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Abstract: This paper investigates a robust portfolio selection problem with the agent’s limited at-
tention. The agent has access to a risk-free asset and a stock in a financial market. But she does not
observe perfectly the expected return rate of the stock so she has to estimate this key parameter before
making decisions. Besides the general observable financial information, the agent can also acquire
a news signal process whose accuracy depends on the agent’s attention. We assume that the agent
pays limited attention on the signal and she does not trust her estimation model. So it is necessary to
consider model ambiguity in this paper as well. The agent maximizes the expected utility of her ter-
minal wealth under the worst-case scenario. Under this setting, we derive the robust optimal strategy
explicitly. In the presence of the attention and ambiguity aversion, the myopic term of the strategy, the
hedging term of the strategy and the worst-case scenario are all changed. We find that more attention
makes the variance of the estimated return smaller. The numerical examples also show that a more
attentive agent has a better estimation of the unobservable parameter and is more confident on her es-
timation. Consequently, the worst-case scenario deviates less from the reference model, which implies
a higher expected return rate under the worst-case scenario, thus invests more in the stock.

Keywords: limited attention; robust strategy; portfolio choice; CRRA utility; HJB equation

1. Introduction

Model-based portfolio choice problem has become one important pillar in financial economics,
especially when incorporating some well-documented features such as return predictability and model
uncertainty. However, numerous psychological studies show that the agent does not have infinite time
and effort for processing information. In this vein, some people may lack financial literacy, meaning
that they do not have the necessary skills and knowledge to make the perfect estimation and to make
informed and effective investment decisions as in [1] and [2]. Furthermore, given the uncertainty
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about the stock return, it is far from clear how the agent’s ambiguity and limited attention on stock
return impact investment decision. In this study, we study a dynamic portfolio choice problem of an
ambiguity-averse agent with unknown stock return and limited attention under no transaction cost and
information cost assumption.

We assume that the agent allocates her wealth into a risk-free asset and a stock over time. The
information that the agent can acquire are the stock price and an additional information showed as a
signal in the model. We firstly make transformation of the Brownian motions involved and then use
Kalman-Bucy filtering method to estimate the unknown stock return. Obviously, at this stage, the
problem becomes full information optimization problem.

Our agent can not infer the important parameters exactly by her limited attention on information,
see [3, 4]. Such ignorance generates pervasive uncertainty for agents when they make economic and
financial decisions [5–7]. More information will be more useful for her trading behavior. Based on the
idea that the agent has limited attention for processing information, it is reasonable to assume that the
agent does not have a perfect estimation model and does not completely trust her estimation model.
She adopts the robust portfolio choice rules. Therefore, in this paper, we assume that the agent can
only pay limited attention on estimating a stock return and takes into account robustness to deal with
parameter ambiguity.

Next, we briefly review the relevant literature. This study is mainly related to the literature on in-
vestment decision with agents’ attentions and model uncertainty. There are related literatures studying
the investment decision with agents’ attention about the key model parameter, for example, stock re-
turn, return predictor, the total wealth or interest rate, see as in [8–11]. The analytical tractability of our
model in this paper mainly relies on the crucial assumption of the constant attention on the additional
information. Because the form of the additional information and the parameter of the agent’s constant
attention are already clear enough to characterize the concept of attention on the signal. In this setting,
we can also naturally introduce the model uncertainty and get the closed-form expressions of the in-
vestment strategy. Theoretically, we characterize this additional information by a signal [12–14]. Since
information acquisition is always a one-time choice, we can consider that the agent will not change her
attention dramatically in an investment and it is reasonable to take the value of the long-term mean of
her attention. By convention, we have the setting that the agent keep a constant attention to maintain
the precision of the additional signal. When the agent is more attentive to news, the signal is more
accurate.

We apply the robust control theory where the set of alternative models are defined through density
generators. Chen and Epstein [15] introduces the robust recursive utility model and Anderson et al.
[16] proposes the penalty-based utility model. Indeed, there are several mainstream approaches to
model robust strategies with unknown probability for the stochastic risk in the previous literature. The
first one is the popular max-min expected utility approach as in [17] and the second one is the so-
called smooth ambiguity preferences approach adopted by Klibanoff et al. [18]. Moreover, Anderson
et al. [16] investigate a robust control approach to deal with model uncertainty in continuous time
framework. They assume that an agent has a particular reference probability measure. However, the
ambiguity-averse agent does not totally trust this probability measure. She naturally considers a range
of alternative probability measures around the reference measure. However, these papers are not that
clear on how to find the range of alternative model sets.

