We apply the complex method to build new exact solutions for the conformable Huxley equation. The results show that abundant new exact solutions were constructed, which extends the results of Cevikel, Bekir and Zahran. Further, we extend the undetermined form for the exponential function solutions in the complex method.
Citation: Guoqiang Dang, Qiyou Liu. Solving the conformable Huxley equation using the complex method[J]. Electronic Research Archive, 2023, 31(3): 1303-1322. doi: 10.3934/era.2023067
[1] | Feng Ye, Xiaoting Zhang, Chunling Jiang, Bo Zeng . Comment on: "Solving the conformable Huxley equation using the complex method" [Electron. Res. Arch., 31 (2023), 1303–1322]. Electronic Research Archive, 2025, 33(1): 255-262. doi: 10.3934/era.2025013 |
[2] | Melih Cinar, Ismail Onder, Aydin Secer, Mustafa Bayram, Abdullahi Yusuf, Tukur Abdulkadir Sulaiman . A comparison of analytical solutions of nonlinear complex generalized Zakharov dynamical system for various definitions of the differential operator. Electronic Research Archive, 2022, 30(1): 335-361. doi: 10.3934/era.2022018 |
[3] | Jianghua Li, Zepeng Zhang, Tianyu Pan . On two-term exponential sums and their mean values. Electronic Research Archive, 2023, 31(9): 5559-5572. doi: 10.3934/era.2023282 |
[4] | Ping Zhou, Hossein Jafari, Roghayeh M. Ganji, Sonali M. Narsale . Numerical study for a class of time fractional diffusion equations using operational matrices based on Hosoya polynomial. Electronic Research Archive, 2023, 31(8): 4530-4548. doi: 10.3934/era.2023231 |
[5] | Feida Jiang, Xi Chen, Juhua Shi . Nonexistence of entire positive solutions for conformal Hessian quotient inequalities. Electronic Research Archive, 2021, 29(6): 4075-4086. doi: 10.3934/era.2021072 |
[6] | Sahar Albosaily, Wael Mohammed, Mahmoud El-Morshedy . The exact solutions of the fractional-stochastic Fokas-Lenells equation in optical fiber communication. Electronic Research Archive, 2023, 31(6): 3552-3567. doi: 10.3934/era.2023180 |
[7] | Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang . A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29(3): 2375-2389. doi: 10.3934/era.2020120 |
[8] | Yi Wei . The Riccati-Bernoulli subsidiary ordinary differential equation method to the coupled Higgs field equation. Electronic Research Archive, 2023, 31(11): 6790-6802. doi: 10.3934/era.2023342 |
[9] | Hong Yang, Yiliang He . The Ill-posedness and Fourier regularization for the backward heat conduction equation with uncertainty. Electronic Research Archive, 2025, 33(4): 1998-2031. doi: 10.3934/era.2025089 |
[10] | Qingguang Guan . Some estimates of virtual element methods for fourth order problems. Electronic Research Archive, 2021, 29(6): 4099-4118. doi: 10.3934/era.2021074 |
We apply the complex method to build new exact solutions for the conformable Huxley equation. The results show that abundant new exact solutions were constructed, which extends the results of Cevikel, Bekir and Zahran. Further, we extend the undetermined form for the exponential function solutions in the complex method.
Differential equations are used to describe dynamic evolutionary processes in natural sciences, engineering and technology. There are many mathematicians working to construct methods for computing exact solutions to differential equations: for example, the Bäcklund transformation method [1], the inverse scattering method [2], the Darboux transformation method [3], the Hirota bilinear method [4], the tanh-function method [5], the Homotopy analysis method [6], etc. In recent years, there have been many results in constructing exact solutions of partial differential equations with a finite number of integer-order derivatives, such as the conformable fractional derivative, the M-fractional derivative, the alternative fractional derivative, the local fractional derivative and the Caputo-Fabrizio fractional derivatives with exponential kernels.
In Tarasov's points, the above mentioned differential operators are not fractional, with exponential kernels that cannot be considered as fractional derivatives of non-integer orders [7]. Therefore, the method designed for differential operators with integer orders can be embedded in the above mentioned type of differential equations with derivative variants.
