The largest C-eigenvalue of a piezoelectric tensor determines the highest piezoelectric coupling constant. In this paper, we first provide a new C-eigenvalue localization set for a piezoelectric-type tensor and prove that it is tighter than some existing sets. And then, we present a direct method to find all C-eigentriples of a piezoelectric-type tensor of dimension 3. Finally, we show the effectiveness of the direct method by numerical examples.
Citation: Shunjie Bai, Caili Sang, Jianxing Zhao. Localization and calculation for C-eigenvalues of a piezoelectric-type tensor[J]. Electronic Research Archive, 2022, 30(4): 1419-1441. doi: 10.3934/era.2022074
The largest C-eigenvalue of a piezoelectric tensor determines the highest piezoelectric coupling constant. In this paper, we first provide a new C-eigenvalue localization set for a piezoelectric-type tensor and prove that it is tighter than some existing sets. And then, we present a direct method to find all C-eigentriples of a piezoelectric-type tensor of dimension 3. Finally, we show the effectiveness of the direct method by numerical examples.
[1] | Y. Chen, L. Qi, E. Virga, Octupolar tensors for liquid crystals, J. Phys. A: Math. Theor., 51 (2018), 025206. http://doi.org/10.1088/1751-8121/aa98a8 doi: 10.1088/1751-8121/aa98a8 |
[2] | G. Gaeta, E. G. Virga, Octupolar order in three dimensions, Eur. Phys. J. E, 39 (2016), 113. http://doi.org/10.1140/epje/i2016-16113-7 doi: 10.1140/epje/i2016-16113-7 |
[3] | S. Haussëhl, Physical Properties of Crystals: An Introduction, Wiley-VCH Verlag, Weinheim, 2007. http://doi.org/10.1002/9783527621156 |
[4] | J. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, Oxford, 1985. http://doi.org/10.1107/S0108767385001477 |
[5] | J. Jerphagnon, Invariants of the third-rank Cartesian tensor: Optical nonlinear susceptibilities, Phys. Rev. B, 2 (1970), 1091–1098. http://doi.org/10.1103/PhysRevB.2.1091 doi: 10.1103/PhysRevB.2.1091 |
[6] | D. Lovett, Tensor Properties of Crystals, Institute of Physics Publishing, Bristol, 1989. https://doi.org/10.1201/9780203737286 |
[7] | L. Guo, X. L. Zhao, X. M. Gu, Y. L. Zhao, Y. B. Zheng, T. Z. Huang, Three-dimensional fractional total variation regularized tensor optimized model for image deblurring, Appl. Math. Comput., 404 (2021), 126224. http://doi.org/10.1016/j.amc.2021.126224 doi: 10.1016/j.amc.2021.126224 |
[8] | A. Kholkin, N. Pertsev, A. Goltsev, Piezolelectricity and crystal symmetry, in Piezoelectric and Acoustic Materials for Transducer Applications, Springer, (2008), 17–38. http://doi.org/10.1007/978-0-387-76540-2_2 |
[9] | I. Kulagin, R. Ganeev, R. Tugushev, A. Ryasnyansky, T. Usmanov, Components of the third-order nonlinear susceptibility tensors in KDP, DKDP and $LiNbO_{3}$ nonlinear optical crystals, Quantum Electron., 34 (2004), 657–662. http://doi.org/10.1070/QE2004v034n07ABEH002823 doi: 10.1070/QE2004v034n07ABEH002823 |
[10] | L. Qi, Transposes, L-eigenvalues and invariants of third order tensors, preprint, arXiv: 1704.01327. |
[11] | L. Qi, Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, 2017. http://doi.org/10.1137/1.9781611974751.fm |
[12] | Y. Chen, A. Jákli, L. Qi, The C-eigenvalue of third order tensors and its application in crystals, J. Ind. Manage. Optim., 2021. http://doi.org/10.3934/jimo.2021183 |