Growing empirical evidence suggests that uncertainty on the return rate of stock price is a pri-
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mary aspect of the model ambiguity problem [19–21]. The uncertainty on the return rate has huge
impacts on quantitative methods, and the problem on limited attention of the return rate also faces
model uncertainty. There are also a lot of applications of robust optimal strategy in investment and
reinsurance problem and DC pension investment problem. For example, Yi et al. [22] considers a
robust investment and reinsurance problem with Heston’s stochastic volatility. And Yi et al. [23] stud-
ies investment-reinsurance problem with model uncertainty in a mean-variance framework. Lei and
Yan [24] investigates a robust optimal reinsurance and investment problem under CEV model. Wang
and Li [25] proposes a robust optimal portfolio choice problem with stochastic interest rate and stochas-
tic volatility. Zeng et al. [26] investigates a derivative-based optimal investment problem with model
uncertainty. And Wang et al. [27] studies a robust optimal investment problem with inflation risk and
mean-reverting risk premium in a DC pension plan. Lin et al. [28] investigates a model that investors
are uncertain about the dynamics of the expected returns and the correlation between the returns of two
risky assets. In these papers, robust optimization is useful for dealing with parameter ambiguity and
providing robust strategy under the presence of the agent’s limited distribution knowledge. In contrast
to these studies, we take into account robustness in a limited attention model. The ambiguity-averse
agent makes robust strategy to avoid the loss due to adverse scenarios. Rather than thinking of the
only estimated model, the ambiguity-averse agent always considers a set of alternative models. The
reason is that it probably contains some misspecification errors in the model given by her estimation
technique.

This paper contributes to the literature on robust portfolio choice with limited attention in three
folds. First, we provide the optimal robust investment strategy. We use Girsanov’s theorem to change
the probability measures and construe probability distortion processes by the Radon-Nikodym deriva-
tive process. Based on the previous analysis, we use dynamic programming method to find the agent’s
robust optimal portfolio to maximize the expected utility of her terminal wealth and an entropy penalty
for alternative models. We derive the closed-form solution of the general case and that of the special
case as well. Wang et al. [27] also considered similar robust optimization problems, but we introduce
the classic concept of “limited attention” in behavioral finance to understand the effects of information.

Second, we estimate the risky investment share incurred by limited agent attention. In particular, we
find the risky investment share increases with the agent’s attention on the information about expected
return. When the agent pays more attention on the investment, the variance of the estimation return
becomes smaller, which means the estimation is more accurate. That is, when the agent is more
attentive to the information, she can process the signal in a relative accurate way. Although Branger et
al. [29] and Wang et al. [30] are also in a setting where returns are predictable, we used a news signal
to depict some of the information in the financial market, making the model more realistic.

Third, we estimate the robustness with selected alternative model based on a choosing worst-case
scenario. Interestingly, the more ambiguous agent will take into account more alternative models
around the reference model for choosing the worst-case scenario. Therefore, the expected return under
the worst-case scenario becomes lower, and the agent reduces her optimal demand for the stock. Fi-
nally, we find that both attention and ambiguity aversion of the agent impact the level and structure of
the optimal investment strategy and the worst-case distortion. Inspired by [10], we extend the problem
of investor attention on portfolio choice in robust optimization. Significantly, the analysis between the
general case solution and the special case solution provides a consistent conclusion with numerical
examples.
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The rest of this paper is organized as follows. In Section 2, we introduce the basic financial market
and characterize the agent’s attention to information. Optimization problem is presented in Section 3.
In Section 4, we derive the explicit solution by dynamic programming method. Numerical analysis is
given in Section 5. Finally, Section 6 concludes the paper with further remarks.

2. The model

This paper considers a financial market where trading takes place continuously and there are no
transaction costs or taxes. We define a continuous-time, fixed time horizon (T ≥ 0) model. The
uncertainty is represented by a complete probability space (Ω,F , {Ft}t≥0,P) where filtration {Ft}0≤t≤T

satisfying the usual conditions, i.e., {Ft}0≤t≤T is right continuous and P complete. Suppose that the
financial market consists of two tradable assets: a risk-free asset and a stock. The price process of the
risk-free asset satisfies the following ordinary differential equation

dS 0,t

S 0,t
= rdt, (2.1)

where the constant r represents the risk-free rate.
The price dynamics of the stock is given as follows

dS t

S t
= µtdt + σS dBS ,t, (2.2)

where σS > 0 is the volatility rate of the stock, BS ,t is a one-dimensional standard Brownian motion on
the filtered complete probability space. The drift µt in (2.2) is the unobservable stock return, which is
assumed to be random and follows an Ornstein-Uhlenbeck process

dµt = λµ(µ̄ − µt)dt + σµdBµ,t, (2.3)

where λµ > 0 denotes a mean-reversion rate, µ̄ is the long-run mean return rate, σµ > 0 is the volatility
parameter and Bµ,t is a standard Brownian motion which is independent of BS ,t.

In this setting, instead of having full information of the stock return, the agent needs to estimate
the unobservable return µt under her knowledge of the economy before deciding the robust investment
strategy. We allow that the agent can have opportunity to actively learn about the unknown return
and get access to a signal which represents the information from market. Following Peng [13] and
Kasa [12], we adopt the noisy-information specification and assume that the agent acquires a news
signal yt with the following dynamics

dyt = µtdt +
1
√

a
dBy,t, (2.4)

where By,t is a standard Brownian motion, which is independent of BS ,t and Bµ,t, and a > 0 represents
the agent’s attention on the news signal which is not infinite. Unlike the setting of a control variable
attention in Andrei and Hasler [10], we consider the parameter a as a constant for tractability and
ease of interpretation. However, we introduce model uncertainty in our model. Different agents have
different attention on the drift estimation due to different viewpoints of financial data. In general, a
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huge increase in financial literacy or investment interest always takes a lot of time and efforts and is
unlikely to happen in a short investment horizon. Hence we assume that this parameter takes its long-
term average. When she is attentive to news, the amount of information she gets is large. Therefore,
the signal is more accurate as the volatility of the signal is smaller, see as in [10]. When the agent is
inattentive to news, the signal that she acquires is inaccurate. Given this, we call a the agent’s limited
attention to news. To make optimal decisions, the agent is required to filter the value of µt in the
optimal way using the observed S t and yt.

