Amid the impact of COVID-19, the public's willingness to travel has changed, which has had a fundamental impact on the ridership of urban public transport. Usually, travel willingness is mainly analyzed by questionnaire survey, but it needs to reflect the accurate psychological perception of the public entirely. Based on Weibo text data, this paper used natural language processing technology to quantify the public's willingness to travel in the post-COVID-19 era. First, web crawler technology was used to collect microblog text data, which will discuss COVID-19 and travel at the same time. Then, based on the Naive Bayes classification algorithm, travel sentiment analysis was carried out on the data, and the relationship between public travel willingness and urban public transport ridership was analyzed by Spearman correlation analysis. Finally, the LDA topic model was used to conduct content topic research on microblog text data during and after COVID-19. The results showed that the mean values of compelling travel emotion were -0.8197 and -0.0640 during and after COVID-19, respectively. The willingness of the public to travel directly affects the ridership of urban public transport. Compared with the COVID-19 period, the public's fear of travel infection in the post-COVID-19 era has significantly improved, but it still exists. The public pays more attention to the level of COVID-19 prevention and control and the length of travel time on public transport.
Citation: Yazao Yang, Haodong Tang, Tangzheng Weng. Changes in public travel willingness in the post-COVID-19 era: Evidence from social network data[J]. Electronic Research Archive, 2023, 31(7): 3688-3703. doi: 10.3934/era.2023187
[1] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[2] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[3] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for $ n $-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[4] | Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via $ n $-polynomial exponential type $ s $-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787 |
[5] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[6] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[7] | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . $ (m, n) $-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275 |
[8] | Ahmet Ocak Akdemir, Saad Ihsan Butt, Muhammad Nadeem, Maria Alessandra Ragusa . Some new integral inequalities for a general variant of polynomial convex functions. AIMS Mathematics, 2022, 7(12): 20461-20489. doi: 10.3934/math.20221121 |
[9] | Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for $ s $-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310 |
[10] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
Amid the impact of COVID-19, the public's willingness to travel has changed, which has had a fundamental impact on the ridership of urban public transport. Usually, travel willingness is mainly analyzed by questionnaire survey, but it needs to reflect the accurate psychological perception of the public entirely. Based on Weibo text data, this paper used natural language processing technology to quantify the public's willingness to travel in the post-COVID-19 era. First, web crawler technology was used to collect microblog text data, which will discuss COVID-19 and travel at the same time. Then, based on the Naive Bayes classification algorithm, travel sentiment analysis was carried out on the data, and the relationship between public travel willingness and urban public transport ridership was analyzed by Spearman correlation analysis. Finally, the LDA topic model was used to conduct content topic research on microblog text data during and after COVID-19. The results showed that the mean values of compelling travel emotion were -0.8197 and -0.0640 during and after COVID-19, respectively. The willingness of the public to travel directly affects the ridership of urban public transport. Compared with the COVID-19 period, the public's fear of travel infection in the post-COVID-19 era has significantly improved, but it still exists. The public pays more attention to the level of COVID-19 prevention and control and the length of travel time on public transport.
In recent years, convexity theory has gained special attention by many researchers because of it engrossing properties and expedient characterizations. It has many applications in fields like biology, numerical analysis and statistics (see [1,2,3,4]). Mathematical inequalities are extensively studied with all type of convex functions (see[1,3,11,13,14,16]). One of the fundamental inequality is Hermite-Hadamard inequality. It has been discussed via different types of convexities and became the center of attention for many researchers. Recently, in 2016, Khan et al. have discussed generalizations of Hermite-Hadamard type for MT-convex functions [26]. In 2017, Khan et al. studied some new inequalities of Hermite-Hadamard types [27]. In 2019, Khurshid et al. have utilized conformable fractional integrals via preinvex functions [28]. In 2020, Khan et al. have discussed Hermite-Hadamard type inequalities via quantum calculus involving green function [29], Mohammed et al. have established a new version of Hermite-Hadamard inequality for Riemann-Liouville fractional integrals [30], Han et al. used fractional integral to generalize Hermite-Hadamard inequality for convex functions [31], Zhao et al. utilized harmonically convex functions to generalized fractional integral inequalities of Hermite-Hdamrd type [32], Awan et al. presented new inequalities of Hermite-Hdamard type for n-polynomial harmonically convex functions [33]. In 2022, Khan et al. introduced some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex functions via fuzzy-interval-valued settings [34]. This reflects the importance of Hermite Hadamard type inequalities among current research.
In [9], s-convex function is given as,
Definition 1.1. A real valued function χ is called s-convex function on R, if
χ(ςρ+(1−ς)γ)≤ςsχ(ρ)+(1−ς)sχ(γ), |
for each ρ,γ∈R and ς∈(0,1) where s∈(0,1].
In [10], m-convexity is discussed as,
Definition 1.2. A real valued function χ defined on [0,b] is said to be a m-convex function for m∈[0,1], if
χ(ςρ+m(1−ς)γ)≤ςχ(ρ)+m(1−ς)χ(γ), |
holds for all ρ,γ∈[0,b] and ς∈[0,1].
(s,m)-convexity in [17] is discussed as,
Definition 1.3. A function χ:[0,b]⟶R, b>0 is said to be a (s,m)-convex function in the second sense where s,m∈(0,1]2, if
χ(ςρ+m(1−ς)γ)≤ςsχ(ρ)+m(1−ς)sχ(γ), |
holds provided that all ρ,γ∈[0,b] and ς∈[0,1].