For the question of how to distinguish between differential equations with integer-order and with fractional order, Tarasov introduced the nonlocality principle to prove that the conformable fractional derivative with exponential kernels cannot be considered as fractional derivatives of non-integer orders [7]. The derivatives of integer orders are determined by properties of differentiable functions only in the infinitely small neighborhoods of the considered point but not nonlocal. In the sense of conformable derivatives, the fractional differential problems become differential problems with integer-order derivatives that may no longer properly describe the original fractional physical phenomena [8]. Many mathematicians have worked on improving the conformable derivative to make it have more complete properties or apply more; for examples, see [9,10,11,12].
There are many ways of find exact solutions of differential equations, but no single method can handle all types of solutions. The complex method [13,14,15] and its variants, such as the extended complex method [16], can be used to construct meromorphic solutions for certain partial differential equations. Several researchers have tried to apply the complex method to find exact solutions of some higher-order or higher-dimension partial differential equations; for examples, see [17,18]. The complex method will be used here because this kind of method can construct more types of solutions in the complex domain, such as elliptic function solutions, simply periodic function solutions and exponential function solutions. Also, this is a good attempt to solve differential equations with conformal derivatives by the complex method.
Shallow waters exhibit nonlinear phenomena in the propagation and transformation of waves. Nonlinear differential equations, such as the Huxley equation, describe spectral energy transfer for waves of finite amplitude in shallow waters above a flat seafloor [19,20]. Chaotic oscillations usually occur in nonlinear dynamical systems. These systems can be represented by the Huxley equation with nonlinear oscillations and external periodic excitation [21].
Although the sub-equation method, the Kudryashov method and the exp-function method have been applied to build exact solutions for the conformable Huxley equation [22] (see Eq (3.1)), we remain committed to finding abundant new exact solutions using the complex method. The new exact solutions may contribute to a much better understanding of the features of the solutions of the conformable Huxley equation.
The basic definition and theorems of conformable derivatives [23] are as follows.
Definition 2.1. Let g:(0,∞)→R be a function. For all k>0,α∈(0,1), the CFD of g for order α is defined by
Tα(g(k))=limε→0g(k+εk1−α)−g(k)ε. | (2.1) |
Lemma 2.1. For α∈(0,1], if a function g:(0,+∞)→R is α-differentiable at t0>0, then g is continuous at t0.
Lemma 2.2. Let f and g be α-differential at a point t>0, α∈(0,1].
Tα(αf+bg)=aTα(f)+bTα(g),for all a,b∈R,Tα(tp)=ptp−α,for all p∈R,Tα(λ)=0,for all constant functions f(t)=λ,Tα(fg)=fTα(g)+gTα(f) andTα(fg)=gTα(f)−fTα(g)g2. | (2.2) |
If g is differentiable,
Tα(g)(t)=t1−αdgdt(t). | (2.3) |
Giving a nonlinear conformable partial differential equation with two independent variables,
P(∂αu∂t α,∂u∂x,∂2αu∂t2α,∂2u∂x2,⋯)=0,0<α≤1. | (2.4) |
Taking a traveling wave transformation u(x,t)=w(z),z=x−ct αα (c is the speed of wave), on Eq (2.4) with
∂α∂t α=−c∂∂ξ,∂2α∂t2α=c2∂2∂ξ2,∂∂x=∂∂ξ,∂2∂x2=∂2∂ξ2,⋯, | (2.5) |
Eq (2.4) will be reduced to a nonlinear ordinary differential equation (ODE),
Q(w,w′,w″,w‴,⋯)=0. | (2.6) |
Weierstrass elliptic function [24] ℘(z):=℘(z,g2,g3) is a meromorphic function with two periods 2ω1,2ω2 and satisfies
(℘′(z))2=4℘(z)3−g2℘(z)−g3, | (2.7) |
with the invariants g2=60s4,g3=140s6 and discriminant Δ(g2,g3)≠0.
Furthermore, ℘′(−z)=−℘′(z), 2℘″(z)=12℘2(z)−g2,℘‴(z)=12℘(z)℘′(z),⋯, any kth derivatives of ℘ can be deduced by these identities, and ℘ has the Laurent series expansion ℘(z)=1z2+g2z220+g3z428+O(|z|6), with the addition formula
℘(z−z0)=−℘(z)−℘(z0)+14[℘′(z)+℘′(z0)℘(z)−℘(z0)]2. | (2.8) |
The basic related definitions and lemmas of the complex method [13] are as follows.
