
This paper considers deriving new exact solutions of a nonlinear complex generalized Zakharov dynamical system for two different definitions of derivative operators called conformable and M− truncated. The system models the spread of the Langmuir waves in ionized plasma. The extended rational sine−cosine and sinh−cosh methods are used to solve the considered system. The paper also includes a comparison between the solutions of the models containing separately conformable and M− truncated derivatives. The solutions are compared in the 2D and 3D graphics. All computations and representations of the solutions are fulfilled with the help of Mathematica 12. The methods are efficient and easily computable, so they can be applied to get exact solutions of non-linear PDEs (or PDE systems) with the different types of derivatives.
Citation: Melih Cinar, Ismail Onder, Aydin Secer, Mustafa Bayram, Abdullahi Yusuf, Tukur Abdulkadir Sulaiman. A comparison of analytical solutions of nonlinear complex generalized Zakharov dynamical system for various definitions of the differential operator[J]. Electronic Research Archive, 2022, 30(1): 335-361. doi: 10.3934/era.2022018
[1] | Najmeddine Attia, Ahmed Ghezal . Global stability and co-balancing numbers in a system of rational difference equations. Electronic Research Archive, 2024, 32(3): 2137-2159. doi: 10.3934/era.2024097 |
[2] | Guoqiang Dang, Qiyou Liu . Solving the conformable Huxley equation using the complex method. Electronic Research Archive, 2023, 31(3): 1303-1322. doi: 10.3934/era.2023067 |
[3] | Feng Ye, Xiaoting Zhang, Chunling Jiang, Bo Zeng . Comment on: "Solving the conformable Huxley equation using the complex method" [Electron. Res. Arch., 31 (2023), 1303–1322]. Electronic Research Archive, 2025, 33(1): 255-262. doi: 10.3934/era.2025013 |
[4] | Yantong Guo, Quansheng Wu, Xiaofeng Wang . An extension of high-order Kou's method for solving nonlinear systems and its stability analysis. Electronic Research Archive, 2025, 33(3): 1566-1588. doi: 10.3934/era.2025074 |
[5] | Sahar Albosaily, Wael Mohammed, Mahmoud El-Morshedy . The exact solutions of the fractional-stochastic Fokas-Lenells equation in optical fiber communication. Electronic Research Archive, 2023, 31(6): 3552-3567. doi: 10.3934/era.2023180 |
[6] | Jiali Shi, Zhongyi Xiang . Mathematical analysis of nonlinear combination drug delivery. Electronic Research Archive, 2025, 33(3): 1812-1835. doi: 10.3934/era.2025082 |
[7] | Ismail T. Huseynov, Arzu Ahmadova, Nazim I. Mahmudov . Perturbation properties of fractional strongly continuous cosine and sine family operators. Electronic Research Archive, 2022, 30(8): 2911-2940. doi: 10.3934/era.2022148 |
[8] | Juan Gerardo Alcázar, Carlos Hermoso, Hüsnü Anıl Çoban, Uğur Gözütok . Computation of symmetries of rational surfaces. Electronic Research Archive, 2024, 32(11): 6087-6108. doi: 10.3934/era.2024282 |
[9] | Mehmet Ali Özarslan, Ceren Ustaoğlu . Extended incomplete Riemann-Liouville fractional integral operators and related special functions. Electronic Research Archive, 2022, 30(5): 1723-1747. doi: 10.3934/era.2022087 |
[10] | Jin Li, Yongling Cheng . Barycentric rational interpolation method for solving KPP equation. Electronic Research Archive, 2023, 31(5): 3014-3029. doi: 10.3934/era.2023152 |
This paper considers deriving new exact solutions of a nonlinear complex generalized Zakharov dynamical system for two different definitions of derivative operators called conformable and M− truncated. The system models the spread of the Langmuir waves in ionized plasma. The extended rational sine−cosine and sinh−cosh methods are used to solve the considered system. The paper also includes a comparison between the solutions of the models containing separately conformable and M− truncated derivatives. The solutions are compared in the 2D and 3D graphics. All computations and representations of the solutions are fulfilled with the help of Mathematica 12. The methods are efficient and easily computable, so they can be applied to get exact solutions of non-linear PDEs (or PDE systems) with the different types of derivatives.
Researchers make great efforts to better model real-world problems. Fractional calculus, one of the important and fresh fields of mathematics, offers a better modeling opportunity. So, it has wide applications in various areas such as physics, biology, and chemistry, etc. There is no unique definition of the fractional derivative or integral in the literature. Some of the popular definitions of the fractional derivative are Riemann-Liouville [1,2], Caputo [3], Caputo-Fabrizio [4], and Atangana-Baleanu [5]. Besides, some scientists have introduced new definitions of differential operators such as conformable [6] and M− truncated derivatives [7] in the last decade. Some works about the conformable derivative are new properties of conformable derivative [8], the geometric meaning of conformable derivative [9], price adjustment in market equilibrium [10], financial system analysis and hyperchaos detection [11], modeling neuron dynamics [12] and complex conformable derivative [13], etc. Regarding the conformable PDEs, there are many studies in the literature such as optical solution of Gerdjikov-Ivanov equation [14], numerical solution of Burgers' equation [15], wave solutions of Zakharov-Kuznetsov equation [16], exact solutions of space-time local fractal nonlinear evolution equations [17], Pochhammer-Chree equation [18], optical solutions of space-time nonlinear Schrodinger equation [19], modified KdV-Zakharov-Kuznetsov equation [20], Gardner equation [21], space-time Fokas-Lenells equation [22], deterministic and stochastic solutions of Schrodinger equation [23].
M− truncated derivative, which can be thought of as generalizations of the conformable derivatives, is introduced by Sousa and Oliveira [7] in 2018. Some articles about the M− truncated derivative can be listed as the longitudinal wave equation [24,25], (2+1) dimensional Boussinesq dynamic model [26], Lakshmanan–Porsezian–Daniel equation [27], Gerdjikov-Ivanov equation [28], Schrodinger-Hirota equation [29], Sturm-Liouville problem [30], Hirota-Maccari system [31], Radhakrishnan–Kundu–Lakshmanan equation [31] and Biswas-Arsad model [32], comparative study on complex Ginzburg-Landau equation [33], and clinical medicine applications [34].
In this work, the extended rational sine−cosine and sinh−cosh methods [35,36,37] will be used to solve the non-linear complex generalized Zakharov dynamical system (NLCGZDS) [38]. The system is a modeling of the spread of the Langmuir waves in ionized plasma [39]. In order to obtain better modeling, the related system is discussed using different derivative operators called conformable and M− truncated derivatives. We mainly aim to obtain novel exact solutions of the considered models to help further works in the different disciplines. Besides, we compare the obtained solutions to explain the behavior of the solutions.
The literature includes the studies on the classical NLCGZDS more. Some of them are Cauchy problem for the Zakharov system [40], quantum kinetics of Zakharov system [41], well-posedness of the system [42], hyperchaos investigation in the quantum Zakharov system [43]. The Zakharov system was solved by various methods such as time-splitting spectral method [44], extended trial equation method [45], exp-function method [46], local discontinuous Galerkin method [47], extended wave solutions of Klein-Gordon-Zakharov system [48] and also there is a comprehensive study on soliton solutions of Zakharov system [34].
The format of this article is organized as: in Section 2 some preliminaries to be used in subsequent parts are included. The mathematical analysis and the algorithm of the method are studied in Section 3. The governing model of considered PDE systems is dealt with in Section 4. In Section 5, the application of the method and the figures of the solutions of the considered equation are studied. The results and discussion can be found in Section 6. A conclusion is given in the final section.
Definition 2.1. Let g:[0,∞)→R be a function. α order conformable derivative of g(t) is defined as follows [6]:
Dαt(g(t))=limh→0g(t+ht1−α)−g(t)h, | (2.1) |
where α∈(0,1],t>0.
Theorem 2.2. [6]Let g(t) and h(t) be α -differentiable functions for α∈(0,1],t>0. Then,
1) Dαt(cg(t)+dh(t))=cDαtg(t)+dDαth(t), for c,d∈R,
2) Dαt(tn)=ntn−α,n∈R,
3) If g(t)=c where c is a constant, then Dαt(c)=0,
4) Dαt(h(t)g(t))=h(t)Dαtg(t)+g(t)Dαth(t),
5) Dαt(g(t)h(t))=h(t)Dαtg(t)−g(t)Dαlh(t)h2(t),h(t)≠0,
6) If the first derivative of g(t) exists, then Dαt(g(t))=t1−αdg(t)dt.
Definition 2.3. The truncated Mittag-Leffler function is given as [7]:
iEβ(z)=i∑k=0zkΓ(βk+1), | (2.2) |
in which β>0 and z∈C.
Definition 2.4. Let f:[0,∞)→R be a function, the M− truncated derivative of f of order α∈(0,1), w.r.t. t is defined by [7]
Dα,βM,tg(t)=limε→0g(t+iEβ(εt−α))−g(t)ε, | (2.3) |
where β,t>0 and iEβ(⋅) is truncated Mittag-Leffler function.
Theorem 2.5. Let g(t) be α order differentiable function at t0>0 with α∈(0,1] and β>0. Then, g(t) is continuous at t0 [7].