Equivalent definition for (s,m)–convex functions:
Let ρ,α,γ∈[0,b], ρ<α<γ
χ(α)≤(γ−αγ−ρ)sχ(ρ)+m(α−ργ−ρ)sχ(γ). | (1.1) |
Hölder-İşcan Inequality [5]:
Let p>1, χ and ψ be real valued functions defined on [ρ,γ] and |χ|p,|ψ|q are integrable functions on interval [ρ,γ]
∫γρ|χ(ω)ψ(ω)|dω≤1γ−ρ(∫γρ(γ−ω)|χ(ω)|pdω)1p(∫γρ(γ−ω)|ψ(ω)|qdω)1q+1γ−ρ(∫γρ(ω−ρ)|χ(ω)|pdω)1p(∫γρ(ω−ρ)|ψ(ω)|qdω)1q, | (1.2) |
where 1p+1q=1.
Following lemma is useful to obtain our main results.
Lemma 1.4. [8] For n∈N, let χ:U⊆R⟶R be n-times differentiable mapping on U∘, where ρ,γ∈U∘, ρ<γ and χn∈L[ρ,γ], we have following identity
n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω=(−1)n+1n!γ∫ρωnχ(n)(ω)dω, | (1.3) |
where an empty set is understood to be nil.
In this paper, Hölder-İşcan inequality is used to modify inequalities involving functions having s-convex or s-concave derivatives at certain powers. The purpose of this paper is to establish some generalized inequalities for n-times differentiable (s,m)-convex functions. Applications of these inequalities to means are also discussed. Means are defined as,
Let 0<ρ<γ,
A(ρ,γ)=ρ+γ2, |
G(ρ,γ)=√ργ, |
Lp(ρ,γ)=(γp+1−ρp+1(p+1)(γ−ρ))1p, |
where p≠0,−1 and ρ≠γ.
Theorem 2.1. For any positive integer n, let χ:U⊆(0,∞)→R be n-times differentiable mapping on U∘, where ρ,γ∈U∘ with ρ<γ. If χ(n)∈L[ρ,γ] and |χ(n)|q for q>1 is (s,m)-convex on interval [ρ,γ] then
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−μ∫ρχ(ω)dω|≤1n!(γ−ρ)1q([γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p[|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2)]1q+[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p[|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2)]1q), | (2.1) |
where 1p+1q=1.
Proof. Since |χn|q is (s,m)-convex by using inequality (1.1) for ρ<ω<γ, using Lemma 1.4 and Hölder-Işcan inequality (1.2),
|χn(ω)|q≤|χn(ω−ργ−ργ+mγ−ωγ−ρρ)|q≤(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q,|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1n!γ∫ρωn|χ(n)(ω)|dω,≤1n!1γ−ρ{(γ∫ρ(γ−ω)ωnpdω)1p(γ∫ρ(γ−ω)|χ(n)(ω)|qdω)1q+(γ∫ρ(ω−ρ)ωnpdω)1p(γ∫ρ(ω−ρ)|χ(n)(ω)|qdω)1q},≤1n!1γ−ρ(γ∫ρ(γ−ω)ωnpdω)1p(γ∫ρ(γ−ω)[(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q]dω)1q+1n!1γ−ρ(γ∫ρ(ω−ρ)ωnpdω)1p(γ∫ρ(ω−ρ)[(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q]dω)1q, | (2.2) |
Let
I1=[γ∫ρ(γ−ω)ωnpdω]1p=[γ∫ρ(γωnp−ωnp+1)dω]1p=(γ−ρ)1p[γ(γnp+1−ρnp+1(γ−ρ)(np+1))−(γnp+2−ρnp+2(γ−ρ)(np+2))]1p=(γ−ρ)1p[γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p, |
I2=[γ∫ρ(ω−ρ)ωnpdt]1p=[γ∫ρ(ωnp+1−ρωnp)dω]1p=(γ−ρ)1p[(γnp+2−ρnp+2(γ−ρ)(np+2))−ρ(γnp+1−ρnp+1(γ−ρ)(np+1))]1p=(γ−ρ)1p[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p, |
I3=γ∫ρ(γ−ω)(ω−ρ)sdω=(γ−ω)(ω−ρ)s+1s+1|γρ+γ∫ρ(ω−ρ)s+1s+1dω=(γ−ρ)s+2(s+1)(s+2), |
I4=γ∫ρ(γ−ω)s+1dω=(γ−ρ)s+2s+2,I5=γ∫ρ(ω−ρ)s+1dω=(γ−ρ)s+2s+2,I6=γ∫ρ(ω−ρ)(γ−ω)sdω=(ω−ρ)(γ−ω)s+1(s+1)|γρ+γ∫ρ(γ−ω)s+1(s+1)dω=(γ−ρ)s+2(s+1)(s+2). |
Substituting integrals I1,I2,I3,I4,I5,I6 in inequality (2.2) we have,
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1n!(γ−ρ)((γ−ρ)1p[γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p[(γ−ρ)2(|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2))]1q+(γ−ρ)1p[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p[(γ−ρ)2(|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2))]1q) |
=(γ−ρ)1p−1+2qn!([γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p[|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2)]1q+[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p[|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2)]1q) |
=1n!(γ−ρ)1q([γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p[|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2)]1q+[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p[|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2)]1q). |
which is required inequality (2.1).
For n=1 inequality (2.1) becomes,
|(χ(γ)γ−χ(ρ)ργ−ρ)−1γ−ργ∫ρχ(ω)dω|≤(γ−ρ)1q−1([γLpp(ρ,γ)−Lp+1p+1(ρ,γ)]1p[|χ′(γ)|q(s+1)(s+2)+m|χ′(ρ)|(s+2)q]1q+[Lp+1p+1(ρ,γ)−ρLpp(ρ,γ)]1p[m|χ′(ρ)|q(s+1)(s+2)+|χ′(γ)|(s+2)q]1q). | (2.3) |
Remark 2.2. For s=1 and m=1 our resulting inequality (2.1) becomes the inequality (2) of [5].