Given a nonlinear ODE
P(w,w′,⋯,w(m))=0, | (2.9) |
P is a polynomial in w(z) and its derivatives with constant coefficients.
We assume that the Laurent series expansion of meromorphic solutions of Eq (2.9) are in the form of
w(z)=∞∑k=−qck(z−z0)k(q>0). | (2.10) |
Definition 2.2. If there are exactly p distinct formal meromorphic Laurent series
w(z)=∞∑k=−qckzk | (2.11) |
satisfying Eq (2.9), we say Eq (2.9) satisfies the ⟨p,q⟩ condition. If only determine p distinct principal parts ∑−1k=−qckzk, we say Eq (2.9) satisfies the weak ⟨p,q⟩ condition.
Eremenko [25] defined that a meromorphic function f(z) belongs to the class W if f(z) is an elliptic function, a rational function of eαz(α∈C) or a rational function of z.
Lemma 2.3. ([13,15]) Suppose that an equation
P(w,w′,⋯,w(m))=bwn | (2.12) |
satisfies the ⟨p,q⟩ condition, where p,l,m,n∈N,degP(w,w′,⋯,w(m))<n. Then, all meromorphic solutions w belong to the class W. Furthermore, each elliptic solution with a pole at z=0 can be written as
w(z)=l−1∑i=1q∑j=2(−1)jc−ij(j−1)!dj−2dzj−2(14[℘′(z)+Bi℘(z)−Ai]2−℘(z))+l−1∑i=1c−i12℘′(z)+Bi℘(z)−Ai+q∑j=2(−1)jc−lj(j−1)!dj−2dzj−2℘(z)+c0, | (2.13) |
where c−ij are given by (2.11), B2i=4A3i−g2Ai−g3, ∑li=1c−i1=0, and c0∈C.
Each rational function solution w:=R(z) is of the form
R(z)=l∑i=1q∑j=1cij(z−zi)j+c0, | (2.14) |
with l(≤p) distinct poles of multiplicity q.
Each simply periodic solution is a rational function R(ξ) of ξ=eαz(α∈C). R(ξ) is of the form
R(ξ)=l∑i=1q∑j=1cij(ξ−ξi)j+c0, | (2.15) |
where R(ξ) has l(≤p) distinct poles with multiplicity q.
By the former discussion, the complex method can be described concerning Eq (2.4) as follows:
Step 1 Substituting the transform u(x,t)=w(z),z=Kx−ct αα , with Eq (2.5) into Eq (2.4) and obtaining the nonlinear ODE Eq (2.6).
Step 2 Substituting (2.11) into Eq (2.6) to determine that the ⟨p,q⟩ condition holds.
Step 3 By indeterminant relations (2.13)–(2.15), building the elliptic, rational and simply periodic solutions w(z) of Eq (2.6) with pole at z=0, respectively.
Step 4 By Lemma 2.3 mainly, obtaining all meromorphic solutions w(z−z0).
Step 5 Substituting the inverse transform T−1 into these meromorphic solutions w(z−z0), we get all exact solutions u(x,t) of the original given Eq (2.4).
The conformable equation is defined as
∂α∂t αu(x,t)−∂2∂x2u(x,t)=βu(x,t)(1−u(x,t))(u(x,t)−γ), | (3.1) |
where α∈(0,1], β is a non zero constant, and γ∈(0,1). Equation (3.1) can be written as
∂α∂t αu(x,t)−∂2∂x2u(x,t)+βu3(x,t)−β(1+γ)u2(x,t)+βγu(x,t)=0,0<α≤1. | (3.2) |
Using the transformations u(x,t)=u(z),z=Kx−λt αα in Eq (3.2), where K and λ are non-zero constants, it follows that
K2u′′+λu′−βγu+β(1+γ)u2−βu3=0. | (3.3) |
If λ=0 and β=0, Eq (3.3) will reduce to the equation K2u′′−βu3=0. Then, multiply u′, and it will reduce to a first-order Briot-Bouquet differential equation.
If γ=−1, Eq (3.3) will reduce to the equation K2u′′+λu′+βu−βu3=0, and its solutions were investigated in [26].