Theorem 2.6. [7]Let 0<α≤1,β>0,p,q∈R and assume that g,h is α -differentiable at a point t>0. Then,
1) Dα,βM,t(pg+qh)(t)=pDα,βM,tg(t)+qDα,βM,th(t), where p,q are real constants,
2) Dα,βM,t(gh)(t)=g(t)Dα,βM,th(t)+h(t)Dα,βM,tg(t),
3) Dα,βM,t(gh)(t)=g(t)Dα,βM,th(t)−h(t)Dα,βM,tg(t)h(t)2,
4) Dα,βM,t(gh)(t)=g(t)Dα,βM,th(t)−h(t)Dα,βM,tg(t)h(t)2,
5) If g is differentiable, then Dα,βM,t(g)(t)=t1−αΓ(β+1)dg(t)dt.
ⅰ) Let's deal with the general form of the conformable PDE system and the wave transformation as follows:
F(DαxΨ,DαtΨ,DαxDαtΨ,Dαtχ,Dαxχ,…)=0, | (3.1) |
G(DαxΨ,DαtΨ,DαxDαtΨ,Dαtχ,Dαxχ,…)=0, | (3.2) |
and
Ψ(x,t)=Y(ξ)eiϕ,ξ=c1xα+c2tαα,ϕ=c3xα+c4tαα,χ(x,t)=Q(ξ). | (3.3) |
ⅱ) Consider the general form of the local M− truncated PDE system and the wave transformation as follows:
F(Dα,βM,xΨ,Dα,βM,tΨ,Dα,βM,xDα,βM,tΨ,Dα,βM,xχ,Dα,βM,tχ,…)=0, | (3.4) |
G(Dα,βM,xΨ,Dα,βM,tΨ,Dα,βM,xDα,βM,tΨ,Dα,βM,xχ,Dα,βM,tχ,…)=0, | (3.5) |
and
Ψ(x,t)=Y(ξ)eiϕ,χ(x,t)=Q(ξ),ξ=Γ(β+1)(c1xα+c2tα)α,ϕ=Γ(β+1)(c3xα+c4tα)α, | (3.6) |
where Ψ(x,t) and χ(x,t) are the unknown functions, Dα∗ and Dα,βM,∗ are the α order conformable and M− truncated derivative operators with respect to ∗(x or t), respectively.
Substituting the wave transformations to the PDE systems yields the following nonlinear ordinary differential equation systems:
K(Y,Y′,Y′′,…,Q,Q′,Q′′,…)=0, | (3.7) |
L(Y,Y′,Y′′,…,Q,Q′,Q′′,…)=0, | (3.8) |
where Y and Q are the unknown functions of ξ and the superscript indicates the derivative of the functions with respect to ξ.
Step 1: Assume that the ODE system in (3.7) and (3.8) have the solutions as follows:
u(ψ)=ω0sin(μψ)ω2+ω1cos(μψ),cos(μψ)≠−ω2ω1, | (3.9) |
or
u(ψ)=ω0cos(μψ)ω2+ω1sin(μψ),sin(μψ)≠−ω2ω1. | (3.10) |
where ω0,ω1, and ω2 are parameters to be found in the next step. μ is the wave number to be also determined after substitution.
Step 2: Substitute the (3.9) or the (3.10) to the (3.7) and the (3.8). After collecting all terms with the same powers of cosh(μψ) or sinh(μψ), we derive a set of algebraic equations by equating all the coefficients of cosh(μψ) or sinh(μψ) to zero. In order to find the unknowns (ω0,ω1,ω2 and μ), the system can be solved by Maple, Mathematica, etc.
Step 3: Substitute the values of ω0,ω1,ω2,ψ and μ into (3.9) or (3.10), the solutions of the ODE system in (3.7) and (3.8) can be found.
Step 1: Suppose that the ODE system in (3.7) and (3.8) have the solutions as follows:
u(ψ)=ω0sinh(μψ)ω2+ω1cosh(μψ),cosh(μψ)≠−ω2ω1, | (3.11) |
or
u(ψ)=ω0cosh(μψ)ω2+ω1sinh(μψ),sinh(μψ)≠−ω2ω1, | (3.12) |
where ω0,ω1, and ω2 are parameters to be found in the next step. μ is the wave number to be also determined after substitution.
Step 2: Substitute the (3.11) or the (3.12) to the (3.7) and the (3.8). After collecting all terms with the same powers of cosh(μψ) or sinh(μψ), we derive a set of algebraic equations by equating all the coefficients of cosh(μψ) or sinh(μψ) to zero. In order to find the unknowns (ω0,ω1,ω2 and μ), the system can be solved by Maple, Mathematica, etc.
Step 3: Substitute the values of ω0,ω1,ω2,ψ and μ into (3.11) or (3.12), the solutions of the ODE system in (3.7) and (3.8) can be found.
In this section, we consider the NLCGZDS with respect to different definitions of derivatives [49]:
In conformable derivative, the considered equation might be written as [49]:
{iDαtΨ+Ψxx−2δ|Ψ|2Ψ+2χΨ=0,D2αtχ−χxx+(|Ψ|2)xx=0. | (4.1) |
For conformable derivative, the following wave transformations are employed:
Ψ(x,t)=Y(ξ)eiϕ,χ(x,t)=Q(ξ),ξ=x−2ktαα,ϕ=ctαα+kx. | (4.2) |
In M− truncated derivative, the considered equation might be written as [49]:
{iiDα,βM,tΨ+Ψxx−2δ|Ψ|2Ψ+2χΨ=0,iD2α,βM,tχ−χxx+(|Ψ|2)xx=0. | (4.3) |
For M− truncated derivative, the following wave transformations are employed:
Ψ(x,t)=Y(ξ)eiϕ,χ(x,t)=Q(ξ),ξ=x−2kΓ(β+1)tαα,ϕ=cΓ(β+1)tαα+kx. | (4.4) |
Applying the wave transformations in (4.2) and (4.4) to the (4.1) and (4.3), respectively, we obtain the following ODE system:
{Y′′−(c+k2)Y−2δY3+2YQ=0,(4k2−1)Q′′+(Y2)′′=0. | (4.5) |
Integrating two times the second equation in the (4.5) and supposing the integration constant is zero, we get:
Q(ξ)=Y21−4k2. | (4.6) |
Substituting Q(ξ) to the first equation in the (4.5), we get:
Y′′−(c+k2)Y+(21−4k2−2δ)Y3=0. | (4.7) |
Balancing the highest order derivative term and the nonlinear term, we derive N+2=3N⇒N=1.
Assume that the (4.7) has the solution in the form:
Y(ξ)=ω0sin[μξ]ω2+ω1cos[μξ]. | (5.1) |
Substituting (5.1) into the (4.7) ODE to get the algebraic equations formed by collecting all terms comprising the same powers of cos[μξ]m.
cos(μξ)2:−4ck2ω0ω21+cω0ω21−2δω30−4k4ω0ω21+8δk2ω30+k2ω0ω21+2ω30=0,cos(μξ)1:−16ck2ω0ω1ω2+4cω0ω1ω2−16k4ω0ω1ω2+8k2μ2ω0ω1ω2+4k2ω0ω1ω2−2μ2ω0ω1ω2=0,cos(μξ)0:−4ck2ω0ω21−16ck2ω0ω22+cω0ω21+4cω0ω22+6δω30−4k4ω0ω21−16k4ω0ω22−24δk2ω30+32k2μ2ω0ω21−16k2μ2ω0ω22+k2ω0ω21+4k2ω0ω22−8μ2ω0ω21+4μ2ω0ω22−6ω30=0. | (5.2) |
After solving the system of equations in the (5.2) via Mathematica, the following cases are derived:
Case 1:
μ=±√c+k2√2,ω0=±i√4k2−1√c+k2√δ(2−8k2)−2ω1,ω1=ω1,ω2=0. | (5.3) |
Substituting the parameters in Case 1 to the (5.1), the solutions of (4.7) can be derived:
Y1(ξ)=±i√4k2−1√c+k2√δ(2−8k2)−2tan[ξ√c+k2√2]. | (5.4) |
Considering the (5.4) and the (4.2), the following solutions of the conformable Zakharov system are obtained:
Ψ11(x,t)=i√4k2−1√c+k2√δ(2−8k2)−2tan[(x−2ktαα)√c+k2√2]ei(ctαα+kx), | (5.5) |
Ψ12(x,t)=−i√4k2−1√c+k2√δ(2−8k2)−2tan[(x−2ktαα)√c+k2√2]ei(ctαα+kx), | (5.6) |
χ11(x,t)=χ12(x,t)=−(4k2−1)(c+k2)(1−4k2)(δ(2−8k2)−2)tan2[√c+k2(x−2ktαα)√2]. | (5.7) |
These solutions are corresponding to trigonometric soliton solutions in the literature and valid for (c+k2)>0.