Theorem 2.3. For n∈N, let χ:U⊆(0,∞)→R be n-times differentiable mapping on U∘, where, ρ,γ∈U∘, ρ<γ, χ(n)∈L[ρ,γ] and |χ(n)|q for q>1, is (s,m)-convex on interval [ρ,γ] then following inequality holds
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1s1qn!(12)1p(γ−ρ)2p−1((|χ(n)(γ)|q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ)])1q+(|χ(n)(γ)|q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)])1q). | (2.4) |
Proof. Since |χ(n)|q for q>1 is (s,m)-convex on [ρ,γ], by using Lemma 1.4 and Hölder-İşcan inequality (1.2), since s∈(0,1], this fact can be used for ω,ρ,γ∈U⊆(0,∞),
(ω−ρ)s<(ω−ρ)s,(γ−ω)s<(γ−ω)s|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1n!γ∫ρ1.ωn|χ(n)(ω)|dω,≤1n!1(γ−ρ)([(γ∫ρ(γ−ω)dω)1p(γ∫ρ(γ−ω)ωnq|χ(n)(ω)|qdω)1q]+[(γ∫ρ(ω−ρ)dω)1p(γ∫ρ(ω−ρ)ωnq|χ(n)(ω)|qdω)1q]),≤1n!1(γ−ρ)(γ∫ρ(γ−ω)dω)1p(γ∫ρ(γ−ω)ωnq[(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q]dt)1q+1n!1(γ−ρ)(γ∫ρ(ω−ρ)dt)1p(γ∫ρ(ω−ρ)ωnq[(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q]dx)1q,≤1s1qn!1(γ−ρ)(γ∫ρ(γ−ω)dω)1p(γ∫ρ(γ−ω)ωnq[(ω−ρ)(γ−ρ)s|χn(γ)|q+m(γ−ω)(γ−ρ)s|χn(ρ)|q]dω)1q+1s1qn!1(γ−ρ)(γ∫ρ(ω−ρ)dω)1p(γ∫ρ(ω−ρ)ωnq[(ω−ρ)(γ−ρ)s|χn(γ)|q+m(γ−ω)(γ−ρ)s|χn(ρ)|q]dω)1q, I1=γ∫ρ(γ−ω)dω=(γ−ρ)22 I2=γ∫ρ(γ−ω)(ω−ρ)ωnqdω=γωnq+1nq+1−ργωnq+1nq+1−ωnq+3nq+3+ρωnq+2nq+2|γρ =−(γnq+3−ρnq+3nq+3)+ρ(γnq+2−ρnq+2nq+2)+γ(γnq+2−ρnq+2nq+2)−ργ(γnq+1−ρnq+1nq+1) =(γ−ρ)[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)], I3=γ∫ρ(γ−ω)2ωnqdω=γ2ωnq+1nq+1+ωnq+3nq+3−2γωnq+2nq+2|γρ =(γnq+3−ρnq+3nq+3)−2γ(γnq+2−ρnq+2nq+2)+γ2(γnq+1−ρnq+1nq+1) =(γ−ρ)[Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ)], I4=γ∫ρ(ω−ρ)2ωnqdω=ωnq+3nq+3+ρ2ωnq+1nq+1−2ρωnq+2nq+2|γρ =(γnq+3−ρnq+3nq+3)+ρ2(γnq+1−ρnq+1nq+1)−2ρ(γnq+2−ρnq+2nq+2) =(γ−ρ)[Lnq+2nq+2(ρ,γ)+ρ2Lnqnq(ρ,γ)−2ρLnq+1nq+1(ρ,γ)]. | (2.5) |
Substituting integrals I1,I2,I3,I4,I5,I6 in inequality (2.5) we have,
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1s1qn!(12)1p(γ−ρ)2p−1×((|χ(n)(γ)|q(γ−ρ)s[(γ−ρ)(−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ))]+m|χ(n)(ρ)|q(γ−ρ)s[(γ−ρ)(Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ))])1q+(|χ(n)(γ)|q(γ−ρ)s[(γ−ρ)(Lnq+2nq+2(ρ,γ)−2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ))]+m|χ(n)(ρ)|q(γ−ρ)s[(γ−ρ)(−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ))])1q), |
=1s1qn!(12)1p(γ−ρ)2p−1×((|χ(n)(γ)|q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ)])1q+(|χ(n)(γ)|q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)])1q). |
For n=1, Theorem2.3 reduced to the inequality
|γχ(γ)−ρχ(ρ)(γ−ρ)−1(γ−ρ)γ∫ρχ(ω)dω|≤1s1q(12)1p(γ−ρ)2p−2((|χ(1)(γ)|q(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)]+m|χ(1)(ρ)|(γ−ρ)s−1q[Lq+2q+2(ρ,γ)−2γLq+1q+1(ρ,γ)+γ2Lqq(ρ,γ)])1q+(|χ(1)(γ)|(γ−ρ)s−1q[Lq+2q+2(ρ,γ)−2ρLq+1q+1(ρ,γ)+ρ2Lqq(ρ,γ)]+m|χ(1)(ρ)|(γ−ρ)s−1q[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)])1q). | (2.6) |
Remark 2.4. For s=1 and m=1 our resulting inequality (2.4) becomes the inequality (6) of [5].
Theorem 2.5. If function χ:[0,b]⟶R, b>0 is a (s, m)-convex function in the second sense where (s,m)∈(0,1]2, holds provided that all ρ,γ∈[0,b] and ς∈[0,1], then
2sχ(ρ+mγ2)≤[1mγ−ρmγ∫ρχ(ω)dω+m2mγ−ργ∫ρmχ(l)dl]≤χ(ρ)+mχ(γ)s+1+χ(γ)+mχ(ρm2)s+1. | (2.7) |
Proof. A function χ:[0,b]⟶R, b>0 is said to be a (s,m)-convex function in the second sense where s,m∈(0,1]2, if
χ(ςρ+m(1−ς)γ)≤ςsχ(ρ)+m(1−ς)sχ(γ), |
holds provided that all ρ,γ∈[0,b] and ς∈[0,1].