For Eq (3.3), we assume γ≠−1. Obviously, Eq (3.3) has no nonconstant polynomial solution and has no nonconstant transcendental entire solution by using the Wiman-Valiron theory. Therefore, we need to consider the nonconstant meromorphic solutions of Eq (3.3) with at least one pole on C.
Assume that a meromorphic solution u(z) satisfies Eq (3.3), and if u(z) has a movable pole at z=0, then in a neighborhood of z=z0, the Laurent series of u is of the form ∑∞k=−qck(z−z0)k(q>0,c−q≠0). Substituting the Laurent series into Eq (3.3), balancing the terms u″ and w3, we have p=2,q=1, and then
c−1=√2√1βK,c0=2Kγ√β+2K√β−λ√26K√β,c1=√2(β(γ2−γ+1)K2−λ22)18√βK3,c2=(γ−12)K3(γ−2)(γ+1)β32+32(β(γ2−γ+1)K2−2λ23)λ√254√βK5, | (3.4) |
c−1=−√2√1βK,c0=2Kγ√β+2K√β+λ√26K√β,c1=−√2(β(γ2−γ+1)K2−λ22)18√βK3,c2=(γ−12)K3(γ−2)(γ+1)β32−32(β(γ2−γ+1)K2−2λ23)λ√254√βK5. | (3.5) |
By comparing the coefficients of z in the expansion of K2u″+λu′ and −βγu+β(1+γ)u2−βu3, we have
(0⋅c3−2λβ27K2−2λβγ327K2+λβγ29K2+λβγ9K2−√βλ2√29K3+2√2λ427K5√β−√βλ2√2γ29K3+√βλ2√2γ9K3)⋅(0⋅c3−2λβ27K2+√βλ2√2γ29K3−√βλ2√2γ9K3−2√2λ427K5√β+√βλ2√29K3+λβγ29K2+λβγ9K2−2λβγ327K2)=0. | (3.6) |
Then, Eq (3.6) can be reduced to
((−2λ27K2−2λγ327K2+λγ29K2+λγ9K2)β+(−λ2√29K3−λ2√2γ29K3+λ2√2γ9K3)√β+2√2λ427K5√β)⋅((−2λγ327K2+λγ29K2+λγ9K2−2λ27K2)β+(λ2√2γ29K3−λ2√2γ9K3+λ2√29K3)√β−2√2λ427K5√β)=0, | (3.7) |
or
4(K2(γ−2)2β−2λ2)((γ−12)2K2β−λ22)(K2(γ+1)2β−2λ2)λ2=0. | (3.8) |
Equation (3.3) has two integer Fuchs indexes, −1,4. From Eq (3.6), we know the coefficient c3 is an arbitrary constant, and the other coefficients c4,c5,⋯ can be represented using c3. Then, Eq (3.3) satisfies the <p,q> condition, and Eq (3.3) is integrable. Therefore, by Lemma 2.3, all meromorphic solutions of Eq (3.3) belong to the class W.
According to the complex method, we will build the meromorphic solutions of Eq (3.3).
Case 1. Rational solutions.
According to (2.14), we assume that the undetermined form of rational solutions of Eq (3.3) with a pole at z0∈C is given by
u(z)=c−1(z−z0)−1+c0=±√2√1βKz−z0+2Kγ√β+2K√β∓λ√26K√β. | (3.9) |
From Eq (3.8), we have γ=0, λ2=2βK2 or λ2=12βK2; γ=1, λ2=2βK2 or λ2=12βK2; γ=2,λ2=92βK2; γ=12,λ2=98βK2. From Eq (3.9), only the cases γ=0,1 make Eq (3.3) have the following rational solutions.
When γ=0 and λ=±√2√βK, we have the following rational solution:
u(z)=±√2√1βKz−z0, | (3.10) |
where z0 is an arbitrary constant.
When γ=1 and λ=±√2√βK, we have the following rational solution:
u(z)=∓√2√1βKz−z0+1. | (3.11) |
Then, substituting z=x−ct αα into the rational solutions (3.10) and (3.11), we get the following exact solutions for Eq (3.1):
u(z)=±√2√1βKx−ct αα −z0, | (3.12) |
u(z)=∓√2√1βKx−ct αα −z0+1. | (3.13) |
Case 2. Elliptic function solutions.