Case 2:
μ=±√2√c+k2,ω0=±i√4k2−1√c+k2√δ(2−8k2)−2ω1,ω2=ω2,ω1=±ω2. | (5.8) |
Substituting the parameters in Case 2 to the (5.1), the solutions of (4.7) can be derived:
Y2(ξ)=±i√4k2−1√c+k2√δ(2−8k2)−2sin[√2ξ√c+k2][ω2cos(√2ξ√c+k2)+ω1]. | (5.9) |
Considering the (5.9) and the (4.2), the following solutions of the conformable Zakharov system are obtained:
Ψ21(x,t)=i√4k2−1√c+k2√δ(2−8k2)−2sin[√2√c+k2(x−2ktαα)]ei(ctαα+kx)[1+cos(√2√c+k2(x−2ktαα))], | (5.10) |
Ψ22(x,t)=−i√4k2−1√c+k2√δ(2−8k2)−2sin[√2√c+k2(x−2ktαα)]ei(ctαα+kx)[1+cos(√2√c+k2(x−2ktαα))], | (5.11) |
Ψ23(x,t)=−i√4k2−1√c+k2√δ(2−8k2)−2sin[√2√c+k2(x−2ktαα)]ei(ctαα+kx)[1−cos(√2√c+k2(x−2ktαα))], | (5.12) |
Ψ24(x,t)=i√4k2−1√c+k2√δ(2−8k2)−2sin[√2√c+k2(x−2ktαα)]ei(ctαα+kx)[1−cos(√2√c+k2(x−2ktαα))], | (5.13) |
χ21(x,t)=χ22(x,t)=−(4k2−1)(c+k2)(1−4k2)(δ(2−8k2)−2)sin2[√2√c+k2(x−2ktαα)][1+cos(√2√c+k2(x−2ktαα))]2, | (5.14) |
χ23(x,t)=χ24(x,t)=−(4k2−1)(c+k2)(1−4k2)(δ(2−8k2)−2)sin2[√2√c+k2(x−2ktαα)][1−cos(√2√c+k2(x−2ktαα))]2. | (5.15) |
These solutions are valid for (c+k2)>0.
Suppose that solutions of the (4.7) is in the form:
Y(ξ)=ω0cos[μξ]ω2+ω1sin[μξ]. | (5.16) |
Substituting the (5.16) into the (4.7) to get the algebraic equations formed by collecting all terms comprising the same powers of sin[μξ]m.
sin(μξ)2:2ω0ω21ck2−12ω0ω21c+ω30δ+2ω0ω21k4−4ω30δk2−12ω0ω21k2−ω30=0,sin(μξ)1:−8ω0ω1ω2ck2+2ω0ω1ω2c−8ω0ω1ω2k4+4ω0ω1ω2k2μ2+2ω0ω1ω2k2−ω0ω1ω2μ2=0,sin(μξ)0:−2ω0ω21ck2−8ω0ω22ck2+12ω0ω21c+2ω0ω22c+3ω30δ−2ω0ω21k4−8ω0ω22k4−12ω30δk2+16ω0ω21k2μ2−8ω0ω22k2μ2+12ω0ω21k2+2ω0ω22k2−4ω0ω21μ2+2ω0ω22μ2−3ω30=0. | (5.17) |
After solving the system of equations in the (5.17) via Mathematica, the following cases are derived:
Case 3:
μ=±√c+k2√2,ω0=±iω1√4k2−1√c+k2√δ(2−8k2)−2,ω1=ω1,ω2=0. | (5.18) |
Substituting the parameters in Case 3 to the (5.1), the solutions of (4.7) can be derived:
Y3(ξ)=±i√4k2−1√c+k2√δ(2−8k2)−2cot[ξ√c+k2√2]. | (5.19) |
Considering the (5.19) and the (4.2), the following solutions of the conformable Zakharov system are obtained:
Ψ31(x,t)=i√4k2−1√c+k2√δ(2−8k2)−2cot[(x−2ktαα)√c+k2√2]ei(ctαα+kx), | (5.20) |
Ψ32(x,t)=−i√4k2−1√c+k2√δ(2−8k2)−2cot[(x−2ktαα)√c+k2√2]ei(ctαα+kx), | (5.21) |
χ31(x,t)=χ32(x,t)=(4k2−1)(c+k2)(1−4k2)(δ(2−8k2)−2)cot2[√c+k2(x−2ktαα)√2]. | (5.22) |
These solutions are corresponding to trigonometric soliton solutions in the literature and valid for (c+k2)>0.
Case 4:
μ=±√2√c+k2,ω0=±iω1√4k2−1√c+k2√δ(2−8k2)−2,ω2=ω2,ω1=±ω2. | (5.23) |
Substituting the parameters in Case 4 to the (5.1), the solutions of (4.7) can be derived:
Y4(ξ)=±i√4k2−1√c+k2√δ(2−8k2)−2cos[√2ξ√c+k2]ω2±ω1sin[√2ξ√c+k2]. | (5.24) |
Considering the (5.24) and the (4.2), the following solutions of the conformable Zakharov system are obtained:
Ψ41(x,t)=i√4k2−1√c+k2√δ(2−8k2)−2cos[(x−2ktαα)√2√c+k2]ei(ctαα+kx)1+sin[(x−2ktαα)√2√c+k2], | (5.25) |
Ψ42(x,t)=−i√4k2−1√c+k2√δ(2−8k2)−2cos[(x−2ktαα)√2√c+k2]ei(ctαα+kx)1+sin[(x−2ktαα)√2√c+k2], | (5.26) |
Ψ43(x,t)=−i√4k2−1√c+k2√δ(2−8k2)−2cos[(x−2ktαα)√2√c+k2]ei(ctαα+kx)1−sin[(x−2ktαα)√2√c+k2], | (5.27) |
Ψ44(x,t)=i√4k2−1√c+k2√δ(2−8k2)−2cos[(x−2ktαα)√2√c+k2]ei(ctαα+kx)1−sin[(x−2ktαα)√2√c+k2], | (5.28) |
χ41(x,t)=χ42(x,t)=−(4k2−1)(c+k2)(1−4k2)(δ(2−8k2)−2)cos2[√2√c+k2(x−2ktαα)][1+sin(√2√c+k2(x−2ktαα))]2, | (5.29) |
χ43(x,t)=χ44(x,t)=−(4k2−1)(c+k2)(1−4k2)(δ(2−8k2)−2)cos2[√2√c+k2(x−2ktαα)][1−sin(√2√c+k2(x−2ktαα))]2. | (5.30) |
These solutions are valid for (c+k2)>0.
Suppose that solutions of the (4.7) is in the form:
Y(ξ)=ω0sinh[μξ]ω2+ω1cosh[μξ]. | (5.31) |
Substituting the (5.31) into the (4.7) to get the algebraic equations formed by collecting all terms comprising the same powers of cosh[μξ]m.
cosh(μξ)2:−4ω0ω21ck2+ω0ω21c+2ω30δ−4ω0ω21k4−8ω30δk2+ω0ω21k2−2ω30,cosh(μξ)1:−16ω0ω1ω2ck2+4ω0ω1ω2c−16ω0ω1ω2k4−8ω0ω1ω2k2μ2+4ω0ω1ω2k2+2ω0ω1ω2μ2=0,cosh(μξ)0:−4ω0ω21ck2−16ω0ω22ck2+ω0ω21c+4ω0ω22c−6ω30δ−4ω0ω21k4−16ω0ω22k4+24ω30δk2−32ω0ω21k2μ2+16ω0ω22k2μ2+ω0ω21k2+4ω0ω22k2+8ω0ω21μ2−4ω0ω22μ2+6ω30=0. | (5.32) |
After solving the system of equations in the (5.32) via Mathematica, the following cases are derived:
Case 5:
μ=±√−c−k2√2,ω0=±iω1√4k2−1√c+k2√δ(8k2−2)+2,ω1=ω1,ω2=0. | (5.33) |
Substituting the parameters in Case 5 to the (5.1), the solutions of (4.7) can be derived:
Y5(ξ)=±i√4k2−1√c+k2√δ(8k2−2)+2tanh[ξ√−c−k2√2]. | (5.34) |
Considering the (5.34) and the (4.2), the following solutions of the conformable Zakharov system are obtained:
Ψ51(x,t)=i√4k2−1√c+k2√δ(8k2−2)+2tanh[(x−2ktαα)√−c−k2√2]ei(ctαα+kx), | (5.35) |
Ψ52(x,t)=−i√4k2−1√c+k2√δ(8k2−2)+2tanh[(x−2ktαα)√−c−k2√2]ei(ctαα+kx), | (5.36) |
χ51(x,t)=χ52(x,t)=−(4k2−1)(c+k2)(1−4k2)(δ(8k2−2)+2)tanh2[√−c−k2(x−2ktαα)√2]. | (5.37) |
These solutions are corresponding to dark soliton solutions in the literature and valid for (−c−k2)>0 and (4k2−1)(c+k2)(δ(8k2−2)+2)<0.