2.1. Filter

In order to build the optimal problem and solve the optimal problem with unobservable return µt,
we infer an estimation parameter µ̂t using the Kalman-Bucy filtering method at first. Then we use µ̂t

instead of µt for the robust optimal investment problem in the following part of this paper.
We denote by µ̂t := E

[
µt

∣∣∣F S ,y
t

]
the estimated stock return and by γt := E

[
(µt − µ̂t)2

∣∣∣F S ,y
t

]
the

posterior variance. By Girsanov’s theorem, we have the following independent standard Brownian
motions under the agent’s filtration F S ,y

t generated by the stock price S and the signal y

dB̂S ,t =
(µt − µ̂t)dt

σS
+ dBS ,t, (2.5)

dB̂y,t =
(µt − µ̂t)dt

1
√

a

+ dBy,t. (2.6)

We note that these two innovation process B̂S ,t and B̂y,t are mutually independent Brownian motions.
Following Theorem 12.7 of Lipster and Shiryaev [31], the observable variables are S t and yt, the

unobservable variable is µt. The dynamics of observable variables can be written in the matrix form as
follows ( dS t

S t

dyt

)
=


(

0
0

)
︸︷︷︸
A0

+

(
1
1

)
︸︷︷︸
A1

µt

 dt +

(
0
0

)
︸︷︷︸
B1

dBµ,t +

(
σS 0
0 1

√
a

)
︸        ︷︷        ︸

B2

(
dBS ,t

dBy,t

)
,

and the dynamics of the unobservable variable

dµt =

( λµµ̄︸︷︷︸
a0

) + (−λµ)︸︷︷︸
a1

µt

 dt + σµ︸︷︷︸
b1

dBµ,t + (0, 0)︸︷︷︸
b2

(
dBS ,t

dBy,t

)
. (2.7)

Using the notations of Theorem 12.7 in [31], we obtain

b ◦ b := b1b
′
1 + b2b

′
2 = σ2

µ, (2.8)

B ◦ B := B1B
′
1 + B2B

′
2 =

(
σ2

S 0
0 1

a

)
, (2.9)

b ◦ B := b1B
′
1 + b2B

′
2 = (0, 0), (2.10)

and

[(b ◦ B) + γtA
′
1](B−1

2 )′ = (γt, γt)
( 1

σS
0

0
√

a

)
=

(
γt

σS
, γt
√

a
)
, (2.11)
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where the operator ◦ denotes the matrix multiplication and Σ′ denotes the transpose of a matrix Σ.
Then, according to Theorem 12.7 of Lipster and Shiryaev [31], the estimation of the stock return µ̂t

and the conditional variance γt can be written as

dµ̂t =
[
a0 + a1µ̂t

]
dt + [(b ◦ B) + γtA

′
1](B ◦ B)−1

[( dS t
S t

dyt

)
− (A0 +A1µ̂t) dt

]
, (2.12)

and

dγt

dt
= 2a1γt + b ◦ b − [(b ◦ B) + γtA

′
1](B−1

2 )′(B−1
2 )[(b ◦ B)′ + γtA1] (2.13)

Consequently, in our setting, the dynamics of µ̂t and γt are given as

dµ̂t = λµ(µ̄ − µ̂t)dt +
γt

σS
dB̂S ,t + γt

√
adB̂y,t, (2.14)

dγt

dt
= −2λµγt + σ2

µ − (
γ2

t

σ2
S

+ γ2
t a). (2.15)

As Eq (2.14) shown, there are two sources of information: realized stock return and changes in the
news signal. The agent divides stochastic weights into these two sources of information. Shocks to the
stock price and signal impact the agent’s estimate.

We follow Branger et al. [32] to adopt the long-run level of γ since the variance of the estimation is
always a deterministic function of time. For simplicity, we assume that it has already converged to a
constant. So we have dγt

dt = 0, which means *

γ =
−λµσ

2
S +

√
λ2
µσ

4
S + (1 + aσ2

S )σ2
µσ

2
S

1 + aσ2
S

> 0. (2.16)

Finally the dynamics of the state variables after filter becomes

dS t

S t
= µ̂tdt + σS dB̂S ,t, (2.17)

dµ̂t = λµ(µ̄ − µ̂t)dt +
γ

σS
dB̂S ,t + γ

√
adB̂y,t, (2.18)

2.2. Robustness

Basing on the previous inferring, the agent could have a reference model P of the financial market.
But this paper focuses on an ambiguity-averse agent who does not have full confidence in her reference
model and has to take into account a range of possible alternative models. Because of the fear of risk
brought by uncertainty, she chooses to maximize her expected utility in a worst case scenario.

*We only look at the positive root due to the variable γ representing the meaning of variance.
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As in literature, the agent can define the alternative models by a class of probability measures which
are equivalent to P: Q := {Q | Q ∼ P}, such that, for eachQ ∈ Q, there exists a progressively measurable
process θt which can be referred as the following probability distortion process

dQ
dP

∣∣∣∣∣
F S ,y

t

= Σθt , (2.19)

where Σθt = exp{−1
2

∫ t

0
θ2
τdτ +

∫ t

0
θτdB̂S ,τ}.