Case 2.1
By (2.13) and ∑2i=1c−1=0, we can assume the following undetermined form of elliptic solutions will satisfy Eq (3.3):
u(z)=l−1∑i=1c−i12℘′(z)+Bi℘(z)−Ai+c0=√2√1βK(P′(z;g2,g3)+B1)2P(z;g2,g3)−A1−√2√1βK(P′(z;g2,g3)+B2)2(P(z;g2,g3)−A2)+c0, | (3.14) |
where c0 is a constant. We noted that the Laurent series of (3.14) are as follows:
u(z)=−√2√1βK(−A2+A1)z+√2√1βK(B1−B2)z22+O(z3). | (3.15) |
However, the term of z−1 vanished in (3.14), compared to the Laurent series (3.4). It follows that Eq (3.3) has no elliptic solution in the form of (3.14).
Case 2.2
To reduce the complexity of the calculation, rewrite Eq (3.3) into the following form:
u′′+Au′+Bu+Cu2+Du3=0, | (3.16) |
where A=λK2,B=−βγK2,C=β(1+γ)k2,D=−βk2. By (2.13), we assume that the following forms of elliptic solutions satisfy Eq (3.3):
w(z)=1√−2D℘′(z,g2,g3)+B1℘(z,g2,g3)−A1+c0, | (3.17) |
w(z)=−1√−2D℘′(z,g2,g3)+B1℘(z,g2,g3)−A1+c0. | (3.18) |
Comparing the coefficients in the Laurent series of solutions w(z) in (3.17) and (3.18) with (3.4) and (3.5), we have the following solutions:
w(z)=1√−2D℘′(z,g2,g3)+B1℘(z,g2,g3)−A1+A√−2D=−2√−2Dz−1+A√−2D, | (3.19) |
where C=A√−2D, A1=A212+B6, B1=0, g2=(A2+2B)212, g3=−13(A2+2B)33240 and B=−A22. Solution (3.19) must degenerate into a rational function, and
w(z)=−1√−2D℘′(z,g2,g3)+B1℘(z,g2,g3)−A1−A√−2D, | (3.20) |
where C=−A√−2D, A1=A212+B6, B1=0, g2=(A2+2B)212, g3=−(A2+2B)3216.
Therefore, we obtain the following solutions of Eq (3.3):
w(z)=−√2K2√β1z−z0+λ√2βK2, | (3.21) |
where β(1+γ)=λ√2βK2, βγ=λ22K2, and
w(z)=−1√−2D℘′(z−z0,g2,g3)+B1℘(z−z0,g2,g3)−A1−λ√2βK2, | (3.22) |
where β(1+γ)=−λ√2βK2, A1=λ212K4−βγ6K2, B1=0, g2=(2K2βγ−λ2)212K8, g3=(2K2βγ−λ2)3216K12, and z0 is arbitrary.
Case 2.3
Rewrite Eq (3.3) into the following form:
u″+λK2u′−βK2u(u−1)(u−γ)=0. | (3.23) |
By Lemma 4.5 in the [27], we have q1=0,q2=1,q3=γ, and Eq (3.23) has nonconstant meromorphic solutions if and only if
λK2∏(λμK2+qi+qj−2qk)(−λμK2+qi+qj−2qk)=0, | (3.24) |
where μ=±√2K2β, (ijk) is any permutation of (123). Further, for λ≠0 and λK2=2qi−qj−qkμ=−qi+2qj−qk−μ, Eq (3.23) has the following elliptic solutions:
w(z)=qk−qi−qk2e−qi−qkμz℘′(e−qi−qkμz−z0;g2,0)℘(e−qi−qkμz−z0;g2,0),z0,g2 arbitrary. | (3.25) |
Then substituting z=x−ct αα into the solution (3.25), yielding the corresponding exact solutions for Eq (3.1) instantly.
Case 3. Exponential function solutions.
We only consider the case of c−1=√2√1βK, for in the case of c−1=−√2√1βK, which we omit here, the operation is the same.
Case 3.1
By (2.15), we assume that the undetermined form of the simply periodic solutions of Eq (3.3) is given by
w(z)=c−1eθz−ξ+c0=√2√1βKeθz−ξ+2Kγ−λ√2√1β+2K6K, | (3.26) |
where ξ∈C is a constant.