Case 6:
μ=±√2√−c−k2,ω0=±iω1√4k2−1√c+k2√δ(8k2−2)+2,ω2=ω2,ω1=±ω2. | (5.38) |
Substituting the parameters in Case 6 to the (5.1), the solutions of (4.7) can be derived:
Y6(ξ)=±i√4k2−1√c+k2√δ(8k2−2)+2sinh[√2ξ√−c−k2]ω2±ω1cosh[√2ξ√−c−k2]. | (5.39) |
Considering the (5.39) and the (4.2), the following solutions of the conformable Zakharov system are obtained:
Ψ61(x,t)=i√4k2−1√c+k2√δ(8k2−2)+2sinh[(x−2ktαα)√2√−c−k2]ei(ctαα+kx)1+cosh[(x−2ktαα)√2√−c−k2], | (5.40) |
Ψ62(x,t)=−i√4k2−1√c+k2√δ(8k2−2)+2sinh[(x−2ktαα)√2√−c−k2]ei(ctαα+kx)1+cosh[(x−2ktαα)√2√−c−k2], | (5.41) |
Ψ63(x,t)=−i√4k2−1√c+k2√δ(8k2−2)+2sinh[(x−2ktαα)√2√−c−k2]ei(ctαα+kx)1−cosh[(x−2ktαα)√2√−c−k2], | (5.42) |
Ψ64(x,t)=i√4k2−1√c+k2√δ(8k2−2)+2sinh[(x−2ktαα)√2√−c−k2]ei(ctαα+kx)1−cosh[(x−2ktαα)√2√−c−k2], | (5.43) |
χ61(x,t)=χ62(x,t)=−(4k2−1)(c+k2)(1−4k2)(δ(8k2−2)+2)sinh2[√2√−c−k2(x−2ktαα)][1+cosh[√2√−c−k2(x−2ktαα)]]2, | (5.44) |
χ63(x,t)=χ64(x,t)=−(4k2−1)(c+k2)(1−4k2)(δ(8k2−2)+2)sinh2[√2√−c−k2(x−2ktαα)][1−cosh[√2√−c−k2(x−2ktαα)]]2. | (5.45) |
These solutions are valid for (−c−k2)>0.
Suppose that solutions of the (4.7) is in the form:
Y(ξ)=ω0cosh[μξ]ω2+ω1sinh[μξ]. | (5.46) |
Substituting the (5.46) into the (4.7) to get the algebraic equations formed by collecting all terms comprising the same powers of sinh[μξ]m.
sinh(μξ)2:−4ω0ω21ck2+ω0ω21c+2ω30δ−4ω0ω21k4−8ω30δk2+ω0ω21k2−2ω30,sinh(μξ)1:−16ω0ω1ω2ck2+4ω0ω1ω2c−16ω0ω1ω2k4−8ω0ω1ω2k2μ2+4ω0ω1ω2k2+2ω0ω1ω2μ2=0,sinh(μξ)0:−4ω0ω21ck2−16ω0ω22ck2+ω0ω21c+4ω0ω22c−6ω30δ−4ω0ω21k4−16ω0ω22k4+24ω30δk2−32ω0ω21k2μ2+16ω0ω22k2μ2+ω0ω21k2+4ω0ω22k2+8ω0ω21μ2−4ω0ω22μ2+6ω30=0. | (5.47) |
After solving the system of equations in the (5.47) via Mathematica, the following cases are derived:
Case 7:
μ=±√−c−k2√2,ω0=±iω1√4k2−1√c+k2√δ(8k2−2)+2,ω1=ω1,ω2=0. | (5.48) |
Considering the (5.49) and the (4.2), the following solutions of the conformable Zakharov system are obtained:
Y7(ξ)=±i√4k2−1√c+k2√δ(8k2−2)+2coth[ξ√−c−k2√2]. | (5.49) |
Substituting the parameters in the Case 7 to the (5.1), the solutions of (4.7) can be derived:
Ψ71(x,t)=i√4k2−1√c+k2√δ(8k2−2)+2coth[(x−2ktαα)√−c−k2√2]ei(ctαα+kx), | (5.50) |
Ψ72(x,t)=−i√4k2−1√c+k2√δ(8k2−2)+2coth[(x−2ktαα)√−c−k2√2]ei(ctαα+kx), | (5.51) |
χ71(x,t)=χ72(x,t)=−(4k2−1)(c+k2)(1−4k2)(δ(8k2−2)+2)coth2[√−c−k2(x−2ktαα)√2]. | (5.52) |
These solutions are corresponding to singular soliton solutions in the literature and valid for (−c−k2)>0.
Case 8:
μ=±√2√−c−k2,ω0=±iω1√4k2−1√c+k2√δ(8k2−2)+2,ω2=ω2,ω1=±ω2i. | (5.53) |
Substituting the parameters in Case 8 to the (5.1), the solutions of (4.7) can be derived:
Y8(ξ)=±i√4k2−1√c+k2√δ(8k2−2)+2cosh[√2ξ√−c−k2]ω2±ω1isinh[√2ξ√−c−k2]. | (5.54) |
Considering the (5.54) and the (4.2), the following solutions of the conformable Zakharov system are obtained:
Ψ81(x,t)=i√4k2−1√c+k2√δ(8k2−2)+2cosh[(x−2ktαα)√2√−c−k2]ei(ctαα+kx)1+isinh[(x−2ktαα)√2√−c−k2], | (5.55) |
Ψ82(x,t)=−i√4k2−1√c+k2√δ(8k2−2)+2cosh[(x−2ktαα)√2√−c−k2]ei(ctαα+kx)1+isinh[(x−2ktαα)√2√−c−k2], | (5.56) |
Ψ83(x,t)=−i√4k2−1√c+k2√δ(8k2−2)+2cosh[(x−2ktαα)√2√−c−k2]ei(ctαα+kx)1−isinh[(x−2ktαα)√2√−c−k2], | (5.57) |
Ψ84(x,t)=i√4k2−1√c+k2√δ(8k2−2)+2cosh[(x−2ktαα)√2√−c−k2]ei(ctαα+kx)1−isinh[(x−2ktαα)√2√−c−k2], | (5.58) |
χ81(x,t)=χ82(x,t)=−(4k2−1)(c+k2)(1−4k2)(δ(8k2−2)+2)cosh2[√2√−c−k2(x−2ktαα)][1+isinh[√2√−c−k2(x−2ktαα)]]2, | (5.59) |
χ83(x,t)=χ84(x,t)=−(4k2−1)(c+k2)(1−4k2)(δ(8k2−2)+2)cosh2[√2√−c−k2(x−2ktαα)][1−isinh[√2√−c−k2(x−2ktαα)]]2. | (5.60) |
These solutions are valid for (−c−k2)>0.
Suppose that solutions of the (4.7) is in the form:
Y(ξ)=ω0sin[μξ]ω2+ω1cos[μξ]. | (5.61) |
Substituting (5.61) into the (4.7) ODE to get the algebraic equations formed by collecting all terms comprising the same powers of cos[μξ]m.
cos(μξ)2:−4ω0ω21ck2+ω0ω21c−2ω30δ+8ω30δk2−4ω0ω21k4+ω0ω21k2+2ω30=0,cos(μξ)1:−16ω0ω1ω2ck2+4ω0ω1ω2c+8ω0ω1ω2k2μ2−16ω0ω1ω2k4+4ω0ω1ω2k2−2ω0ω1ω2μ2=0,cos(μξ)0:−4ω0ω21ck2−16ω0ω22ck2+ω0ω21c+4ω0ω22c+6ω30δ−24ω30δk2+32ω0ω21k2μ2−16ω0ω22k2μ2−4ω0ω21k4−16ω0ω22k4+ω0ω21k2+4ω0ω22k2−8ω0ω21μ2+4ω0ω22μ2−6ω30=0. | (5.62) |
After solving the system of equations in the (5.62) via Mathematica, the following cases are derived:
Case 1:
μ=±√c+k2√2,ω0=±iω1√4k2−1√c+k2√δ(2−8k2)−2,ω1=ω1,ω2=0. | (5.63) |
Substituting the parameters in Case 1 to the (5.1), the solutions of (4.7) can be derived:
Y1(ξ)=±i√4k2−1√c+k2tan[√c+k2(x−2kΓ(β+1)tαα)√2]√δ(2−8k2)−2. | (5.64) |
Considering the (5.64) and the (4.4), the following solutions of the M− truncated Zakharov system are obtained:
Ψ11(x,t)=i√4k2−1√c+k2tan[√c+k2(x−2kΓ(β+1)tαα)√2]√δ(2−8k2)−2ei(cΓ(β+1)tαα+kx), | (5.65) |
Ψ12(x,t)=−i√4k2−1√c+k2tan[√c+k2(x−2kΓ(β+1)tαα)√2]√δ(2−8k2)−2ei(cΓ(β+1)tαα+kx), | (5.66) |
χ11(x,t)=χ12(x,t)=−(4k2−1)(c+k2)tan2[√c+k2(x−2kΓ(β+1)tαα)√2](1−4k2)(δ(2−8k2)−2). | (5.67) |
These solutions are corresponding to trigonometric soliton solutions in the literature and valid for (c+k2)>0.
Case 2:
μ=±√2√c+k2,ω0=±iω1√4k2−1√c+k2√δ(2−8k2)−2,ω2=ω2,ω1=±ω2. | (5.68) |
Substituting the parameters in Case 2 to the (5.1), the solutions of (4.7) can be derived:
Y2(ξ)=±i√4k2−1√c+k2√δ(2−8k2)−2sin[√2ξ√c+k2][ω1+ω2cos(√2ξ√c+k2)]. | (5.69) |
Considering the (5.69) and the (4.4), the following solutions of the M− truncated Zakharov system are obtained:
Ψ21(x,t)=i√4k2−1√c+k2sin[√2√c+k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(2−8k2)−2[1+cos(√2√c+k2(x−2kΓ(β+1)tαα))], | (5.70) |
Ψ22(x,t)=−i√4k2−1√c+k2sin[√2√c+k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(2−8k2)−2[1+cos(√2√c+k2(x−2kΓ(β+1)tαα))], | (5.71) |
Ψ23(x,t)=−i√4k2−1√c+k2sin[√2√c+k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(2−8k2)−2[1−cos(√2√c+k2(x−2kΓ(β+1)tαα))], | (5.72) |
Ψ24(x,t)=i√4k2−1√c+k2sin[√2√c+k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(2−8k2)−2[1−cos(√2√c+k2(x−2kΓ(β+1)tαα))], | (5.73) |
χ21(x,t)=χ22(x,t)=−(4k2−1)(c+k2)(1−4k2)(δ(2−8k2)−2)sin2[√2√c+k2(x−2ktαα)][1+cos[√2√c+k2(x−2ktαα)]]2, | (5.74) |
χ23(x,t)=χ24(x,t)=−(4k2−1)(c+k2)sin2[√2√c+k2(x−2kΓ(β+1)tαα)](1−4k2)(δ(2−8k2)−2)(1−cos[√2√c+k2(x−2kΓ(β+1)tαα)])2. | (5.75) |
These solutions are valid for (c+k2)>0.