We assume θt satisfies Novikov’s condition EP
[
exp

{∫ T

0
1
2θ

2
τdτ

}]
< ∞. Then Σθt is a P-martingale

with filtration {F S ,y
t }0≤t≤T .

Furthermore, according to Girsanov’s theorem, the following stochastic process BQS ,t is a one-
dimensional standard Brownian motion under the alternative measure Q,

dBQS ,t = dB̂S ,t − θtdt.

The dynamics of the state variables under Q becomes

dS t

S t
= (µ̂t + σS θt)dt + σS dBQS ,t, (2.20)

dµ̂t =
[
λµ(µ̄ − µ̂t) +

γ

σS
θt
]
dt +

γ

σS
dBQS ,t + γ

√
adB̂y,t. (2.21)

2.3. Dynamics of wealth

We assume the portfolio choice πt is the proportion of the agent’s wealth invested on the stock at
time t. So we have the following wealth process

dWπ
t = Wπ

t

[
(1 − πt)

dS 0,t

S 0,t
+ πt

dS t

S t

]
= Wπ

t

[
(1 − πt)rdt + πt(µ̂t + σS θt)dt + πtσS dBQS ,t

]
= Wπ

t rdt + Wπ
t πt(µ̂t + σS θt − r)dt + Wπ

t πtσS dBQS ,t. (2.22)

3. Optimization problem

The agent is looking for an optimal strategy to maximize the expected utility of her terminal wealth
at the given horizon T . We assume the agent has a power utility with the relative risk aversion coeffi-
cient α > 1 as follows

U(w) =
w1−α

1 − α
. (3.1)

The agent is ambiguity-averse and seeks for the robust strategy. In our setting, we assume that
she makes the optimal decision after getting the worst-case probability measure. That is, the drift
adjustment θt is firstly chosen to minimize the sum of the expected terminal payoff and an entropy
penalty. The relative entropy penalty exists for describing the difference between probability measures
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P and the alternative measures Q. Since we only have the probability measure P for reference, any
model deviation will be penalized. Specifically, we have the following objective function

V(t,w, µ̂) = sup
π

inf
θ

EQ
[
(Wπ

T )1−α

1 − α
+

∫ T

t

θ2
s

2Ψ(s,Wπ
s , µ̂s)

ds
∣∣∣∣∣Wπ

t = w, µ̂t = µ̂

]
,

(3.2)

subject to the wealth constraint (2.22) and the terminal condition V(T,w, µ̂) = w1−α

1−α .
In optimization problem (3.2), the expected utility is measured under the alternative model Q. The

penalty term is characterized by the scaled relative entropy which penalizes the alternative models
deviated from the reference model P. For analytical tractability, we adopt the homothetic robustness
motivated in [33] and [34] to capture the agent’s robustness preference and make following assumption

Ψ(t,w, µ̂) =
β

(1 − α)V(t,w, µ̂)
, (3.3)

where β > 0 is the ambiguity-aversion coefficient describing the agent’s attitude towards model uncer-
tainty. The term 1

V(t,w,µ̂) in (3.3) can be thought as a normalization factor that maintains the consistency
of unit between the relative entropy and utility, which means that the entropy penalty has the same unit
with the value function, see the homothetic robustness approach as in [33]. Moreover, scaling β by the
value function allows us to find an explicit solution to our optimization problem. Notice that in the
limiting case of β = 0, the entropy penalty term in (3.2) is equal to +∞ unless θ ≡ 0 and the robust
utility maximization problem is reduced to the classical one, meaning the agent is not ambiguity-averse
at all; in the other limiting case of β = +∞, the entropy penalty term in (3.2) is equal to 0 and the worst
case is chosen among all possible models in Q, meaning the agent is extremely ambiguity-averse. The
larger the value of β, the more alternative models inQ are considered by the agent to find the worst-case
scenario.

4. HJB equation

According to the dynamic programming principle, we obtain the following Hamilton-Jacobi-
Bellman (HJB) equation for the value function

0 = sup
π

inf
θ
{Vt + Vww[r + π(µ̂ + σS θ − r)] + Vµ̂[λµ(µ̄ − µ̂) +

γ

σS
θ]

+
1
2

Vwww2σ2
Sπ

2 +
1
2

Vµ̂µ̂(
γ2

σ2
S

+ γ2a) + wγπVwµ̂ +
1

2Ψ
θ2}, (4.1)

with the boundary condition V(T,w, µ̂) = w1−α

1−α .
By the first order condition for the infimum, we obtain the worst-case scenario

θ∗ = −Ψ(VwwσSπ + Vµ̂

γ

σS
). (4.2)

Substituting (4.2) into (4.1), we have

0 = sup
π

{
Vt + Vww

[
r + π

[
µ̂ − σS Ψ

(
VwwσSπ + Vµ̂

γ

σS

)
− r

]]
Electronic Research Archive Volume 31, Issue 7, 3666–3687.
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+Vµ̂

[
λµ

(
µ̄ − µ̂

)
−

γ

σS
Ψ
(
VwwσSπ + Vµ̂

γ

σS

)]
+

1
2

Vwww2σ2
Sπ

2 +
1
2

Vµ̂µ̂

( γ2

σ2
S

+ γ2a
)