Substituting (3.26) into Eq (3.3), combining the similar terms in the expansion of Eq (3.3) and balancing the coefficients, we have
2√2√1βK3(e2αzα2−1)(eαz−ξ)3=0. | (3.27) |
Equation (3.27) obviously has no algebraic solution of α. This means that Eq (3.3) does not have a simply periodic solution in the shape of (3.26).
Case 3.2
We assume that Eq (3.3) has the following undetermined form of exponential solutions:
u(z)=A(z)eαz−ξ+c0, | (3.28) |
where ξ,c0∈C are constants, and A(z) is an undetermined function.
Then, substituting (3.28) into Eq (3.3), we have
A(−2K2e2αzα2+βA2)(−eαz+ξ)3=0. | (3.29) |
Therefore, A(z)=±√2αeαzK√β and A=0 is omitted here.
Case 3.2.1
Substituting (3.28) with A(z)=√2αeαzK√β into Eq (3.3), we have
3(−2K(γ−3c0+1)√β3+√2(K2α+λ3))α2Ke2αz√β(eαz−ξ)2=0. | (3.30) |
By solving Eq (3.30), we have
c0=−3K2√2α−2K√βγ−2K√β+√2λ6K√β. | (3.31) |
Then, substituting (3.28) with (3.31) into Eq (3.3), we have
α=±√6K2βγ2−6βγK2+6K2β−3λ23K2. | (3.32) |
Then, substituting (3.28) with (3.31), (3.32) into Eq (3.3), we have
(227γ3−19γ2−19γ+227)β+(γ2√2λ9K−γ√2λ9K+√2λ9K)√β−2√2λ327K3√β=0. | (3.33) |
Therefore, we have the following solution:
u(z)=√2αeαzK√βeαz−ξ−3K2√2α−2K√βγ−2K√β+√2λ6K√β, | (3.34) |
provided that α=±√6K2βγ2−6βγK2+6K2β−3λ23K2, and (227γ3−19γ2−19γ+227)β+(γ2√2λ9K−γ√2λ9K+√2λ9K)√β−2√2λ327K3√β=0.
The exponential function solution (3.34) can be reduced to
u(z)=±√2√6K2βγ2−6K2βγ+6K2β−3λ2e±√6K2βγ2−6K2βγ+6K2β−3λ2z3K23√βK(e±√6K2βγ2−6K2βγ+6K2β−3λ2z3K2−ξ)−±√2√6K2βγ2−6K2βγ+6K2β−3λ2−2√βKγ−2√βK+λ√26√βK, | (3.35) |
provided that (227γ3−19γ2−19γ+227)β+(γ2√2λ9K−γ√2λ9K+√2λ9K)√β−2√2λ327K3√β=0.
Then, substituting z=x−ct αα into the exponential function solution (3.34), we get the following exact solution for Eq (3.1):
u(x,t)=√2αeαKx−λt αK√βeαKx−λt α−ξ−3K2√2α−2K√βγ−2K√β+√2λ6K√β, | (3.36) |
provided that α=±√6K2βγ2−6βγK2+6K2β−3λ23K2, and (227γ3−19γ2−19γ+227)β+(γ2√2λ9K−γ√2λ9K+√2λ9K)√β−2√2λ327K3√β=0.
Case 3.2.2
Substituting (3.28) with A(z)=−√2αeαzK√β into Eq (3.3), we have
3(−2K(γ−3c0+1)√β3+√2(K2α+λ3))α2Ke2αz√β(eαz−ξ)2=0. | (3.37) |
By solving Eq (3.37), we have
c0=3K2√2α+2K√βγ+2K√β+√2λ6K√β. | (3.38) |
Then, substituting (3.28) with (3.38) in Eq (3.3), we have
α=±√6K2βγ2−6βγK2+6K2β−3λ23K2. | (3.39) |
Then, substituting (3.28) with (3.38) and (3.39) into Eq (3.3), we have
(−19γ2+227γ3−19γ+227)β+(−γ2√2λ9K+γ√2λ9K−√2λ9K)√β+2√2λ327K3√β=0. | (3.40) |
Therefore, we have the following solution:
u(z)=−√2αeαzK√β(eαz−ξ)+3K2√2α+2K√βγ+2K√β+√2λ6K√β, | (3.41) |
provided that α=±√6K2βγ2−6βγK2+6K2β−3λ23K2, and (−19γ2+227γ3−19γ+227)β+(−γ2√2λ9K+γ√2λ9K−√2λ9K)√β+2√2λ327K3√β=0.