Suppose that solutions of the (4.7) is in the form:
Y(ξ)=ω0cos[μξ]ω2+ω1sin[μξ]. | (5.76) |
Substituting the (5.76) into the (4.7) to get the algebraic equations formed by collecting all terms comprising the same powers of sin[μξ]m.
sin(μξ)2:2ω0ω21ck2−12ω0ω21c+ω30δ−4ω30δk2+2ω0ω21k4−12ω0ω21k2−ω30=0,sin(μξ)1:−8ω0ω1ω2ck2+2ω0ω1ω2c+4ω0ω1ω2k2μ2−8ω0ω1ω2k4+2ω0ω1ω2k2−ω0ω1ω2μ2=0,sin(μξ)0:−2ω0ω21ck2−8ω0ω22ck2+12ω0ω21c+2ω0ω22c+3ω30δ−12ω30δk2+16ω0ω21k2μ2−8ω0ω22k2μ2−2ω0ω21k4−8ω0ω22k4+12ω0ω21k2+2ω0ω22k2−4ω0ω21μ2+2ω0ω22μ2−3ω30=0. | (5.77) |
After solving the system of equations in the (5.77) via Mathematica, the following cases are derived:
Case 3:
μ=±√c+k2√2,ω0=±iω1√4k2−1√c+k2√δ(2−8k2)−2,ω1=ω1,ω2=0. | (5.78) |
Substituting the parameters in Case 3 to the (5.1), the solutions of (4.7) can be derived:
Y3(ξ)=±i√4k2−1√c+k2cot[√c+k2(x−2kΓ(β+1)tαα)√2]√δ(2−8k2)−2. | (5.79) |
Considering the (5.79) and the (4.4), the following solutions of the M− truncated Zakharov system are obtained:
Ψ31(x,t)=i√4k2−1√c+k2cot[√c+k2(x−2kΓ(β+1)tαα)√2]√δ(2−8k2)−2ei(cΓ(β+1)tαα+kx), | (5.80) |
Ψ32(x,t)=−i√4k2−1√c+k2cot[√c+k2(x−2kΓ(β+1)tαα)√2]√δ(2−8k2)−2ei(cΓ(β+1)tαα+kx), | (5.81) |
χ31(x,t)=χ32(x,t)=−(4k2−1)(c+k2)cot2[√c+k2(x−2kΓ(β+1)tαα)√2](1−4k2)(δ(2−8k2)−2). | (5.82) |
These solutions are corresponding to trigonometric soliton solutions in the literature and valid for (c+k2)>0.
Case 4:
μ=±√2√c+k2,ω0=±iω1√4k2−1√c+k2√δ(2−8k2)−2,ω2=ω2,ω1=±ω2. | (5.83) |
Substituting the parameters in Case 4 to the (5.1), the solutions of (4.7) can be derived:
Y4(ξ)=±i√4k2−1√c+k2cos[√2ξ√c+k2]√δ(2−8k2)−2(ω1+ω2sin[√2ξ√c+k2]). | (5.84) |
Considering the (5.84) and the (4.4), the following solutions of the M− truncated Zakharov system are obtained:
Ψ41(x,t)=i√4k2−1√c+k2cos[√2√c+k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(2−8k2)−2(sin[1+√2√c+k2(x−2kΓ(β+1)tαα)]), | (5.85) |
Ψ42(x,t)=−i√4k2−1√c+k2cos[√2√c+k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(2−8k2)−2(sin[1+√2√c+k2(x−2kΓ(β+1)tαα)]), | (5.86) |
Ψ43(x,t)=−i√4k2−1√c+k2cos[√2√c+k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(2−8k2)−2(sin[1−√2√c+k2(x−2kΓ(β+1)tαα)]), | (5.87) |
Ψ44(x,t)=i√4k2−1√c+k2cos[√2√c+k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(2−8k2)−2(sin[1−√2√c+k2(x−2kΓ(β+1)tαα)]), | (5.88) |
χ41(x,t)=χ42(x,t)=−(4k2−1)(c+k2)cos2[√2√c+k2(x−2kΓ(β+1)tαα)](1−4k2)(δ(2−8k2)−2)(1+sin[√2√c+k2(x−2kΓ(β+1)tαα)])2, | (5.89) |
χ43(x,t)=χ44(x,t)=−(4k2−1)(c+k2)cos2[√2√c+k2(x−2kΓ(β+1)tαα)](1−4k2)(δ(2−8k2)−2)(1−sin[√2√c+k2(x−2kΓ(β+1)tαα)])2. | (5.90) |
These solutions are valid for (c+k2)>0.
Suppose that solutions of the (4.7) is in the form:
Y(ξ)=ω0sinh[μξ]ω2+ω1cosh[μξ]. | (5.91) |
Substituting the (5.91) into the (4.7) to get the algebraic equations formed by collecting all terms comprising the same powers of cosh[μξ]m.
cosh(μξ)2:−4ω0ω21ck2+ω0ω21c+2ω30δ−8ω30δk2−4ω0ω21k4+ω0ω21k2−2ω30=0,cosh(μξ)1:−16ω0ω1ω2ck2+4ω0ω1ω2c−8ω0ω1ω2k2μ2−16ω0ω1ω2k4+4ω0ω1ω2k2+2ω0ω1ω2μ2=0,cosh(μξ)0:−4ω0ω21ck2−16ω0ω22ck2+ω0ω21c+4ω0ω22c−6ω30δ+24ω30δk2−32ω0ω21k2μ2+16ω0ω22k2μ2−4ω0ω21k4−16ω0ω22k4+ω0ω21k2+4ω0ω22k2+8ω0ω21μ2−4ω0ω22μ2+6ω30=0. | (5.92) |
After solving the system of equations in the (5.92) via Mathematica, the following cases are derived:
Case 5:
μ=±√−c−k2√2,ω0=±iω1√4k2−1√c+k2√δ(8k2−2)+2,ω1=ω1,ω2=0. | (5.93) |
Substituting the parameters in Case 5 to the (5.1), the solutions of (4.7) can be derived:
Y5(ξ)=±i√4k2−1√c+k2tanh[√−c−k2(x−2kΓ(β+1)tαα)√2]√δ(8k2−2)+2. | (5.94) |
Considering the (5.94) and the (4.4), the following solutions of the M− truncated Zakharov system are obtained:
Ψ51(x,t)=i√4k2−1√c+k2tanh[√−c−k2(x−2kΓ(β+1)tαα)√2]√δ(8k2−2)+2ei(cΓ(β+1)tαα+kx), | (5.95) |
Ψ52(x,t)=−i√4k2−1√c+k2tanh[√−c−k2(x−2kΓ(β+1)tαα)√2]√δ(8k2−2)+2ei(cΓ(β+1)tαα+kx), | (5.96) |
χ51(x,t)=χ52(x,t)=−(4k2−1)(c+k2)tanh2[√−c−k2(x−2kΓ(β+1)tαα)√2](1−4k2)(δ(8k2−2)+2). | (5.97) |
These solutions are corresponding to dark soliton solutions in the literature and valid for (−c−k2)>0 and (4k2−1)(c+k2)(δ(8k2−2)+2)<0.
Case 6:
μ=±√2√−c−k2,ω0=±iω1√4k2−1√c+k2√δ(8k2−2)+2,ω2=ω2,ω1=±ω2. | (5.98) |
Substituting the parameters in Case 6 to the (5.1), the solutions of (4.7) can be derived:
Y6(ξ)=±i√4k2−1√c+k2sinh[√2ξ√−c−k2]√δ(8k2−2)+2(ω1+ω2cosh[√2ξ√−c−k2]). | (5.99) |
Considering the (5.99) and the (4.4), the following solutions of the M− truncated Zakharov system are obtained:
Ψ61(x,t)=i√4k2−1√c+k2sinh[√2√−c−k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(8k2−2)+2(1+cosh[√2√−c−k2(x−2kΓ(β+1)tαα)]), | (5.100) |
Ψ62(x,t)=−i√4k2−1√c+k2sinh[√2√−c−k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(8k2−2)+2(1+cosh[√2√−c−k2(x−2kΓ(β+1)tαα)]), | (5.101) |
Ψ63(x,t)=−i√4k2−1√c+k2sinh[√2√−c−k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(8k2−2)+2(1−cosh[√2√−c−k2(x−2kΓ(β+1)tαα)]), | (5.102) |
Ψ64(x,t)=i√4k2−1√c+k2sinh[√2√−c−k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(8k2−2)+2(1−cosh[√2√−c−k2(x−2kΓ(β+1)tαα)]), | (5.103) |
χ61(x,t)=χ62(x,t)=−(4k2−1)(c+k2)sinh2[√2√−c−k2(x−2kΓ(β+1)tαα)](1−4k2)(δ(8k2−2)+2)(1+cosh[√2√−c−k2(x−2kΓ(β+1)tαα)])2, | (5.104) |
χ63(x,t)=χ64(x,t)=−(4k2−1)(c+k2)sinh2[√2√−c−k2(x−2kΓ(β+1)tαα)](1−4k2)(δ(8k2−2)+2)(1−cosh[√2√−c−k2(x−2kΓ(β+1)tαα)])2. | (5.105) |
These solutions are valid for (−c−k2)>0.