+ wγπVwµ̂ +
1
2

Ψ
(
VwwσSπ + Vµ̂

γ

σS

)2
}
. (4.3)

Again, by the first order condition for the supremum, we get

π∗ =
Vwwµ̂ − Vwwr + Vwµ̂wγ − VwVµ̂Ψγw

ΨV2
ww2σ2

S − Vwww2σ2
S

. (4.4)

Plugging the above formulas for θ∗ and π∗ into the HJB equation (4.1) and rearranging the terms,
we have

0 = Vt + Vwwr + Vµ̂[λµ(µ̄ − µ̂)] +
1
2

Vµ̂µ̂(
γ2

σ2
S

+ γ2a) −
1
2

V2
µ̂Ψ

γ2

σ2
S

+
[Vwµ̂ − Vwr + Vwµ̂γ − VwVµ̂Ψγ]2

−2(Vww − V2
wΨ)σ2

S

. (4.5)

We conjecture a solution to the HJB equation (4.1), which has the following form

V(t,w, µ̂) =
w1−α

1 − α
g(t, µ̂),

where g(t, µ̂) will be determined later. Because of the boundary condition V(T,w, µ̂) = w1−α

1−α , we have
immediately g(T, µ̂) = 1. Then taking derivatives of V with respect to the different variables yields

Vt =
w1−α

1 − α
gt, Vw = w−αg, Vµ̂ =

w1−α

1 − α
gµ̂,

Vww = −αw−α−1g, Vµ̂µ̂ =
w1−α

1 − α
gµ̂µ̂, Vwµ̂ = w−αgµ̂.

Substituting the above derivatives of V in (4.5) implies

0 =
1

1 − α
gt + gr +

1
1 − α

gµ̂λµ(µ̄ − µ̂) +
1

2(1 − α)
gµ̂µ̂

( γ2

σ2
S

+ aγ2)
−

g2
µ̂γ

2β

2(1 − α)2σ2
S g

+
[gµ̂ − gr + gµ̂γ −

gµ̂βγ
1−α ]2

2σ2
S g(α + β)

. (4.6)

Since we already have the boundary condition g(T, µ̂) = 1, we propose a further ansatz: we assume
that g(t, µ̂) has the following exponential form

g(t, µ̂) = e
1
2 g1(t)µ̂2+g2(t)µ̂+g3(t), (4.7)

and the corresponding boundary conditions are g1(T ) = 0, g2(T ) = 0, g3(T ) = 0.
Replacing the derivatives of g by those of g1, g2, g3 in the Eq (4.6)

gt = g(
1
2

g′1µ̂
2 + g′2µ̂ + g′3), gµ̂ = g(g1µ̂ + g2), gµ̂µ̂ = g(g1µ̂ + g2)2 + gg1,
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we derive the following equation

0 =
1
2

g′1µ̂
2 + g′2µ̂ + g′3 + (1 − α)r + λµ(g1µ̂ + g2)(µ̄ − µ̂)

+
1
2

[(g1µ̂ + g2)2 + g1](
γ2

σ2
S

+ aγ2) −
γ2β(g1µ̂ + g2)2

2(1 − α)σ2
S

+
[µ̂ − r + (g1µ̂ + g2)γ − (g1µ̂+g2)βγ

1−α ]2(1 − α)

2σ2
S (α + β)

. (4.8)

For the above equation holding true, the coefficients before the quadratic term µ̂2, the term µ̂ and
the constant term 1 must be respectively equal to 0. Thus we obtain the following system of ODEs for
g1, g2 and g3

0 = g′1 + 2
[
1
2

(
γ2

σ2
S

+ aγ2) −
βγ2

2(1 − α)σ2
S

+
(1 − α − β)2γ2

2σ2
S (α + β)(1 − α)

]
g2

1 + 2
[
(1 − α − β)γ
(α + β)σ2

S

− λµ

]
g1 +

1 − α
(α + β)σ2

S

,

0 = g′2 +

[
(1 − α − β)γ
(α + β)σ2

S

− λµ + (
γ2

σ2
S

+ aγ2 −
βγ2

(1 − α)σ2
S

+
(1 − α − β)2γ2

σ2
S (α + β)(1 − α)

)g1

]
g2

+

[
λµµ̄ −

(1 − α − β)γ
σ2

S (α + β)
r
]

g1 −
(1 − α)r

(α + β)σ2
S

,

0 = g′3 +

[
1
2

(
γ2

σ2
S

+ aγ2) −
βγ2

2(1 − α)σ2
S

+
(1 − α − β)2γ2

2σ2
S (α + β)(1 − α)

]
g2

2 +

[
λµµ̄ −

(1 − α − β)γ
σ2

S (α + β)
r
]

g2

+
1
2

(
γ2

σ2
S

+ aγ2)g1 + (1 − α)r +
(1 − α)r2

2(α + β)σ2
S

.

To simplify the notation, we introduce the following auxiliary constants

a1 =
1
2

(
γ2

σ2
S

+ aγ2), a2 = −
βγ2

2(1 − α)σ2
S

+
(1 − α − β)2γ2

2σ2
S (α + β)(1 − α)

, a3 =
(1 − α − β)γ
(α + β)σ2

S

− λµ,

a4 =
1 − α

2(α + β)σ2
S

, a5 = λµµ̄ −
(1 − α − β)γ
σ2

S (α + β)
r, a6 = (1 − α)r +

(1 − α)r2

2(α + β)σ2
S

,

4 = 4a2
3 − 16a4(a1 + a2), k1 = −a3 −

√
4

2
, k2 = −a3 +

√
4

2
.