Integrating w.r.t ς on [0,1],
1∫0χ(ςρ+m(1−ς)γ)dς≤1∫0ςsχ(ρ)dς+1∫0m(1−ς)sχ(γ)dς,=ςs+1s+1|10χ(ρ)−mχ(γ)(1−ς)s+1s+1|10=χ(ρ)+mχ(γ)s+1. 1∫0χ(ςρ+m(1−ς)γ)dς≤χ(ρ)+mχ(γ)s+1. | (2.8) |
and
χ(ςγ+m(1−ς)ρm2)≤ςsχ(γ)+m(1−ς)sχ(ρm2),1∫0χ(ςγ+m(1−ς)ρm2)dς≤χ(γ)+mχ(ρm2)s+1. | (2.9) |
As χ is (s,m)-convex,
χ(ρ+mγ2)=χ(ςρ+(1−ς)mγ2+m.(1−ς)ρm+ςγ2)≤(12)sχ(ςρ+(1−ς)γm)+m(12)sχ(ςγ+(1−ς)ρm), |
Integrating w.r.t ς over [0,1] and by using (2.8) and (2.9) we get,
2sχ(ρ+mγ2)≤1∫0(χ(ςρ+(1−ς)γm)dς+m1∫0χ(ςγ+(1−ς)ρm)dς≤χ(ρ)+mχ(γ)s+1+χ(γ)+mχ(ρm2)s+1. | (2.10) |
Substituting in first integral,
ςρ+(1−ς)γm=ω,
1∫0χ(ςρ+(1−ς)mγ)dς=1γm−ργm∫ρχ(ω)dω. | (2.11) |
Substituting in the second integral,
ςγ+(1−ς)ρm=l,
1∫0χ(ςγ+(1−ς)ρm)dς=mγm−ργ∫ρmχ(l)dl, | (2.12) |
Using (2.11) and (2.12) in (2.10) required inequality (2.7) obtained.
Remark 2.6. For s,m=1 inequality (2.7) becomes classical Hadamard inequality for convex functions.
Theorem 2.7. For n∈N, let χ:U⊆(0,∞)→R be n-times differentiable mapping on U∘, where, ρ,γ∈U∘, ρ<γ and χ(n)∈L[ρ,γ] and |χ(n)|q for q>1 is (s, m)-concave on interval [ρ,mγ], then
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−mγ∫ρχ(ω)dω|≤2sq(mγ−ρ)1q|χ(n)(ρ+mγ2)|n!((γLnpnp(ρ,mγ)−Lnp+1np+1(ρ,mγ))1p+(Lnp+1np+1(ρ,mγ)−ρLnpnp(ρ,mγ))1p). | (2.13) |
Proof. |χ(n)|q for q>1 is (s,m)-concave then by using Theorem 2.5 we have,
|χ(n)(ρ)|q+m|χ(n)(γ)|qs+1+|χ(n)(γ)|q+m|χ(n)(ρm2)|qs+1−m2(mγ−ρ)γ∫ρm|χ(n)(l)|qdl≤1(mγ−ρ)mγ∫ρ|χ(n)(ω)|qdω≤2s|χ(n)(ρ+mγ2)|q, |
mγ∫ρ|χ(n)(ω)|qdω≤2s(mγ−ρ)|χ(n)(ρ+mγ2)|q, |
1(mγ−ρ)γm∫ρ(γ−ω)|χ(n)(ω)|qdω≤γm∫ρ|χ(n)(ω)|qdω≤2s(mγ−ρ)|χ(n)(ρ+mγ2)|q, |
1(mγ−ρ)γm∫ρ(γ−ω)|χ(n)(ω)|qdω≤γm∫ρ|χ(n)(ω)|qdω≤2s(mγ−ρ)|χ(n)(ρ+mγ2)|q. |
Using Lemma 1.4 and Hölder-Îşcan inequality (1.2),
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γm∫ρχ(ω)dω|≤1n!γm∫ρωn|χ(n)(ω)|dω, ≤1n!1γ−ρ{(γm∫ρ(γ−ω)ωnpdω)1p(mγ∫ρ(γ−ω)|χn(ω)|qdω)1q+(γm∫ρ(ω−ρ)ωnpdω)1p(mγ∫ρ(ω−ρ)|χn(ω)|qdω)1q}, ≤1n!1γ−ρ((γm∫ρ(γ−ω)ωnpdω)1p(2s(mγ−ρ)2|χ(n)(ρ+mγ2)|q)1q+(γm∫ρ(ω−ρ)ωnpdω)1p(2s(mγ−ρ)2|χ(n)(ρ+mγ2)|q)1q), I1=(γm∫ρ(γ−ω)ωnpdω)1p=(γωnp+1np+1|γmρ−ωnp+2np+2|γmρ)1p =(mγ−ρ)1p(γLnpnp(ρ,mγ)−Lnp+1np+1(ρ,mγ))1p, I2=(γm∫ρ(ω−ρ)ωnpdω)1p=(ωnp+2np+2|γmρ−ρωnp+1np+1|γmρ)1p =(mγ−ρ)1p(Lnp+1np+1(ρ,mγ)−ρLnpnp(ρ,mγ))1p. | (2.14) |
Substituting integrals I1,I2 in inequality (2.14) required inequality (2.13) is obtained.
For n=1 inequality (2.13) becomes,
|χ(γ)γ−ρχ(ρ)(γ−ρ)−1(γ−ρ)γm∫ρχ(ω)dω|≤2sq(mγ−ρ)1q|χ(1)(ρ+γ2)|1!((γLpp(ρ,mγ)−Lp+1p+1(ρ,mγ))1p+(Lp+1p+1(ρ,mγ)−ρLpp(ρ,mγ))1p). | (2.15) |
Remark 2.8. For s=1 and m=1 our resulting inequality becomes the inequality obtained in Theorem 4 of [5].