Suppose that solutions of the (4.7) is in the form:
Y(ξ)=ω0cosh[μξ]ω2+ω1sinh[μξ]. | (5.106) |
Substituting the (5.106) into the (4.7) to get the algebraic equations formed by collecting all terms comprising the same powers of sinh[μξ]m.
sinh(μξ)2:−2ω0ω21ck2+12ω0ω21c+ω30δ−4ω30δk2−2ω0ω21k4+12ω0ω21k2−ω30=0,sinh(μξ)1:−8ω0ω1ω2ck2+2ω0ω1ω2c−4ω0ω1ω2k2μ2−8ω0ω1ω2k4+2ω0ω1ω2k2+ω0ω1ω2μ2=0,sinh(μξ)0:2ω0ω21ck2−8ω0ω22ck2−12ω0ω21c+2ω0ω22c+3ω30δ−12ω30δk2+16ω0ω21k2μ2+8ω0ω22k2μ2+2ω0ω21k4−8ω0ω22k4−12ω0ω21k2+2ω0ω22k2−4ω0ω21μ2−2ω0ω22μ2−3ω30=0. | (5.107) |
After solving the system of equations in the (5.107) via Mathematica, the following cases are derived:
Case 7:
μ=±√−c−k2√2,ω0=±iω1√4k2−1√c+k2√δ(8k2−2)+2,ω1=ω1,ω2=0. | (5.108) |
Substituting the parameters in Case 7 to the (5.1), the solutions of (4.7) can be derived:
Y7(ξ)=±i√4k2−1√c+k2coth[ξ√−c−k2√2]√δ(8k2−2)+2. | (5.109) |
Considering the (5.109) and the (4.4), the following solutions of the M− truncated Zakharov system are obtained:
Ψ71(x,t)=i√4k2−1√c+k2coth[√−c−k2(x−2kΓ(β+1)tαα)√2]√δ(8k2−2)+2ei(cΓ(β+1)tαα+kx), | (5.110) |
Ψ72(x,t)=−i√4k2−1√c+k2coth[√−c−k2(x−2kΓ(β+1)tαα)√2]√δ(8k2−2)+2ei(cΓ(β+1)tαα+kx), | (5.111) |
χ71(x,t)=χ72(x,t)=−(4k2−1)(c+k2)coth2[√−c−k2(x−2kΓ(β+1)tαα)√2](1−4k2)(δ(8k2−2)+2). | (5.112) |
These solutions are corresponding to singular soliton solutions in the literature and valid for (−c−k2)>0.
Case 8:
μ=±√2√−c−k2,ω0=±iω1√4k2−1√c+k2√δ(8k2−2)+2,ω2=ω2,ω1=±ω2i. | (5.113) |
Substituting the parameters in Case 8 to the (5.1), the solutions of (4.7) can be derived:
Y8(ξ)=±√4k2−1√c+k2cosh[√2ξ√−c−k2]√δ(8k2−2)+2(ω1+iω2sinh[√2ξ√−c−k2]). | (5.114) |
Considering the (5.114) and the (4.4), the following solutions of the M− truncated Zakharov system are obtained:
Ψ81(x,t)=−√4k2−1√c+k2cosh[√2√−c−k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(8k2−2)+2(1+isinh[√2√−c−k2(x−2kΓ(β+1)tαα)]), | (5.115) |
Ψ82(x,t)=√4k2−1√c+k2cosh[√2√−c−k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(8k2−2)+2(1+isinh[√2√−c−k2(x−2kΓ(β+1)tαα)]), | (5.116) |
Ψ83(x,t)=√4k2−1√c+k2cosh[√2√−c−k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(8k2−2)+2(1−isinh[√2√−c−k2(x−2kΓ(β+1)tαα)]), | (5.117) |
Ψ84(x,t)−√4k2−1√c+k2cosh[√2√−c−k2(x−2kΓ(β+1)tαα)]ei(cΓ(β+1)tαα+kx)√δ(8k2−2)+2(1−isinh[√2√−c−k2(x−2kΓ(β+1)tαα)]), | (5.118) |
χ81(x,t)=χ82(x,t)=(4k2−1)(c+k2)cosh2[√2√−c−k2(x−2kΓ(β+1)tαα)](1−4k2)(δ(8k2−2)+2)(1+isinh[√2√−c−k2(x−2kΓ(β+1)tαα)])2, | (5.119) |
χ83(x,t)=χ84(x,t)=(4k2−1)(c+k2)cosh2[√2√−c−k2(x−2kΓ(β+1)tαα)](1−4k2)(δ(8k2−2)+2)(1−isinh[√2√−c−k2(x−2kΓ(β+1)tαα)])2. | (5.120) |
These solutions are valid for (−c−k2)>0.
In this work, exact solutions of NLCGZDS for two different definitions of derivatives, conformable and M− truncated derivatives, are studied by the extended rational sine−cosine and sinh−cosh method.
In Fig. 1, some plots of the solution χ51(x,t) are demonstrated for c=−3,k=1,δ=2,β=0.3, and α=0.5. For example, in Fig. 1a and Fig. 1b, we depict 3D plots of (5.37) and (5.97), that are the solutions of the conformable and M− truncated Zakharov system, respectively. In Fig. 1c, the solutions in (5.37) and (5.97) are compared on a single graph to show the difference between the solutions of the conformable and M− truncated Zakharov system. In Fig. 1d, 2d comparison of (5.37) and (5.97) are given for t=1,α=0.5 and β=0.3. We take c=−3,k=1,δ=2, and β=0.3. in Fig. 2. In Fig. 2a, 3D plots of the (5.41) and the (5.101) which are some of the solutions of Zakharov system with conformable and M− truncated derivatives, respectively, are compared. In Fig. 2b, 2D plot of the (5.41) is depicted for different values of α. 2D plot of the (5.101) is depicted for different values of α and fixed β in Fig. 2c. In Fig. 2d, we make a 2D comparison between the (5.41) and the (5.101) for some α and β values. In Fig. 3, we assume c=−3,k=1, and δ=2. In Fig. 3a, it is showed that the solutions of the M− truncated Zakharov system coincide with the solutions of conformable Zakharov system for a fixed value of α and β=1. In Fig. 3b, the 2D plots of the (5.110), one of the solutions of the considered PDE with M− truncated derivative, is plotted for fixed α=0.3 and various values of the β.
We have demonstrated the 3D and 2D plots to grasp clearly and comprehensively the physical properties of the constructed topological, singular solitons, periodic wave and singular periodic wave solutions, under the choice of the suitable values of parameters and different fractional values of α, the 3D and 2D are plotted. The perspective view of the topological soliton could be viewed in Fig. 1a and Fig. 1c under α=0.5 for solutions (5.37) and (5.97). The perspective view of the singular soliton could be viewed in Fig. 1a under α=0.2 for solutions (5.41) and (5.101). The propagation patterns of the wave for the topological, singular solitons and periodic wave solution along the x-axis for are depicted in the 2D plots through Fig. 1a, Fig. 1b and Fig. 1c with different labeled fractional values of α.
Furthermore, these outcomes have physical implications, such as the hyperbolic tangent appearing in the computation of magnetic moment and rapidity of special relativity, and the hyperbolic cotangent appearing in the Langevin function for magnetic polarization [50].
This paper investigates the analytical solutions of the NLCGZDS models with two types of derivatives called conformable and M− truncated via the extended rational sine−cosine and sinh−cosh. Using appropriate wave transformations, the PDE system is turned into an ODE system. The solutions of the ODE system are assumed in the forms of the extended rational sine−cosine and sinh−cosh. A system of algebraic equations is derived by substituting the solutions to the ODE system, and by doing some calculations. When the system is solved, one finds the unknown coefficients in the rational form, and so, solutions of the PDE system. The novel solutions of NLCGZDS models including the different types of derivatives are derived to our best knowledge. The obtained solutions of conformable and M− truncated system are compared in 2D and 3D figures to analyze the behavior of the two models. The technique is powerful and easily adaptable for other non-linear problems as well. It is expected that the new solutions of the considered system would be helpful for future papers in diverse science areas that use nonlinear partial differential equations nonlinear problems.
The first author (MC) would like to thank the Scientific and Technological Research Council of Turkey (TUBITAK) for the financial support of the 2211-A Fellowship Program.
The authors declare there is no conflicts of interest.