Then the system of ODEs becomes

0 = g′1 + 2(a1 + a2)g2
1 + 2a3g1 + 2a4,

0 = g′2 + [a3 + 2(a1 + a2)g1]g2 + a5g1 − 2a4r,

0 = g′3 + (a1 + a2)g2
2 + a5g2 + a1g1 + a6,

with the terminal conditions g1(T ) = 0, g2(T ) = 0, g3(T ) = 0.
Notice that g1 satisfies a Riccati equation which admits an explicit solution. We can then solve

explicitly the system of ODEs and write the solution with the model parameters

g1(t) =
k1k2(1 − e(t−T )

√
4)

2(a1 + a2)(k2 − k1e(t−T )
√
4)
, (4.9)
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g2(t) = e
∫ T

t [a3+2(a1+a2)g1(τ)] dτ
∫ T

t
[a5g1(s) − 2a4r]e−

∫ T
s [a3+2(a1+a2)g1(τ)] dτ ds, (4.10)

g3(t) =

∫ T

t
[(a1 + a2)g2

2(s) + a5g2(s) + a1g1(s) + a6] ds. (4.11)

With the above solution, we can write the value function explicitly as follows

V(t,w, µ̂) =
w1−α

1 − α
e

1
2 g1(t)µ̂2+g2(t)µ̂+g3(t). (4.12)

Taking derivatives, we obtain, in explicit form, the optimal robust portfolio choice and the worst-
case scenario respectively

π∗ =
µ̂ − r +

1−α−β
1−α (g1µ̂ + g2)γ

(α + β)σ2
S

=
µ̂ + 1

1−α (g1µ̂ + g2)γ − r

(α + β)σ2
S

−

1
1−α (g1µ̂ + g2)γ

σ2
S

, (4.13)

θ∗ = −β

 µ̂ − r + 1
1−α (g1µ̂ + g2)γ

(α + β)σ2
S

 , (4.14)

where γ is defined in (2.16).
We summarize the previous results in the following theorem.

Theorem 4.1. The value function V(t,w, µ̂) of the robust optimal investment problem (3.2) is given by
(4.12), the robust optimal strategy π∗ is given by (4.13) and the worst-case scenario theta∗ is defined
by (4.14).

A special case without the agent’s attention is presented in the Section 5 to illustrate the difference
between these two cases.

We provide some economic interpretations to the robust optimal strategy as well as the worst-case
scenario. For the optimal portfolio choice in stock (4.13), there are two parts. The first part of π∗ is the
myopic investment strategy in stock, which is the estimated stock’s excess return over the product of
the stock variance and the adjusted risk aversion coefficient. In the presence of the model uncertainty,
the agent’s risk aversion coefficient is increased from α to α + β, as shown in the denominator of the
investment part. The second part of π∗ is to hedge the estimation risk of the unobservable expected
return rate. The hedging part does not depend on the agent’s risk aversion. Since β > 0, the uncertainty
about the true model drives the agent to invest less in the stock.

As for the worst case scenario θ∗, it is negatively related to the myopic investment in stock. If
the agent holds a long investment position in stock, then θ∗ is negative. The more is the agent’s long
investment position, the more negative is θ∗. Similarly, if the agent holds a short investment position
in stock, then θ∗ is positive. The more is the agent’s short investment position, the more positive is θ∗.
Intuitively, for the same value of ambiguity-aversion coefficient β, the agent is more concerned with
the model uncertainty when her investment position in stock is more important. In other words, she
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does not care about the model uncertainty at all if she invests nothing in the stock. Furthermore, the
larger is the agent’s ambiguity-aversion coefficient β, with all other parameters remaining the same,
the larger is the absolution value of θ∗, which means the worst-case scenario deviating further from the
reference model.

In conclusion, the agent’s limited attention to news a affects the robust optimal strategies and the
worst-case scenario, which is presented in functions g1, g2. The agent’s attention about the additional
information also makes the variance of the estimation return lower. We will see from the numerical
examples that the larger is a, the more is the agent’s position in the stock.

5. Special case of no additional information

In this section, we present a brief description of the special case. We assume that the agent does
not have any attention on the additional information or she even cannot have this very important addi-
tional information. Then the problem is reduced to a classical optimal investment problem with non-
observable return. A letter with superscript A denotes the corresponding variable or function when the
parameter a = 0 in the general case.