Proposition 2.9. Let ρ,γ∈(0,∞), where ρ<γ, q>1, n,i∈N with i≥n,
|Lii(ρ,γ)[(i+1)∑n−1ν=0(−1)νP(i,ν)(ν+1)!−1]|≤1n!(γ−ρ)1q−1×([γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p(γ(i−n)q(s+1)(s+2)+mρ(i−n)q(s+2))1q+[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p(mρ(i−n)q(s+1)(s+2)+γ(i−n)q(s+2))1q), | (2.16) |
where
P(i,n)={i(i−1)...(i−n+1),i>nn!,i=n1,n=0}. |
Proof. Let
χ(ω)=ωi,|χ(n)(ω)|q=|P(i,n)ωi−n|q |
Let
g(ς)=|P(i,n)(ςρ+m(1−ς)γ|(i−n)q−|P(i,n)ςsρ|(i−n)q−|mP(i,n)(1−ς)sγ|(i−n)q, |
g″(ς)=P(i,n)((i−n)q)((i−n)q−1)(ςρ+m(1−ς)γ)(i−n)q−2(ρ−mγ)2−s(s−1)ςs−2P(i,n)ρ(i−n)q−ms(s−1)(1−ς)s−2P(i,n)γ(i−n)q, |
g″(ς)≥0 means g is convex and g(1)=g(0)=0, which omplies g≤0, hence
|P(i,n)(ςρ+m(1−ς)γ)|(i−n)q≤|P(i,n)ςsρ|(i−n)q+|mP(i,n)(1−ς)sγ)|(i−n)q. |
By using Theorem 2.1 for |χn(ω)|q which is (s,m)–convex for s,m∈(0,1]2 inequality (2.16) obtained.
Remark 2.10. For s,m=1 inequality (2.16) becomes inequality (3) of [5].
Example 2.11. Taking i=2, n=1, p=q=2 in Proposition 2.9, the following is valid:
2A(ρ2,γ2)+G2(ρ,γ)≤(32√6)([A(3ρ2,γ2)+G2(ρ,γ)]12(γ2(s+1)(s+2)+mρ2(s+2))12+[A(ρ2,3γ2)+G2(ρ,γ)]12(mρ2(s+1)(s+2)+γ2(s+2))12), |
where A and G are classical arithmetic and geometric means, respectively.
Proposition 2.12. Let ρ,γ∈(0,∞), with, ρ<γ, q>1 and n∈N,
1≤(γ−ρ)1q−1([γLpp(ρ,γ)−Lp+1p+1(ρ,γ)]1p[(γ−q(s+1)(s+2)+mρ−q(s+2))]1q+[Lp+1p+1(ρ,γ)−ρLpp(ρ,γ)]1p[(mρ−q(s+1)(s+2)+γ−q(s+2))]1q), | (2.17) |
where L is classical logarithmic mean.
Proof.
χ(ω)=lnω,|χ(1)(ω)|q=|ω−1|q |
Let
g(ς)=|(ςρ+m(1−ς)γ|−q−|ςsρ|−q−|m(1−ς)sγ|−q |
g″(ς)=(−q)(−q−1)(ςρ+m(1−ς)γ)−q−2(ρ−mγ)2−s(s−1)ςs−2ρ−q−ms(s−1)(1−ς)s−2γ−q, |
g″(ς)≥0 means g is convex and g(1)=g(0)=0 which implies g≤0 as
|(ςρ+m(1−ς)γ|−q≤|ςsρ|−q+|m(1−ς)sγ|−q. |
So |χ(1)(ω)|q is (s,m)-convex. Then by using inequality (2.3) required inequality (2.17) obtained.
Remark 2.13. For s,m=1 inequality (2.17) becomes (4) of [5].
Example 2.14. For n=1 and p=q=2, Proposition 2.12 gives:
1≤1√6([A(3ρ2,γ2)+G2(ρ,γ)]1p[(γ−2(s+1)(s+2)+mρ−2(s+2))]12+[A(ρ2,3γ2)+G2(ρ,γ)]1p[(mρ−2(s+1)(s+2)+γ−2(s+2))]12). |
Proposition 2.15. Let ρ,γ∈(0,∞), ρ<γ, q>1, i∈(−∞,0]∪[1,∞)∖{−2q,−q}
then
Liq+1iq+1(ρ,γ)≤(γ−ρ)1q−1([γLpp(ρ,γ)−Lp+1p+1(ρ,γ)]1p[(γi(s+1)(s+2)+mρi(s+2))]1q+[Lp+1p+1(ρ,γ)−ρLpp(ρ,γ)]1p[(mρi(s+1)(s+2)+γi(s+2))]1q). | (2.18) |
Proof.
χ(t)=qi+qωiq+1,|χ′(ω)|q=ωi |
Let
g(ς)=|(ςρ+m(1−ς)γ|i−|ςsρ|i−|m(1−ς)sγ|i, |
g″(ς)=(i)(i−1)(ςρ+m(1−ς)γ)i−2(ρ−mγ)2−s(s−1)ςs−2ρi−ms(s−1)(1−ς)s−2γi, |
g″(ς)≥0 and g(1)=g(0) so g≤0 and |χ′(ω)|q is (s,m)-convex, by using inequality (2.3) we have (2.18).
Remark 2.16. For s,m=1 inequality (2.18) becomes (5) of [5].