Exponential function solution (3.41) can be reduced to
u(z)=∓√2√6K2βγ2−6βγK2+6K2β−3λ2e±√6K2βγ2−6βγK2+6K2β−3λ2z3K23K√β(e±√6K2βγ2−6βγK2+6K2β−3λ2z3K2−ξ)+±√2√6K2βγ2−6βγK2+6K2β−3λ2+2K√βγ+2K√β+√2λ6K√β. | (3.42) |
Then, substituting z=Kx−ct αα into the exponential function solution (3.41), we get the following exact solution for Eq (3.1):
u(x,t)=−√2αeαKx−ct αK√β(eαKx−ct α−ξ)+3K2√2α+2K√βγ+2K√β+√2λ6K√β. | (3.43) |
Case 3.3
Substituting
u(z)=√2αeαzK√β(eαz−ξ)−3K2√2α−2K√βγ−2K√β+√2λ6K√β | (3.44) |
into Eq (3.3), we have
−(K4α2−2β(γ2−γ+1)K23+λ23)α√2eαz2√β(eαz−ξ)K=0. | (3.45) |
It follows that
β=3K4α2+λ22K2(γ2−γ+1). | (3.46) |
Substituting (3.44) with (3.46) into Eq (3.3), Eq (3.3) reduces to an algebraic equation:
K(γ+1)(K4α2+λ23)(γ−12)(γ−2)√3K4α2+λ2K2+3(γ2−γ+1)32(K2α−λ3)(K2α+λ3)λ9(γ2−γ+1)√3K4α2+λ2K2K3=0. | (3.47) |
By solving Eq (3.47), we have
α=±λK2(2γ−1),±γλK2(γ−2),±λ(γ−1)K2(γ+1). | (3.48) |
Case 3.3.1
Substituting (3.44) with (3.46) and α=λK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=eλzK2(2γ−1)eλzK2(2γ−1)−ξ. | (3.49) |
Solution (3.49) can be converted to the following form:
u(z)=cosh(λzK2(2γ−1))+sinh(λzK2(2γ−1))cosh(λzK2(2γ−1))+sinh(λzK2(2γ−1))−ξ. | (3.50) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.49) and (3.50), we get the following exact solutions for Eq (3.1):
u((x,t)=eλ(Kx−ct αα ) K2(2γ−1)eλ(Kx−ct αα ) K2(2γ−1)−ξ, | (3.51) |
u(x,t)=cosh(λ(Kx−ct αα ) K2(2γ−1))+sinh(λ(Kx−ct αα ) K2(2γ−1))cosh(λ(Kx−ct αα ) K2(2γ−1))+sinh(λ(Kx−ct αα ) K2(2γ−1))−ξ. | (3.52) |
Case 3.3.2
Substituting (3.44) with (3.46) and α=−λK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=ξ−e−λzK2(2γ−1)+ξ. | (3.53) |
Solution (3.53) can be converted to the following form:
u(z)=ξ−cosh(λzK2(2γ−1))+sinh(λzK2(2γ−1))+ξ. | (3.54) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.53) and (3.54), we get the following exact solutions for Eq (3.1):
u(x,t)=ξ−e−λ(Kx−ct αα ) K2(2γ−1)+ξ, | (3.55) |
u(x,t)=ξ−cosh(λ(Kx−ct αα ) K2(2γ−1))+sinh(λ(Kx−ct αα ) K2(2γ−1))+ξ. | (3.56) |
Case 3.3.3
Substituting (3.44) with (3.46) and α=γλK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=ξγ−eγλzK2(γ−2)+ξ. | (3.57) |
Solution (3.57) can be converted to the following form:
u(z)=ξγ−cosh(γλzK2(γ−2))−sinh(γλzK2(γ−2))+ξ. | (3.58) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.57) and (3.58), we get the following exact solutions for Eq (3.1):
u(x,t)=ξγ−eγλ(Kx−ct αα )K2(γ−2)+ξ, | (3.59) |
