This paper investigates a robust portfolio selection problem with the agent's limited attention. The agent has access to a risk-free asset and a stock in a financial market. But she does not observe perfectly the expected return rate of the stock so she has to estimate this key parameter before making decisions. Besides the general observable financial information, the agent can also acquire a news signal process whose accuracy depends on the agent's attention. We assume that the agent pays limited attention on the signal and she does not trust her estimation model. So it is necessary to consider model ambiguity in this paper as well. The agent maximizes the expected utility of her terminal wealth under the worst-case scenario. Under this setting, we derive the robust optimal strategy explicitly. In the presence of the attention and ambiguity aversion, the myopic term of the strategy, the hedging term of the strategy and the worst-case scenario are all changed. We find that more attention makes the variance of the estimated return smaller. The numerical examples also show that a more attentive agent has a better estimation of the unobservable parameter and is more confident on her estimation. Consequently, the worst-case scenario deviates less from the reference model, which implies a higher expected return rate under the worst-case scenario, thus invests more in the stock.
Citation: Yue Ma, Zhongfei Li. Robust portfolio choice with limited attention[J]. Electronic Research Archive, 2023, 31(7): 3666-3687. doi: 10.3934/era.2023186
This paper investigates a robust portfolio selection problem with the agent's limited attention. The agent has access to a risk-free asset and a stock in a financial market. But she does not observe perfectly the expected return rate of the stock so she has to estimate this key parameter before making decisions. Besides the general observable financial information, the agent can also acquire a news signal process whose accuracy depends on the agent's attention. We assume that the agent pays limited attention on the signal and she does not trust her estimation model. So it is necessary to consider model ambiguity in this paper as well. The agent maximizes the expected utility of her terminal wealth under the worst-case scenario. Under this setting, we derive the robust optimal strategy explicitly. In the presence of the attention and ambiguity aversion, the myopic term of the strategy, the hedging term of the strategy and the worst-case scenario are all changed. We find that more attention makes the variance of the estimated return smaller. The numerical examples also show that a more attentive agent has a better estimation of the unobservable parameter and is more confident on her estimation. Consequently, the worst-case scenario deviates less from the reference model, which implies a higher expected return rate under the worst-case scenario, thus invests more in the stock.
[1] | A. Lusardi, O. S. Mitchell, The economic importance of financial literacy: Theory and evidence, J. Econ. lit., 52 (2014), 5–44. https://doi.org/10.1257/jel.52.1.5 doi: 10.1257/jel.52.1.5 |
[2] | F. Huang, J. Song, N. J. Taylor, The impact of business conditions and commodity market on us stock returns: An asset pricing modelling experiment, Quant. Finance Econ., 6 (2022), 433–458. https://doi.org/10.3934/QFE.2022019 doi: 10.3934/QFE.2022019 |
[3] | A. Yin, Equity premium prediction: keep it sophisticatedly simple, Quant. Finance Econ., 5 (2021), 264–286. https://doi.org/10.3934/QFE.2021012 doi: 10.3934/QFE.2021012 |
[4] | Z. Li, J. Zhu, J. He, The effects of digital financial inclusion on innovation and entrepreneurship: A network perspective, Electron. Res. Arch., 30 (2022), 4697–4715. https://doi.org/10.3934/era.2022238 doi: 10.3934/era.2022238 |
[5] | Y. Liu, Z. Li, M. Xu, The influential factors of financial cycle spillover: evidence from china, Emerging Mark. Finance Trade, 56 (2020), 1336–1350. https://doi.org/10.1080/1540496X.2019.1658076 doi: 10.1080/1540496X.2019.1658076 |
[6] | Z. Li, C. Yang, Z. Huang, How does the fintech sector react to signals from central bank digital currencies, Finance Res. Lett., 50 (2022), 103308. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308 |