Example 2.17. For i=2 and p=q=2 Proposition 2.15 reduced to
2A(ρ2,γ2)+G2(ρ,γ)≤(3√6)([A(3ρ2,γ2)+G2(ρ,γ)]12[(γ2(s+1)(s+2)+mρ2(s+2))]12+[A(ρ2,3γ2)+G2(ρ,γ)]12[(mρ2(s+1)(s+2)+γ2(s+2))]12). | (2.19) |
Proposition 2.18. Let ρ,γ∈(0,∞) with ρ<γ, q>1 and n∈N then we have
×|Lii(ρ,γ)[n−1∑ν=0(−1)νP(i,ν)(ν+1)!−1]|≤P(i,n)s1qn!(12)1p(γ−ρ)2p−1(γ(i−n)q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)]+mρ(i−n)q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(κ,μ)+μ2Lnqnq(ρ,γ)])1q+P(i,n)s1qn!(12)1p(γ−ρ)2p−1(γ(i−n)q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ)]+mρ(i−n)q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)])1q. | (2.20) |
Proof. Let,
χ(ω)=ωi,|χ(n)(ω)|q=[P(i,n)ωi−n]q |
As |χn(ω)|q is (s,m)-convex on (0,∞), therefore by using Theorem 2.3 required inequality (2.20) is obtained.
Remark 2.19. For s,m=1 inequality (2.20) becomes inequality obtained in Proposition 4 of [5].
Proposition 2.20. Let ρ,γ∈(0,∞) with ρ<γ q>1 and n∈N then we have,
1≤(γ−ρ)2p−2s1q.21p((γ−q(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)]+mρ−q(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2γLq+1q+1(ρ,γ)+γ2Lqq(ρ,γ)])1q+(γ−q(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2ρLq+1q+1(ρ,γ)+ρ2Lqq(ρ,γ)]+mρ−q(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)])1q), | (2.21) |
Proof.
χ(ω)=lnω,|χ(1)(ω)|q=[ω−1]q |
As |χ(1)(ω)|q is (s,m)–convex, therefore by using inequality (2.6) required (2.21) obtained.
Remark 2.21. For s,m=1 inequality (2.21) becomes inequality obtained in Proposition 5 of [5].
Proposition 2.22. Let ρ,γ∈(0,∞) with ρ<γ q>1 and i∈(−∞,0]∖{−2q,q}, then
Liq+1iq+1(ρ,γ)≤(γ−ρ)2p−2s1q.21p((γi(γ−ρ)s−1[−Lnq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)]+mρi(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2γLq+1q+1(ρ,γ)+γ2Lqq(ρ,γ)])1q+(γi(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2ρLq+1q+1(ρ,γ)+ρ2Lqq(ρ,γ)]+mρm(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)])1q). | (2.22) |
Proof.
χ(ω)=qi+qωiq+1|χ′(ω)|q=ωi |
|χ′(w)|q is (s,m)-convex by using inequality (2.6) required (2.22) obtained.
For i=1 inequality (2.22) becomes,
L1q+11q+1(ρ,γ)≤(γ−ρ)2p−2s1q.21p((γ1(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)]+mρ1(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2γLq+1q+1(ρ,γ)+γ2Lqq(ρ,γ)])1q+(γ1(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2ρLq+1q+1(ρ,γ)+ρ2Lqq(ρ,γ)]+mρ1(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)])1q). | (2.23) |
Remark 2.23. For s,m=1 inequality (2.22) becomes inequality obtained in Proposition 6 of [5].
Proposition 2.24. Let ρ,γ∈(0,∞) with ρ<γ, q>1 and i∈[0,1] we have,
Liq+1iq+1(ρ,γ)≤2sq(mγ−ρ)1q1!Aiq(ρ,γ)((γLpp(ρ,mγ)−Lp+1p+1(ρ,mγ))1p+(Lp+1p+1(ρ,mγ)−ρLpp(ρ,mγ))1p). | (2.24) |
Proof.
χ(ω)=qi+qωiq+1,|χ′(ω)|q=ωi. |
As |χ′(ω)|q is (s,m)-concave by using inequality (2.15) we obtain required inequality (2.24).
Remark 2.25. For s,m=1 inequality (2.24) becomes the inequality obtained in Proposition 9 of [5].
In this paper, Hölder-Isçan inequality is utilized to prove Hermite-Hadamard type inequalities for n-times differentiable (s,m)-convex functions. The method is adequate and provide many generalizations of existing results as shown in remarks. Moreover, many other inequalities can be generalized for other types of convex functions.
This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, (grant number B05F650018)
The authors declare no conflict of interest.
[1] | The state council information office of the People's Republic of China, White Paper on China's Action to Fight the Coronavirus Epidemic, Guangming Daily, 2020. Available from: http://www.scio.gov.cn/zfbps/ndhf/42312/Document/1682143/1682143.htm. |
[2] |
J. Dai, Z. Liu, R. Li, Improving the subway attraction for the post-COVID-19 era: the role of fare-free public transport policy, Transp. Policy, 103 (2021), 21–30. https://doi.org/10.1016/j.tranpol.2021.01.007 doi: 10.1016/j.tranpol.2021.01.007
![]() |
[3] | E. Jenelius, M. Cebecauer, Impacts of COVID-19 on public transport ridership in Sweden: analysis of ticket validations, sales and passenger counts, Transp. Res. Interdiscip. Perspect., 8 (2020), 100242. https://doi.org/10.1016/j.trip.2020.100242 |
[4] | B. Ozbilen, K. M. Slagle, G. Akar, Perceived risk of infection while traveling during the COVID-19 pandemic: insights from columbus, OH, Transp. Res. Interdiscip. Perspect., 10 (2021), 100326. https://doi.org/10.1016/j.trip.2021.100326 |
[5] |
N. S. Ngo, Urban bus ridership, income, and extreme weather events, Transp. Res. Part D Transp. Environ., 77 (2019), 464–475. https://doi.org/10.1016/j.trd.2019.03.009 doi: 10.1016/j.trd.2019.03.009
![]() |
[6] |