Similarly, we can obtain the following results by filter theory and dynamic programming

VA(t,w, µ̂) =
w1−α

1 − α
e

1
2 gA

1 (t)µ̂2+gA
2 (t)µ̂+gA

3 (t),

πA∗ =
µ̂ − r +

1−α−β
1−α (gA

1 µ̂ + gA
2 )γA

(α + β)σ2
S

=
µ̂ + 1

1−α (gA
1 µ̂ + gA

2 )γA − r

(α + β)σ2
S

−

1
1−α (gA

1 µ̂ + gA
2 )γA

σ2
S

, (5.1)

θA∗ = −β

 µ̂ − r + 1
1−α (gA

1 µ̂ + gA
2 )γA

(α + β)σ2
S

 , (5.2)

where

γA = −λµσ
2
S +

√
λ2
µσ

4
S + σ2

µσ
2
S . (5.3)

gA
1 (t) =

kA
1 kA

2 (1 − e(t−T )
√
4)

2(aA
1 + aA

2 )(kA
2 − kA

1 e(t−T )
√
4)
, (5.4)

gA
2 (t) = e

∫ T
t [aA

3 +2(aA
1 +aA

2 )gA
1 (τ)] dτ

∫ T

t
[aA

5 gA
1 (s) − 2aA

4 r]e−
∫ T

s [aA
3 +2(aA

1 +aA
2 )gA

1 (τ)] dτ ds, (5.5)

gA
3 (t) =

∫ T

t
[(aA

1 + aA
2 )(gA

2 )2(s) + aA
5 gA

2 (s) + aA
1 gA

1 (s) + aA
6 ] ds. (5.6)

and

aA
1 =

1
2

(γA)2

σ2
S

, aA
2 = −

β(γA)2

2(1 − α)σ2
S

+
(1 − α − β)2(γA)2

2σ2
S (α + β)(1 − α)

, aA
3 =

(1 − α − β)γA

(α + β)σ2
S

− λµ,
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aA
4 =

1 − α
2(α + β)σ2

S

, aA
5 = λµµ̄ −

(1 − α − β)γA

σ2
S (α + β)

r, aA
6 = (1 − α)r +

(1 − α)r2

2(α + β)σ2
S

,

4A = 4(aA
3 )2 − 16aA

4 (aA
1 + aA

2 ), kA
1 = −aA

3 −

√
4A

2
, kA

2 = −aA
3 +

√
4A

2
.

Comparing to the general case with limited attention, there are several interesting observations listed
as follows. From Eqs (4.13) and (5.1), we can not easily find the difference between the strategy of the
general case and that of the special case. And the difference mainly depends on the functions g1 and
gA

1 , g2 and gA
2 , whose relations are not obvious. In fact, the special case is the general case with the

condition a = 0. The relation is clear in Figure 1 in the next section, the special case corresponds to the
smallest proportion in the stock. That is, when the agent does not have the additional information or
she does not pay attention on this key information, she takes the most conservative strategy. Checking
Figures 6 and 7 in the next section, the agent without any attention on the additional information will
adopt the smallest worst-case scenario and have largest variance of the estimation. Moreover, we can
observe that γA > γ for a > 0. This means that a positive attention on the additional signal can reduce
the variance of the estimation for the stock return, thus improve the accuracy of the estimation.

6. Numerical examples

In this section, we analyze how the optimal strategy of the robust portfolio choice depends on the
model parameters and how a change of the model parameter affects the agent’s investment in the stock.
First, we provide the basic values to the parameters see as in Table 1 and study the optimal strategy
at time 0 for simplicity. The parameter µ̂t is assumed to be its long-run level m. The basic values of
parameters are mainly referred to [10] and [27].

Table 1. Basic values of parameters.

σS a µ̂ λµ µ̄ σµ r α β T
0.4 2 0.28 0.18 0.38 0.00747 0.04 2 1 6

Figure 1 shows the effects of the limited attention a and the risk aversion coefficient α on the robust
optimal strategy in the stock, π∗. From Figure 1, we find that π∗ increases along with the limited
attention a and decreases with respect to the risk aversion coefficient α. When the agent pays more
attention to the news, that is a increases, she obtains a more accurate estimation of the stock return,
then she is confident enough to her investment action and increase the proportion of stock investment.
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Figure 1. Effects of parameters a and α on π∗.
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Figure 2. Effects of parameters λµ and σµ on π∗.

We now turn to the effects of the stock return’s mean-reversion rate λµ and volatility σµ on the robust
optimal investment strategy in the stock π∗, which is depicted in Figure 2. As λµ becomes larger, the
stock return comes back to its long-term average faster, there is less uncertainty, and the agent increases
her investment in the stock. Similarly, as σµ decreases, the stock return is less volatile and the agent
increases her investment in the stock.
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T
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Figure 3. Effects of parameters T and µ̂ with the relative smaller value on π∗.

Figure 3 shows the effects of the investment horizon T and the estimated stock return µ̂ on the
robust optimal investment strategy in the stock π∗. When the investment horizon T increases, the agent
is more uncertain about her wealth at time T and decreased her investment in stock. As µ̂ becomes
larger, the agent increases naturally her investment in the stock.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

S

0

0.2

0.4

0.6

0.8

1

1.2

1.4
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1.8

*

=2

=3.5

=5

Figure 4. Effects of parameters σS and α on π∗.

Figure 4 reveals the effects of the stock volatility σS and the risk aversion coefficient α on the robust
optimal strategy in the stock, π∗. From Figure 4, we find that π∗ decreases along with the stock volatility
σS and decreases with respect to α. When the stock is more volatile, that is when σS increases, the
agent invests less in stock.
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Figure 5. Effects of parameters β and r on π∗.