[13] | X. Liu, S. Yin, H. Li, C-eigenvalue intervals for piezoelectric-type tensors via symmetric matrices, J. Ind. Manage. Optim., 17 (2021), 3349–3356. http://doi.org/10.3934/jimo.2020122 doi: 10.3934/jimo.2020122 |
[14] | C. Li, H. Guo, X. Tian, T. He, Generalized piezoelectric thermoelasticity problems with strain rate and transient thermo-electromechanical responses analysis, ZAMM-Z. Angew. Math. Mech., 100 (2020), e201900067. http://doi.org/10.1002/zamm.201900067 doi: 10.1002/zamm.201900067 |
[15] | C. Li, X. Tian, T. He, New insights on piezoelectric thermoelastic coupling and transient thermo-electromechanical responses of multi-layered piezoelectric laminated composite structure, Eur. J. Mech. A. Solids, 91 (2022), 104416. http://doi.org/10.1016/j.euromechsol.2021.104416 doi: 10.1016/j.euromechsol.2021.104416 |
[16] | C. Liang, Y. Yang, Shifted eigenvalue decomposition method for computing C-eigenvalues of a piezoelectric-type tensor, Comput. Appl. Math., 40 (2021), 241. http://doi.org/10.1007/s40314-021-01636-x doi: 10.1007/s40314-021-01636-x |
[17] | Y. Yang, C. Liang, Computing the largest C-eigenvalue of a tensor using convex relaxation, J. Optim. Theory Appl., 192 (2022), 648–677. http://doi.org/10.1007/s10957-021-01983-z doi: 10.1007/s10957-021-01983-z |
[18] | J. Zhao, J. Luo, Properties and calculation for C-eigenvalues of a piezoelectric-type tensor, J. Ind. Manage. Optim., 2021. http://doi.org/10.3934/jimo.2021162 |
[19] | J. He, Y. Liu, G. Xu, An S-type inclusion set for C-eigenvalues of a piezoelectric-type tensor, Appl. Math. Lett., 121 (2021), 107448. http://doi.org/10.1016/j.aml.2021.107448 doi: 10.1016/j.aml.2021.107448 |
[20] | C. Li, J. Liu, Y. Li, C-eigenvalue intervals for piezoelectric-type tensors, Appl. Math. Comput., 358 (2019), 244–250. http://doi.org/10.1016/j.amc.2019.04.036 doi: 10.1016/j.amc.2019.04.036 |
[21] | S. Li, Z. Chen, C. Li, J. Zhao, Eigenvalue bounds of third-order tensors via the minimax eigenvalue of symmetric matrices, Comput. Appl. Math., 39 (2020), 217. http://doi.org/10.1007/s40314-020-01245-0 doi: 10.1007/s40314-020-01245-0 |
[22] | C. Sang, A tighter C-eigenvalue interval for piezoelectric-type tensors, Bull. Iran. Math. Soc., 2021. http://doi.org/10.1007/s41980-021-00645-0 |
[23] | W. Wang, H. Chen, Y. Wang, A new C-eigenvalue interval for piezoelectric-type tensors, Appl. Math. Lett., 100 (2020), 106035. http://doi.org/10.1016/j.aml.2019.106035 doi: 10.1016/j.aml.2019.106035 |
[24] | L. Xiong, J. Liu, A new C-eigenvalue localisation set for piezoelectric-type tensors, East Asian J. Appl. Math., 10 (2020), 23–134. http://doi.org/10.4208/eajam.060119.040619 doi: 10.4208/eajam.060119.040619 |
[25] | H. Che, H. Chen, Y. Wang, C-eigenvalue inclusion theorems for piezoelectric-type tensors, Appl. Math. Lett., 89 (2019), 41–49. http://doi.org/10.1016/j.aml.2018.09.014 doi: 10.1016/j.aml.2018.09.014 |
[26] | L. Ahlfors, Complex Analysis, McGraw-Hill, New York, 1966. |
[27] | L. Qi, H. Dai, D. Han, Conditions for strong ellipticity and M-eigenvalues, Front. Math. China, 4 (2009), 349–364. http://doi.org/10.1007/s11464-009-0016-6 doi: 10.1007/s11464-009-0016-6 |
[28] | D. Cox, J. Little, D. ÓShea, Using Algebraic Geometry, Springer, New York, 1998. https://doi.org/10.1007/b138611 |
[29] | L. Qi, H. Chen, Y. Chen, Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018. http://doi.org/10.1007/978-981-10-8058-6 |