M. J. Beck, D. A. Hensher, Insights into the impact of COVID-19 on household travel and activities in Australia–the early days under restrictions, Transp. Policy, 96 (2020), 76–93. https://doi.org/10.1016/j.tranpol.2020.07.001 doi: 10.1016/j.tranpol.2020.07.001
![]() |
[7] |
Q. Cui, L. He, Y. Liu, Y. T. Zheng, W. Wei, B. Yang, The impacts of COVID-19 pandemic on China's transport sectors based on the CGE model coupled with a decomposition analysis approach, Transp. Policy, 103 (2021), 103–115. https://doi.org/10.1016/j.tranpol.2021.01.017 doi: 10.1016/j.tranpol.2021.01.017
![]() |
[8] |
Y. Zhang, J. D. Fricker, Quantifying the impact of COVID-19 on non-motorized transportation: a bayesian structural time series model, Transp. Policy, 103 (2021), 11–20. https://doi.org/10.1016/j.tranpol.2021.01.013 doi: 10.1016/j.tranpol.2021.01.013
![]() |
[9] |
J. F. Teixeira, M. Lopes, The link between bike sharing and subway use during the COVID-19 pandemic: the case-study of New York's city bike, Transp. Res. Interdiscip. Perspect., 26 (2020), 100166. https://doi.org/10.1016/j.trip.2020.100166 doi: 10.1016/j.trip.2020.100166
![]() |
[10] |
A. S. Bergantino, M. Intini, L. Tangari, Influencing factors for potential bike-sharing users: an empirical analysis during the COVID-19 pandemic, Res. Transp. Econ., 86 (2021), 101028. https://doi.org/10.1016/j.retrec.2020.101028 doi: 10.1016/j.retrec.2020.101028
![]() |
[11] |
M. J. Beck, D. A. Hensher, Insights into the impact of COVID-19 on household travel and activities in Australia–the early days of easing restrictions, Transp. Policy, 99 (2020), 95–119. https://doi.org/10.1016/j.tranpol.2020.08.004 doi: 10.1016/j.tranpol.2020.08.004
![]() |
[12] |
R. Rastegar, S. Seyfi, S. M. Rasoolimanesh, How COVID-19 case fatality rates have shaped perceptions and travel intention, J. Hosp. Tourism Manage., 47 (2021), 353–364. https://doi.org/10.1016/j.jhtm.2021.04.006 doi: 10.1016/j.jhtm.2021.04.006
![]() |
[13] |
S. G. Yang, M. M. Yang, Y. Y. Li, Study on the influence mechanism of passenger safety perception on air travel intention in the context of COVID-19 pandemic in Chinese, J. Transp. Eng. Inf. Technol., 19 (2021), 13–21. https://doi.org/10.19961/j.cnki.1672-4747.2020.10.007 doi: 10.19961/j.cnki.1672-4747.2020.10.007
![]() |
[14] |
J. Shi, Y. Q. Long, Research on the impacts of the COVID-19 on individual's leisure travel in Chinese, Chin. J. Highway Transp., 35 (2022), 238–251. https://doi.org/10.19721/j.cnki.1001-7372.2022.01.021 doi: 10.19721/j.cnki.1001-7372.2022.01.021
![]() |
[15] |
T. T. Liang, H. Y. Pan, Research on resident travel intention in the period of outbreak and rebound of COVID-19 in Chinese, J. Dalian Jiaotong Univ., 43 (2022), 7–13. https://doi.org/10.13291/j.cnki.djdxac.2022.03.002 doi: 10.13291/j.cnki.djdxac.2022.03.002
![]() |
[16] |
M. Nilashi, R. A. Abumalloh, M. Alrizq, A. Alghamdi, S. Samad, A. Almulihi, et al., What is the impact of ewom in social network sites on travel decision-making during the COVID-19 outbreak? a two-stage methodology, Telematics Inf., 69 (2022), 101795. https://doi.org/10.1016/j.tele.2022.101795 doi: 10.1016/j.tele.2022.101795
![]() |
[17] |
F. M. Thomas, S. G. Charlton, I. Lewis, S. Nandavar, Commuting before and after COVID-19, Transp. Res. Interdiscip. Perspect., 11 (2021), 100423. https://doi.org/10.1016/j.trip.2021.100423 doi: 10.1016/j.trip.2021.100423
![]() |
[18] |
J. Akritidis, S. L. Mcguinness, K. Leder, University students' travel risk perceptions and risk-taking willingness during the COVID-19 pandemic: a cross-sectional study, Travel Med. Infect. Dis., 51 (2023), 102486. https://doi.org/10.1016/j.tmaid.2022.102486 doi: 10.1016/j.tmaid.2022.102486
![]() |
[19] |
W. Zhang, S. Li, Y. Gao, W. Liu, Y. Jiao, C. Zeng, et al., Travel changes and equitable access to urban parks in the post-COVID-19 pandemic period: evidence from wuhan, China, J. Environ. Manage., 304 (2022), 114217. https://doi.org/10.1016/j.jenvman.2021.114217 doi: 10.1016/j.jenvman.2021.114217
![]() |
[20] |
P. Zhao, Y. Gao, Public transit travel choice in the post-COVID-19 pandemic era: an application of the extended theory of planned behavior, Travel Behav. Soc., 28 (2022), 181–195. https://doi.org/10.1016/j.tbs.2022.04.002 doi: 10.1016/j.tbs.2022.04.002
![]() |
[21] |
T. Sun, J. Zhang, B. Zhang, Y. Ong, N. Ito, How trust in a destination's risk regulation navigates outbound travel constraints on revisit intention post-COVID-19: segmenting insights from experienced chinese tourists to Japan, J. Destination Mark. Manage., 25 (2022), 100711. https://doi.org/10.1016/j.jdmm.2022.100711 doi: 10.1016/j.jdmm.2022.100711
![]() |
[22] |
V. Singh, K. Gupta, A. Agarwal, N. Chakrabarty, Psychological impacts on the travel behavior post-COVID-19, Asian Transport Stud., 8 (2022), 100087. https://doi.org/10.1016/j.eastsj.2022.100087 doi: 10.1016/j.eastsj.2022.100087