[1] | J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-4342-7 |
[2] | I. Podlubny, Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, New York, 1999. |
[3] |
M. Caputo, Mean fractional-order-derivatives differential equations and filters, Annali dell'Università di Ferrara, 41 (1995), 73–84. https://doi.org/10.1007/BF02826009 doi: 10.1007/BF02826009
![]() |
[4] |
M. Caputo, M. Fabrizio, Progress in fractional differentiation and applications a new definition of fractional derivative without singular kernel, Prog. Fractional Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
![]() |
[5] |
A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Ther. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
![]() |
[6] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[7] |
J. Sousa, E. V. De Oliviera, A new truncated m-fractional derivative type unifying some fractional derivative types with classical properties, arXiv: Classical Anal. ODEs, 16 (2017), 83–96. https://doi.org/10.28924/2291-8639-16-2018-83 doi: 10.28924/2291-8639-16-2018-83
![]() |
[8] |
A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889–898. https://doi.org/10.1515/math-2015-0081 doi: 10.1515/math-2015-0081
![]() |
[9] |
R. Khalil, M. A. Horani, M. A. Hammad, Geometric meaning of conformable derivative via fractional cords, J. Math. Comput. Sci, 19 (2019), 241–245. https://doi.org/10.22436/jmcs.019.04.03 doi: 10.22436/jmcs.019.04.03
![]() |
[10] |
E. Bas, B. Acar, R. Ozarslan, The price adjustment equation with different types of conformable derivatives in market equilibrium, AIMS Math., 4 (2019), 805–820. https://doi.org/10.3934/math.2019.3.805 doi: 10.3934/math.2019.3.805
![]() |
[11] |
B. Xin, W. Peng, Y. Kwon, Y. Liu, Modeling, discretization, and hyperchaos detection of conformable derivative approach to a financial system with market confidence and ethics risk, Adv. Differ. Equations, 2019 (2019), 138. https://doi.org/10.1186/s13662-019-2074-8 doi: 10.1186/s13662-019-2074-8
![]() |
[12] |
M. Yavuz, B. Yaskiran, Conformable derivative operator in modelling neuronal dynamics, Appl. Appl. Math., 13 (2018), 803–817. https://doi.org/10.1186/s13662-019-2074-8 doi: 10.1186/s13662-019-2074-8
![]() |
[13] |
S. Uçar, N. Y. Özgür, B. B. İ. Eroğlu, Complex conformable derivative, Arabian J. Geosci., 12 (2019), 1–6. https://doi.org/10.1007/s12517-019-4396-y doi: 10.1007/s12517-019-4396-y
![]() |
[14] |
B. Ghanbari, D. Baleanu, New optical solutions of the fractional gerdjikov-ivanov equation with conformable derivative, Front. Phys., 8 (2020). https://doi.org/10.3389/fphy.2020.00167 doi: 10.3389/fphy.2020.00167
![]() |
[15] |
M. Senol, O. Tasbozan, A. Kurt, Numerical solutions of fractional Burgers' type equations with conformable derivative, Chinese J. Phys., 58 (2019), 75–84. https://doi.org/10.1016/j.cjph.2019.01.001 doi: 10.1016/j.cjph.2019.01.001
![]() |
[16] |
B. Ghanbari, M. S. Osman, D. Baleanu, Numerical solutions of fractional Burgers' type equations with conformable derivative, Mod. Phys. Lett. A, 34 (2019). https://doi.org/10.1142/S0217732319501554 doi: 10.1142/S0217732319501554
![]() |
[17] |
A. A. Hyder, A. H. Soliman, Exact solutions of space-time local fractal nonlinear evolution equations: A generalized conformable derivative approach, Results Phys., 17 (2020), 103135. https://doi.org/10.1016/j.rinp.2020.103135 doi: 10.1016/j.rinp.2020.103135
![]() |
[18] |
A. Yusuf, M. Inc, A. A. Isa, Fractional solitons for the nonlinear Pochhammer-Chree equation with conformable derivative, J. Coupled Syst. Multiscale Dyn., 6 (2018), 158–162. https://doi.org/10.1166/jcsmd.2018.1149 doi: 10.1166/jcsmd.2018.1149
![]() |
[19] |
M. Inc, A. Yusuf, A. A. Isa, D. Baleanu, Dark and singular optical solitons for the conformable space-time nonlinear Schrödinger equation with Kerr and power law nonlinearity, Optik, 162 (2018), 65–75. https://doi.org/10.1016/j.ijleo.2018.02.085 doi: 10.1016/j.ijleo.2018.02.085
![]() |
[20] |
G. Yel, T. A. Sulaiman, H. M. Baskonus, On the complex solutions to the (3 + 1)-dimensional conformable fractional modified KdV-Zakharov-Kuznetsov equation, Mod. Phys. Lett. B, 34 (2020), 2050069. https://doi.org/10.1142/S0217984920500694 doi: 10.1142/S0217984920500694
![]() |
[21] |
H. Rezazadeh, D. Kumar, T. A. Sulaiman, H. Bulut, New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation, Mod. Phys. Lett. B, 33 (2019), 1950196. https://doi.org/10.1142/S0217984919501963 doi: 10.1142/S0217984919501963
![]() |
[22] |
H. Bulut, T. A. Sulaiman, H. M. Baskonus, H. Rezazadeh, M. Eslami, M. Mirzazadeh, Optical solitons and other solutions to the conformable space–time fractional Fokas–Lenells equation, Optik, 172 (2018), 20–27. https://doi.org/10.1016/j.ijleo.2018.06.108 doi: 10.1016/j.ijleo.2018.06.108
![]() |
[23] |
Z. Korpinar, M. Inc, A. S. Alshomrani, D. Baleanu, The deterministic and stochastic solutions of the schrodinger equation with time conformable derivative in birefrigent fibers, AIMS Math., 5 (2020), 2326–2345. https://doi.org/10.3934/math.2020154 doi: 10.3934/math.2020154
![]() |
[24] |
H. Yépez-Martinez, J. F. Gómez-Aguilar, Local M-derivative of order α and the modified expansion function method applied to the longitudinal wave equation in a magneto electro-elastic circular rod, Opt. Quantum Electron., 50 (2018), 375. https://doi.org/10.1007/s11082-018-1643-5 doi: 10.1007/s11082-018-1643-5
![]() |
[25] |
H. M. Baskonus, J. F. Gómez-Aguilar, New singular soliton solutions to the longitudinal wave equation in a magneto-electro-elastic circular rod with M-derivative, Mod. Phys. Lett. B, 33 (2019), 1950251. https://doi.org/10.1142/S0217984919502518 doi: 10.1142/S0217984919502518
![]() |
[26] |
H. M. Baskonus, New singular soliton solutions to the longitudinal wave equation in a magneto-electro-elastic circular rod with M-derivative, Eur. Phys. J. Plus, 134 (2019), 322. https://doi.org/10.1140/epjp/i2019-12680-4 doi: 10.1140/epjp/i2019-12680-4
![]() |
[27] |
H. Yépez-Martinez, J. F. Gómez-Aguilar, M-derivative applied to the soliton solutions for the Lakshmanan-Porsezian-Daniel equation with dual-dispersion for optical fibers, Opt. Quantum Electron., 51 (2019), 31. https://doi.org/10.1007/s11082-018-1740-5 doi: 10.1007/s11082-018-1740-5
![]() |
[28] |
M. S. Osman, A. Zafar, K. K. Ali, W. Razzaq, Novel optical solitons to the perturbed Gerdjikov-Ivanov equation with truncated M-fractional conformable derivative, Optik, 222 (2020), 165418. https://doi.org/10.1016/j.ijleo.2020.165418 doi: 10.1016/j.ijleo.2020.165418
![]() |
[29] |
K. U. Tariq, M. Younis, S. T. R. Rizvi, H. Bulut, M-Truncated fractional optical solitons and other periodic wave structures with Schrödinger-Hirota equation, Mod. Phys. Lett. B, 34 (2020), 2050427. https://doi.org/10.1142/S0217984920504278 doi: 10.1142/S0217984920504278
![]() |
[30] |
E. Bas, B. Acay, The direct spectral problem via local derivative including truncated Mittag-Leffler function, Appl. Math. Comput., 367 (2020), 124787. https://doi.org/10.1016/j.amc.2019.124787 doi: 10.1016/j.amc.2019.124787
![]() |
[31] |
T. A. Sulaiman, G. Yel, H. Bulut, M-fractional solitons and periodic wave solutions to the Hirota-Maccari system, Mod. Phys. Lett. B, 33 (2019), 1950052. https://doi.org/10.1142/S0217984919500520 doi: 10.1142/S0217984919500520
![]() |
[32] |
A. Zafar, A. Bekir, M. Raheel, W. Razzaq, Optical soliton solutions to Biswas-Arshed model with truncated M-fractional derivative, Optik, 222 (2020), 165355. https://doi.org/10.1016/j.ijleo.2020.165355 doi: 10.1016/j.ijleo.2020.165355
![]() |
[33] |
A. Yusuf, M. Inc, D. Baleanu, Optical solitons with M-truncated and beta derivatives in nonlinear optics, Front. Phys., 7 (2019), 126. https://doi.org/10.3389/fphy.2019.00126 doi: 10.3389/fphy.2019.00126
![]() |