[7] | Z. Li, B. Mo, H. Nie, Time and frequency dynamic connectedness between cryptocurrencies and financial assets in China, Int. Rev. Econ. Finance, 86 (2023), 46–57. https://doi.org/10.1016/j.iref.2023.01.015 doi: 10.1016/j.iref.2023.01.015 |
[8] | Y. Luo, Robustly strategic consumption-portfolio rules with informational frictions, Manage. Sci., 63 (2017), 4158–4174. https://doi.org/10.1287/mnsc.2016.2553 doi: 10.1287/mnsc.2016.2553 |
[9] | X. Lei, Information and inequality, J. Econ. Theory, 184 (2019), 104937. https://doi.org/10.1016/j.jet.2019.08.007 |
[10] | D. Andrei, M. Hasler, Dynamic attention behavior under return predictability, Manage. Sci., 66 (2020), 2906–2928. https://doi.org/10.1287/mnsc.2019.3328 doi: 10.1287/mnsc.2019.3328 |
[11] | Y. Zhang, Y. Niu, T. Wu, Stochastic interest rates under rational inattention, North Am. J. Econ. Finance, 54 (2020), 101258. https://doi.org/10.1016/j.najef.2020.101258 doi: 10.1016/j.najef.2020.101258 |
[12] | K. Kasa, Robustness and information processing, Rev. Econ. Dyn., 9 (2006), 1–33. https://doi.org/10.1016/j.red.2005.05.003 doi: 10.1016/j.red.2005.05.003 |
[13] | L. Peng, Learning with information capacity constraints, J. Financ. Quant. Anal., 40 (2005), 307–329. https://doi.org/10.1017/S0022109000002325 doi: 10.1017/S0022109000002325 |
[14] | R. Reis, When Should Policymakers Make Announcements, Columbia University, 2010. |
[15] | Z. Chen, L. Epstein, Ambiguity, risk, and asset returns in continuous time, Econometrica, 70 (2002), 1403–1443. https://doi.org/10.1111/1468-0262.00337 doi: 10.1111/1468-0262.00337 |
[16] | E. W. Anderson, L. P. Hansen, T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, J. Eur. Econ. Assoc., 1 (2003), 68–123. https://doi.org/10.1162/154247603322256774 doi: 10.1162/154247603322256774 |
[17] | I. Gilboa, D. Schmeidler, Maxmin expected utility with non-unique prior, J. Math. Econ., 18 (1989), 141–153. https://doi.org/10.1016/0304-4068(89)90018-9 doi: 10.1016/0304-4068(89)90018-9 |
[18] | P. Klibanoff, M. Marinacci, S. Mukerji, A smooth model of decision making under ambiguity, Econometrica, 73 (2005), 1849–1892. https://doi.org/10.1111/j.1468-0262.2005.00640.x doi: 10.1111/j.1468-0262.2005.00640.x |
[19] | Z. Li, J. Zhong, Impact of economic policy uncertainty shocks on china's financial conditions, Finance Res. Lett., 35 (2020), 101303. https://doi.org/10.1016/j.frl.2019.101303 doi: 10.1016/j.frl.2019.101303 |
[20] | Y. Liu, P. Failler, Y. Ding, Enterprise financialization and technological innovation: Mechanism and heterogeneity, PloS One, 17 (2022), e0275461. https://doi.org/10.1371/journal.pone.0275461 doi: 10.1371/journal.pone.0275461 |
[21] | F. Corradin, M. Billio, R. Casarin, Forecasting economic indicators with robust factor models, Natl. Accounting Rev., 4 (2022), 167–190. https://doi.org/10.3934/NAR.2022010 doi: 10.3934/NAR.2022010 |
[22] | B. Yi, Z. Li, F. G. Viens, Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under Heston's stochastic volatility model, Insur. Math. Econ., 53 (2013), 601–614. https://doi.org/10.1016/j.insmatheco.2013.08.011 doi: 10.1016/j.insmatheco.2013.08.011 |
[23] | B. Yi, F. Viens, Z. Li, Y. Zeng, Robust optimal strategies for an insurer with reinsurance and investment under benchmark and mean-variance criteria, Scand. Actuarial J., 2015 (2015), 725–751. https://doi.org/10.1080/03461238.2014.883085 doi: 10.1080/03461238.2014.883085 |
[24] | L. Mao, Y. Zhang, Robust optimal excess-of-loss reinsurance and investment problem with p-thinning dependent risks under CEV model, Quant. Finance Econ., 5 (2021), 134–162. https://doi.org/10.3934/QFE.2021007 doi: 10.3934/QFE.2021007 |
[25] | P. Wang, Z. Li, Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility, Insur. Math. Econ., 80 (2018), 67–83. https://doi.org/10.1016/j.insmatheco.2018.03.003 doi: 10.1016/j.insmatheco.2018.03.003 |
[26] | Y. Zeng, D. Li, Z. Chen, Z. Yang, Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility, J. Econ. Dyn. Control, 88 (2018), 70–103. https://doi.org/10.1016/j.jedc.2018.01.023 doi: 10.1016/j.jedc.2018.01.023 |
