 50 (2020), 2067–2078. https://doi.org/10.1007/s10489-020-01634-2 doi: 10.1007/s10489-020-01634-2 |
[25] | Z. Huang, Almost periodic solutions for fuzzy cellular neural networks with time-varying delays, Neural Comput. Appl., 28 (2017), 2313–2320. https://doi.org/10.1007/s00521-016-2194-y doi: 10.1007/s00521-016-2194-y |