[34] | B. Guo, Z. Gan, L. Kong, J. Zhang, The Zakharov System and its Soliton Solutions, Springer, Singapore, 2016. https: //doi.org/10.1007/978-981-10-2582-2 |
[35] |
N. Mahak, G. Akram, Extension of rational sine-cosine and rational sinh-cosh techniques to extract solutions for the perturbed NLSE with Kerr law nonlinearity, Eur. Phys.l J. Plus, 134 (2019), 159. https://doi.org/10.1140/epjp/i2019-12545-x doi: 10.1140/epjp/i2019-12545-x
![]() |
[36] |
N. Mahak, G. Akram, Exact solitary wave solutions by extended rational sine-cosine and extended rational sinh-cosh techniques, Phys. Scr., 94 (2019), 115212. https://doi.org/10.1088/1402-4896/ab20f3 doi: 10.1088/1402-4896/ab20f3
![]() |
[37] |
M. Cinar, I. Onder, A. Secer, A. Yusuf, T. A. Sulaiman, M. Bayram, H. Aydin, The analytical solutions of Zoomeron equation via extended rational sin-cos and sinh-cosh methods, Phys. Scr., 96 (2021), 094002. https://doi.org/10.1088/1402-4896/ac0374 doi: 10.1088/1402-4896/ac0374
![]() |
[38] |
B. Malomed, D. Anderson, M. Lisak, M. L. Quiroga-Teixeiro, L. Stenflo, Dynamics of solitary waves in the Zakharov model equations, Phys. Rev. E, 55 (1997), 962–968. https://doi.org/10.1103/PhysRevE.55.962 doi: 10.1103/PhysRevE.55.962
![]() |
[39] | V. Zakharov, Collapse of langmuir waves, Sov. Phys. JETP, 35 (1972). |
[40] |
J. Ginibre, Y. Tsutsumi, G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384–436. https://doi.org/10.1006/jfan.1997.3148 doi: 10.1006/jfan.1997.3148
![]() |
[41] |
M. Marklund, On the Cauchy problem for the Zakharov system, Phys. Plasmas, 12 (2005), 082110. https://doi.org/10.1063/1.2012147 doi: 10.1063/1.2012147
![]() |
[42] |
J. Bourgain, J. Colliander, On wellposedness of the Zakharov system, Int. Math. Res. Not., 1996 (1995), 515–546. https://doi.org/10.1155/S1073792896000359 doi: 10.1155/S1073792896000359
![]() |
[43] |
A. P. Misra, D. Ghosh, A. R. Chowdhury, A novel hyperchaos in the quantum Zakharov system for plasmas, Phys. Lett., Sect. A: Gen., At. Solid State Phys., 372 (2008), 1469–1476. https://doi.org/10.1016/j.physleta.2007.09.054 doi: 10.1016/j.physleta.2007.09.054
![]() |
[44] |
W. Bao, F. Sun, G. W. Wei, Numerical methods for the generalized Zakharov system, J. Comput. Phys., 190 (2003), 201–228. https://doi.org/10.1016/S0021-9991(03)00271-7 doi: 10.1016/S0021-9991(03)00271-7
![]() |
[45] |
S. T. Demiray, H. Bulut, Some exact solutions of generalized Zakharov system, Wave Rand. Complex Media, 25 (2015), 75–90. https://doi.org/10.1080/17455030.2014.966798 doi: 10.1080/17455030.2014.966798
![]() |
[46] |
A. Borhanifar, M. M. Kabir, L. M. Vahdat, New periodic and soliton wave solutions for the generalized Zakharov system and (2 + 1)-dimensional Nizhnik-Novikov-Veselov system, Chaos, Solitons Fractals, 42 (2009), 1646–1654. https://doi.org/10.1016/j.chaos.2009.03.064 doi: 10.1016/j.chaos.2009.03.064
![]() |
[47] |
Y. Xin, Y. Xu, C. W. Shu, Local discontinuous Galerkin methods for the generalized Zakharov system, J. Comput. Phys., 229 (2010), 1238–1259. https://doi.org/10.1016/j.jcp.2009.10.029 doi: 10.1016/j.jcp.2009.10.029
![]() |
[48] |
Q. Shi, Q. Xiao, X. Liu, Extended wave solutions for a nonlinear Klein-Gordon-Zakharov system, Appl. Math. Comput., 218 (2012), 9922–9929. https://doi.org/10.1016/j.amc.2012.03.079 doi: 10.1016/j.amc.2012.03.079
![]() |
[49] |
D. Lu, A. R. Seadawy, M. M. A. Khater, Structure of solitary wave solutions of the nonlinear complex fractional generalized Zakharov dynamical system, Adv. Differ. Equations, 2018 (2018), 266. https://doi.org/10.1186/s13662-018-1734-4 doi: 10.1186/s13662-018-1734-4
![]() |
[50] | E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, Chapman and Hall/CRC, New York, 2002. https://doi.org/10.1201/9781420035223 |
1. | Muslum Ozisik, Mustafa Bayram, Aydin Secer, Melih Cinar, Abdullahi Yusuf, Tukur Abdulkadir Sulaiman, Optical solitons to the (1+2)-dimensional Chiral non-linear Schrödinger equation, 2022, 54, 0306-8919, 10.1007/s11082-022-03938-8 | |
2. | Imran Siddique, Khush Bukht Mehdi, Mohammed M.M. Jaradat, Asim Zafar, Mamdouh E. Elbrolosy, Adel A. Elmandouh, Mohammed Sallah, Bifurcation of some new traveling wave solutions for the time–space M- fractional MEW equation via three altered methods, 2022, 41, 22113797, 105896, 10.1016/j.rinp.2022.105896 | |
3. | Ismail Onder, Melih Cinar, Aydin Secer, Abdullahi Yusuf, Mustafa Bayram, Tukur Abdulkadir Sulaiman, Comparative analysis for the nonlinear mathematical equation with new wave structures, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-03342-x | |
4. | Melih Cinar, Aydin Secer, Muslum Ozisik, Mustafa Bayram, Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method, 2022, 54, 0306-8919, 10.1007/s11082-022-03819-0 | |
5. | Melih Cinar, Aydin Secer, Muslum Ozisik, Mustafa Bayram, Optical soliton solutions of (1 + 1)- and (2 + 1)-dimensional generalized Sasa–Satsuma equations using new Kudryashov method, 2023, 20, 0219-8878, 10.1142/S0219887823500342 | |
6. | Jiachen TONG, Haiying LI, Bin XU, Songyang WU, Lu BAI, Excitation and power spectrum analysis of electromagnetic radiation for the plasma wake of reentry vehicles, 2023, 25, 1009-0630, 055301, 10.1088/2058-6272/aca7ad | |
7. | Muslum Ozisik, Mustafa Bayram, Aydin Secer, Melih Cinar, Optical soliton solutions of the Chen–Lee–Liu equation in the presence of perturbation and the effect of the inter-modal dispersion, self-steepening and nonlinear dispersion, 2022, 54, 0306-8919, 10.1007/s11082-022-04216-3 | |
8. | Shafqat-Ur- Rehman, Muhammad Bilal, Jamshad Ahmad, Highly dispersive optical and other soliton solutions to fiber Bragg gratings with the application of different mechanisms, 2022, 36, 0217-9792, 10.1142/S0217979222501934 | |
9. | Usman Younas, Jingli Ren, Construction of optical pulses and other solutions to optical fibers in absence of self-phase modulation, 2022, 36, 0217-9792, 10.1142/S0217979222502393 | |
10. | Neslihan Ozdemir, Aydin Secer, Muslum Ozisik, Mustafa Bayram, Soliton and other solutions of the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation with conformable derivative, 2023, 98, 0031-8949, 015023, 10.1088/1402-4896/acaa73 | |
11. | Ismail Onder, Aydin Secer, Muslum Ozisik, Mustafa Bayram, Investigation of optical soliton solutions for the perturbed Gerdjikov-Ivanov equation with full-nonlinearity, 2023, 9, 24058440, e13519, 10.1016/j.heliyon.2023.e13519 | |
12. | Usman Younas, Hadi Rezazadeh, Jingli Ren, Dynamics of optical pulses in birefringent fibers without four-wave mixing effect via efficient computational techniques, 2022, 24680133, 10.1016/j.joes.2022.06.036 | |
13. | Ismail Onder, Melih Cinar, Aydin Secer, Mustafa Bayram, Analytical solutions of simplified modified Camassa-Holm equation with conformable and M-truncated derivatives: A comparative study, 2022, 24680133, 10.1016/j.joes.2022.06.012 | |
14. | Aydin Secer, Mustafa Bayram, Neslihan Ozdemir, Ismail Onder, Handenur Esen, Melih Cinar, Huseyin Aydin, Nonlinear complex generalized zakharov dynamical system inconformal sense utilizing new kudryashov method, 2024, 99, 0031-8949, 025245, 10.1088/1402-4896/ad1ead | |
15. | Thitthita Iatkliang, Supaporn Kaewta, Nguyen Minh Tuan, Sekson Sirisubtawee, Novel Exact Traveling Wave Solutions for Nonlinear Wave Equations with Beta-Derivatives via the sine-Gordon Expansion Method, 2023, 22, 2224-2880, 432, 10.37394/23206.2023.22.50 | |
16. | Muslum Ozisik, Mustafa Bayram, Aydin Secer, Melih Cinar, On the analytical soliton solutions of (1 + 1)-dimensional complex coupled nonlinear Higgs field model, 2024, 233, 1951-6355, 1331, 10.1140/epjs/s11734-023-00954-x | |
17. | Humaira Yasmin, Azzh Saad Alshehry, Abdul Hamid Ganie, Ali M. Mahnashi, Rasool Shah, Perturbed Gerdjikov–Ivanov equation: Soliton solutions via Backlund transformation, 2024, 298, 00304026, 171576, 10.1016/j.ijleo.2023.171576 |