For the $ p $-Laplace Dirichlet problem (where $ \varphi (t) = t|t|^{p-2} $, $ p > 1 $)
$ \varphi(u'(x))'+ f(u(x)) = 0 \; \; \; \; {\rm{for}}\; -1<x<1 , \; \; u(-1) = u(1) = 0 $
assume that $ f'(u) > (p-1)\frac{f(u)}{u} > 0 $ for $ u > \gamma > 0 $, while $ \int _u^{\gamma} f(t) \, dt < 0 $ for all $ u \in (0, \gamma) $. Then any positive solution, with $ \max _{(-1, 1)} u(x) = u(0) > \gamma $, is non-singular, no matter how many times $ f(u) $ changes sign on $ (0, \gamma) $. The uniqueness of solution follows.
Citation: Philip Korman. Non-singular solutions of $ p $-Laplace problems, allowing multiple changes of sign in the nonlinearity[J]. Electronic Research Archive, 2022, 30(4): 1414-1418. doi: 10.3934/era.2022073
For the $ p $-Laplace Dirichlet problem (where $ \varphi (t) = t|t|^{p-2} $, $ p > 1 $)
$ \varphi(u'(x))'+ f(u(x)) = 0 \; \; \; \; {\rm{for}}\; -1<x<1 , \; \; u(-1) = u(1) = 0 $
assume that $ f'(u) > (p-1)\frac{f(u)}{u} > 0 $ for $ u > \gamma > 0 $, while $ \int _u^{\gamma} f(t) \, dt < 0 $ for all $ u \in (0, \gamma) $. Then any positive solution, with $ \max _{(-1, 1)} u(x) = u(0) > \gamma $, is non-singular, no matter how many times $ f(u) $ changes sign on $ (0, \gamma) $. The uniqueness of solution follows.
[1] | A. Aftalion, F. Pacella, Uniqueness and nondegeneracy for some nonlinear elliptic problems in a ball, J. Differ. Equ., 195 (2003), 389–397. https://doi.org/10.1016/S0022-0396(02)00194-8 doi: 10.1016/S0022-0396(02)00194-8 |
[2] | Y. An, C.-G. Kim, J. Shi, Exact multiplicity of positive solutions for a $p$-Laplacian equation with positive convex nonlinearity, J. Differ. Equ., 260 (2016), 2091–2118. https://doi.org/10.1016/j.jde.2015.09.058 doi: 10.1016/j.jde.2015.09.058 |
[3] | J. Cheng, Uniqueness results for the one-dimensional $p$-Laplacian, J. Math. Anal. Appl., 311 (2005), 381–388. https://doi.org/10.1016/j.jmaa.2005.02.057 doi: 10.1016/j.jmaa.2005.02.057 |
[4] | P. C. Huang, S. H. Wang, T. S. Yeh, Classification of bifurcation diagrams of a p-Laplacian nonpositone problem, Commun. Pure Appl. Anal., 12 (2013), 2297–2318. https://doi.org/10.3934/cpaa.2013.12.2297 doi: 10.3934/cpaa.2013.12.2297 |
[5] | P. Korman, Existence and uniqueness of solutions for a class of $p$-Laplace equations on a ball, Adv. Nonlinear Stud., 11 (2011), 875–888. https://doi.org/10.1515/ans-2011-0406 doi: 10.1515/ans-2011-0406 |
[6] | P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific, Hackensack, NJ, 2012. https://doi.org/10.1142/8308 |
[7] | P. Korman, Non-singular solutions of two-point problems, with multiple changes of sign in the nonlinearity, Proc. Amer. Math. Soc., 144 (2016), 2539–2546. https://doi.org/10.1090/proc/12905 doi: 10.1090/proc/12905 |
[8] | P. Korman, D. S. Schmidt, Continuation of global solution curves using global parameters, arXiv preprint, (2020), arXiv: 2001.00616. |
[9] | B. P. Rynne, A global curve of stable, positive solutions for a $p$-Laplacian problem, Electron. J. Differ. Equ., 58 (2010), 1–12. |
[10] | R. Schaaf, Global Solution Branches of Two Point Boundary Value Problems, Lecture Notes in Mathematics, no. 1458, Springer-Verlag, 1990. https://doi.org/10.1007/BFb0098346 |
[11] | M. Tang, Uniqueness of positive radial solutions for $\Delta u-u+u^p = 0$ on an annulus, J. Differ. Equ., 189 (2003), 148–160. https://doi.org/10.1016/S0022-0396(02)00142-0 doi: 10.1016/S0022-0396(02)00142-0 |