[27] | P. Wang, Z. Li, J. Sun, Robust portfolio choice for a DC pension plan with inflation risk and mean-reverting risk premium under ambiguity, Optimization, 70 (2021), 191–224. https://doi.org/10.1080/02331934.2019.1679812 doi: 10.1080/02331934.2019.1679812 |
[28] | Q. Lin, Y. Luo, X. Sun, Robust investment strategies with two risky assets, J. Econ. Dyn. Control, 134 (2022), 104275. https://doi.org/10.1016/j.jedc.2021.104275 doi: 10.1016/j.jedc.2021.104275 |
[29] | N. Branger, L. S. Larsen, C. Munk, Robust portfolio choice with ambiguity and learning about return predictability, J. Banking Finance, 37 (2013), 1397–1411. https://doi.org/10.1016/j.jbankfin.2012.05.009 doi: 10.1016/j.jbankfin.2012.05.009 |
[30] | P. Wang, Y. Shen, L. Zhang, Y. Kang, Equilibrium investment strategy for a dc pension plan with learning about stock return predictability, Insur. Math. Econ., 100 (2021), 384–407. https://doi.org/10.1016/j.insmatheco.2021.07.001 doi: 10.1016/j.insmatheco.2021.07.001 |
[31] | R. S. Lipster, A. N. Shiryaev, Statistics of Random Processes II, Springer Science, New York, 2001. |
[32] | N. Branger, L. S. Larsen, Robust portfolio choice with uncertainty about jump and diffusion risk, J. Banking Finance, 37 (2013), 5036–5047. https://doi.org/10.1016/j.jbankfin.2013.08.023 doi: 10.1016/j.jbankfin.2013.08.023 |
[33] | P. J. Maenhout, Robust portfolio rules and asset pricing, Rev. Financ. Stud., 17 (2004), 951–983. https://doi.org/10.1093/rfs/hhh003 doi: 10.1093/rfs/hhh003 |
[34] | P. J. Maenhout, Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium, J. Econ. Theory, 128 (2006), 136–163. https://doi.org/10.1016/j.jet.2005.12.012 doi: 10.1016/j.jet.2005.12.012 |
[35] | G. C. dos Santos, P. Zambra, J. A. P. Lopez, Hedge accounting: results and opportunities for future studies, Natl. Accounting Rev., 4 (2022), 74–94. https://doi.org/10.3934/NAR.2022005 doi: 10.3934/NAR.2022005 |
[36] | Y. Liu, P. Failler, Z. Liu, Impact of environmental regulations on energy efficiency: A case study of china air pollution prevention and control action plan, Sustainability, 14 (2022), 3168. https://doi.org/10.3390/su14063168 doi: 10.3390/su14063168 |
[37] | T. Li, J. Wen, D. Zeng, K. Liu, Has enterprise digital transformation improved the efficiency of enterprise technological innovation? a case study on chinese listed companies, Math. Biosci. Eng., 19 (2022), 12632–12654. https://doi.org/10.3934/mbe.2022590 doi: 10.3934/mbe.2022590 |
[38] | Z. Li, Z. Huang, Y. Su, New media environment, environmental regulation and corporate green technology innovation: Evidence from China, Energy Econ., 106545. https://doi.org/10.1016/j.eneco.2023.106545 |
[39] | Y. Liu, C. Ma, Z. Huang, Can the digital economy improve green total factor productivity? an empirical study based on chinese urban data, Math. Biosci. Eng., 20 (2023), 6866–6893. https://doi.org/10.3934/mbe.2023296 doi: 10.3934/mbe.2023296 |
[40] | Y. Liu, J. Liu, L. Zhang, Enterprise financialization and R & D innovation: A case study of listed companies in China, Electron. Res. Arch., 31 (2023), 2447–2471. https://doi.org/10.3934/era.2023124 doi: 10.3934/era.2023124 |
[41] | Z. Kang, X. Li, Z. Li, Mean-CVaR portfolio selection model with ambiguity in distribution and attitude, J. Ind. Manage. Optim., 16 (2020), 3065. https://doi.org/10.3934/jimo.2019094 doi: 10.3934/jimo.2019094 |
[42] | X. Feng, The role of esg in acquirers' performance change after M & A deals, Green Finance, 3 (2021), 287–318. https://doi.org/10.3934/GF.2021015 doi: 10.3934/GF.2021015 |
[43] | H. Tanaka, C. Tanaka, Sustainable investment strategies and a theoretical approach of multi-stakeholder communities, Green Finance, 4 (2022), 329–346. https://doi.org/10.3934/GF.2022016 doi: 10.3934/GF.2022016 |
[44] | R. Bhattacharyya, Green finance for energy transition, climate action and sustainable development: overview of concepts, applications, implementation and challenges, Green Finance, 4 (2022), 1–35. https://doi.org/10.3934/GF.2022001 doi: 10.3934/GF.2022001 |
[45] | G. Desalegn, A. Tangl, Forecasting green financial innovation and its implications for financial performance in ethiopian financial institutions: Evidence from arima and ardl model, Natl. Accounting Rev., 4 (2022), 95–111. https://doi.org/10.3934/NAR.2022006 doi: 10.3934/NAR.2022006 |