Figure 5 illustrates the effect of the agent’s ambiguity aversion coefficient β and the risk-free rate r
on the robust optimal investment strategy in the stock π∗. As parameter β becomes larger, the agent is
more ambiguity averse, and hence more possible models around the reference model will be considered
for the worst-case scenario candidates. In this way, the expected return under the worst-case scenario
becomes lower, the agent scales down her strategy in the stock. When the agent is not that ambiguity-
averse, she will be more confident on her understanding of the stock and her investment action and
consequently will increase the proportion of stock investment. Naturally, when the risk-free rate r is
higher, the agent increases her investment in the risk-free asset and decreases in the stock.
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10
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Figure 6. Effects of parameter a on γ.

Figure 6 shows that more attention makes γ, the variance of the estimation, smaller. This means
that when the agent is more attentive to the information, she can process the signal in a more accurate
way. We can see that when a = 0, i.e., in our special case, the investor considers the variance of
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the estimation to be larger. Since the investor cannot obtain additional information in this case, the
estimate is not accurate enough.
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Figure 7. Effects of parameters a and α on θ∗.
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Figure 8. Effects of parameters β and r on θ∗.

Figure 7 illustrates the effect of the agent’s attention a and the risk aversion coefficient α on the
worst-case scenario θ∗. As shown in (2.20), the stock’s expected return rate under the worst-case
scenario is µ̂t + σS θ

∗
t . With the parameters values in our numerical example, θ∗ is negative while

µ̂ + σS θ
∗ is positive. µ̂ is actually the expected return rate under the reference model, a negative value

θ∗ means the worst-case expected return rate is lower than the reference model. The smaller is the
absolute value of θ∗, the closer is the worst-case expected return rate to the reference model. Figure
7 shows that when the agent’s attention a is higher, she is more confident on her estimation. When
a equals 0, the value of θ∗ is very small, which means that the investor is very ambiguity averse, and
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correspondingly, the worst-case model deviates further from the reference model. Thus the worst-case
scenario deviates less from the reference model, and the worst-case expected return rate is better, which
is consistent with the higher stock proportion for a higher attention in Figure 1. Regarding the relation
to the risk aversion coefficient α, the higher is the α, the less the agent invests in the stock, the better is
the worst-case expected return rate.

Figure 8 displays the effect of the agent’s ambiguity aversion coefficient β and the risk-free rate r
on the worst-case scenario θ∗. When β = 0, we can easily see from the Figure 8 that the worst-case
scenario θ∗ equals 0 which means the agent is ambiguity neural and she does not doubt her reference
model. So the probability measure does not change at all. For higher levels of ambiguity aversion,
the worst-case scenario θ∗ is lower. The term µ̂t + σS θ

∗
t becomes smaller recalling (2.20) which means

the lower stock’s expected return rate under the worst-case scenario. In addition, the absolute value
of θ∗ increases in this case, the worst-case expected return rate is far away from the reference model.
Therefore, she has to decrease her investment in the stock to follow a more conservative strategy corre-
sponding to Figure 5. Obviously, the worst-case scenario θ∗ is growing as the risk-free rate increases.

7. Conclusions and future directions

In this paper, we study the optimal strategies for an ambiguity-averse agent in the financial market
with the agent’s limited attention. Specifically, the agent can obtain an additional information related to
the unobservable stock return to determine optimal decisions. Technically, this useful information will
be presented as a signal form in the model. The optimization procedure can be decomposed into three
stages. We firstly apply the standard Kalman filter to estimate optimal evolution of the stock return
and obtain the approximating model. Then we regard this approximating model as the reference model
for the robust optimal control problem. With the corresponding penalty function for alterative models,
we finally find the worst-case scenario by first order condition and derive the closed-form solution
of the robust optimization problem by stochastic dynamic programming. This study shows that both
agent’s attention and ambiguity aversion impact the levels and structures of the optimal strategy and the
worst-case scenario, even the variance of the estimation return. We also presented a special case and
discuss the difference between the general model with limited attention and the special case without
considering the attention to highlight the importance of the agent’s attention.

In the future, we consider more general settings. For example, instead of assuming a constant level
of attention from the investor, we can introduce a cost function that is a deterministic function of the
investor’s attention, which means that a certain cost must be incurred to obtain higher levels of attention
on the information. The concept of an investor’s attention can also be viewed as a control that the agent
can choose based on a certain cost. However, the optimal control problem will become significantly
more complex as we need to search for not only the optimal strategy but also the optimal attention to
information [35].

Empirical studies can also be conducted on the information processing cost and the investment
strategies to validate our model and to understand the implications of technology developments on
investment behaviour as well as on real economy [36–40].

Furthermore, we can also consider the topic of an investor’s attention allocation across different
financial assets. All these attempts allow us to explore how the ambiguity-aversion coefficient interacts
with attention, which has significant economic implications. Moreover, by considering different utility
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functions or mean-variance criteria, we can analyze how attention affects the agent’s decision-making
process in various settings.

Another relevant area of study is the data-driven α-robust portfolio optimization method, as pre-
sented in [41]. By incorporating limited attention, we can further improve the performance of this
approach.

In addition to portfolio optimization, attention can also play a crucial role in sustainable investment.
Several studies have explored the intersection of limited attention and sustainable investment [42–45].
By considering both factors, we can devise more effective and ethical investment strategies that address
both financial and social concerns.

However, incorporating limited attention into these models makes them more complex to solve.
To address this challenges, we can adopt innovative mathematic methods, the martingale approach, or
backward stochastic differential equations to efficiently solve these models. These methods allow us to
take into account limited attention while maintaining the accuracy and validity of our results.
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