![]() |
[23] |
S. Talwar, S. Srivastava, M. Sakashita, N. Islam, A. Dhir, Personality and travel intentions during and after the COVID-19 pandemic: an artificial neural network (ann) approach, J. Bus. Res., 142 (2022), 400–411. https://doi.org/10.1016/j.jbusres.2021.12.002 doi: 10.1016/j.jbusres.2021.12.002
![]() |
[24] |
Y. B. Yao, X. X. Zhao, L. P. Ren, G. M. Jia, Compensatory travel in the post-COVID-19 pandemic era: how does boredom stimulate intentions, J. Hosp. Tourism Manage., 54 (2023), 56–64. https://doi.org/10.1016/j.jhtm.2022.12.003 doi: 10.1016/j.jhtm.2022.12.003
![]() |
[25] |
Y. Ding, R. Korolov, W. Wallace, X. C. Wang, How are sentiments on autonomous vehicles influenced? an analysis using twitter feeds, Transp. Res. Part C Emerging Technol., 131 (2021), 103356. https://doi.org/10.1016/j.trc.2021.103356 doi: 10.1016/j.trc.2021.103356
![]() |
[26] |
G. Cao, L. Shen, R. Evans, Z. G. Zhang, Q. Q. Bi, W. J. Huang et al., Analysis of social media data for public emotion on the Wuhan lockdown event during the COVID-19 pandemic, Comput. Methods Programs Biomed., 212 (2021), 106468. https://doi.org/10.1016/j.cmpb.2021.106468 doi: 10.1016/j.cmpb.2021.106468
![]() |
[27] |
K. Hou, T. Hou, L. Cai, Public attention about COVID-19 on social media: an investigation based on data mining and text analysis, Pers. Individ. Differ., 175 (2021), 110701. https://doi.org/10.1016/j.future.2021.06.044 doi: 10.1016/j.future.2021.06.044
![]() |
[28] |
M. Viviani, C. Crocamo, M. Mazzola, F. Bartoli, G. Carrà, G. Pasi, Assessing vulnerability to psychological distress during the COVID-19 pandemic through the analysis of microblogging content, Future Gener. Comput. Syst., 125 (2021), 446–459. https://doi.org/10.1016/j.future.2021.06.044 doi: 10.1016/j.future.2021.06.044
![]() |
[29] |
X. Y. Shao, D. M. Li, Y. Q. Liu, COVID-19 stage characteristics, public sentiment and agricultural prices: an empirical study based on microblog book mining in Chinese, J. Sichuan Agric. Univ., 39 (2021), 688–696+704. https://doi.org/10.16036/j.issn.1000-2650.2021.05.018 doi: 10.16036/j.issn.1000-2650.2021.05.018
![]() |
[30] |
Y. Q. Lu, X. J. Song, Z. M. Zhang, Z. Y. Wang, C. Li, J. Qiu, Sentiment analysis based on the data of micro-blog comments on returning to work and school during the COVID-19 in Chinese, Chin. J. Health Psycholo., 29 (2021), 674–679. https://doi.org/10.13342/j.cnki.cjhp.2021.05.008 doi: 10.13342/j.cnki.cjhp.2021.05.008
![]() |
[31] |
Y. Z. Yang, H. D. Tang, Y. Peng, Residents' travel mode choice behavior in post-COVID-19 era considering preference differences in Chinese, Transp. Syst. Eng. Inf. Technol., 22 (2022), 15–24. https://doi.org/10.16097/j.cnki.1009-6744.2022.03.003 doi: 10.16097/j.cnki.1009-6744.2022.03.003
![]() |
[32] |
E. Bhaduri, B. S. Manoj, Z. Wadud, A. K. Goswami, C. F. Choudhury, Modelling the effects of COVID-19 on travel mode choice behaviour in India, Transp. Res. Interdiscip. Perspect., 8 (2020), 100273. https://doi.org/10.1016/j.trip.2020.100273 doi: 10.1016/j.trip.2020.100273
![]() |
[33] |
B. Qi, A. Costin, M. D. Jia, A framework with efficient extraction and analysis of twitter data for evaluating public opinions on transportation services, Travel Behav. Soc., 21 (2020), 10–23. https://doi.org/10.1016/j.tbs.2020.05.005 doi: 10.1016/j.tbs.2020.05.005
![]() |
[34] | J. H. Lin, A. M. Yang, Y. M. Zhou, J. Chen, Z. J. Cai, Classification of microblog sentiment based on naive Bayesian in Chinese, Comput. Eng. Sci., 34 (2012), 160–165. |
[35] | X. F. Jia, Y. S. Guo, Y. R. Huang, B. T. Zhao, Salt & pepper noise detection algorithm for color images based on Spearman rank correlation in Chinese, J. Univ. Sci. Technol. China, 49 (2019), 63–70. |
[36] | D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, J. Mach. Learn. Res., 3 (2003), 933–1022. |
[37] |
J. Cao, T. Xia, J. T. Li, Y. D. Zhang, S. Tang, A density-based method for adaptive LDA model selection, Neurocomputing, 72 (2009), 1775–1781. https://doi.org/10.1016/j.neucom.2008.06.011 doi: 10.1016/j.neucom.2008.06.011
![]() |
1. | Ammara Nosheen, Maria Tariq, Khuram Ali Khan, Nehad Ali Shah, Jae Dong Chung, On Caputo Fractional Derivatives and Caputo–Fabrizio Integral Operators via (s, m)-Convex Functions, 2023, 7, 2504-3110, 187, 10.3390/fractalfract7020187 | |
2. | Jie Li, Yong Lin, Serap Özcan, Muhammad Shoaib Saleem, Ahsan Fareed Shah, A study of Hermite-Hadamard inequalities via Caputo-Fabrizio fractional integral operators using strongly $(s, m)$-convex functions in the second sense, 2025, 2025, 1029-242X, 10.1186/s13660-025-03266-x |