u(x,t)=ξγ−cosh(γλ(Kx−ct αα )K2(γ−2))−sinh(γλ(Kx−ct αα )K2(γ−2))+ξ. | (3.60) |
Case 3.3.4
Substituting (3.44) with (3.46) and α=−γλK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=γe−γλzK2(γ−2)e−γλzK2(γ−2)−ξ. | (3.61) |
Solution (3.61) can be converted to the following form:
u(z)=γ(cosh(γλzK2(γ−2))−sinh(γλzK2(γ−2)))cosh(γλzK2(γ−2))−sinh(γλzK2(γ−2))−ξ. | (3.62) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.61) and (3.62), we get the following exact solutions for Eq (3.1):
u(x,t)=γe−γλ(Kx−ct αα )K2(γ−2)e−γλzK2(γ−2)−ξ, | (3.63) |
u(x,t)=γ(cosh(γλ(Kx−ct αα )K2(γ−2))−sinh(γλ(Kx−ct αα )K2(γ−2)))cosh(γλ(Kx−ct αα )K2(γ−2))−sinh(γλ(Kx−ct αα )K2(γ−2))−ξ. | (3.64) |
Case 3.3.5
Substituting (3.44) with (3.46) and α=λ(γ−1)K2(γ+1) into Eq (3.3), the left hand side of Eq (3.3) reduces to 4(γ−2)(2γ−1)λ2. Therefore, we obtain the following solution:
u(z)=(−2γ+1)eλ(γ−1) z K2(γ+1)−ξ(γ−2)−3eλ(γ−1) z K2(γ+1)+3ξ, | (3.65) |
provided that 2(K√λ2K2+λ)(γ−2)λ2(2γ−1)=0.
Solution (3.65) can be converted to the following form:
u(z)=(−2γ+1)(cosh(λ(γ−1) z K2(γ+1))+sinh(λ(γ−1) z K2(γ+1)))−ξ(γ−2)−3cosh(λ(γ−1) z K2(γ+1))−3sinh(λ(γ−1) z K2(γ+1))+3ξ. | (3.66) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.65) and (3.66), we get the following exact solutions for Eq (3.1):
u(x,t)=(−2γ+1)eλ(γ−1)(Kx−ct αα ) K2(γ+1)−ξ(γ−2)−3eλ(γ−1)(Kx−ct αα ) K2(γ+1)+3ξ, | (3.67) |
u(x,t)=(−2γ+1)(cosh(λ(γ−1)(Kx−ct αα ) K2(γ+1))+sinh(λ(γ−1)(Kx−ct αα ) K2(γ+1)))−ξ(γ−2)−3cosh(λ(γ−1)(Kx−ct αα ) K2(γ+1))−3sinh(λ(γ−1)(Kx−ct αα ) K2(γ+1))+3ξ. | (3.68) |
Case 3.3.6
Substituting (3.44) with (3.46) and α=−λ(γ−1)K2(γ+1) into Eq (3.3), the left hand side of Eq (3.3) reduces to 4(γ−2)(2γ−1)λ2=0. Therefore, we obtain the following solution:
u(z)=(γ−2)e−λ(γ−1) z K2(γ+1)+ξ(2γ−1)−3e−λ(γ−1) z K2(γ+1)+3ξ, | (3.69) |
provided that (γ−2)(2γ−1)λ2=0.
Solution (3.69) can be converted to the following form:
u(z)=(γ−2)(cosh(λ(γ−1) z K2(1+γ))−sinh(λ(γ−1) z K2(1+γ)))+ξ(2γ−1)−3cosh(λ(γ−1) z K2(1+γ))+3sinh(λ(γ−1) z K2(1+γ))+3ξ. | (3.70) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.69) and (3.70), we get the following exact solutions for Eq (3.1):
u(x,t)=(γ−2)e−λ(γ−1)(Kx−ct αα ) K2(γ+1)+ξ(2γ−1)−3e−λ(γ−1)(Kx−ct αα ) K2(γ+1)+3ξ, | (3.71) |
u(x,t)=(γ−2)(cosh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−sinh(λ(γ−1)(Kx−ct αα ) K2(1+γ)))+ξ(2γ−1)−3cosh(λ(γ−1)(Kx−ct αα ) K2(1+γ))+3sinh(λ(γ−1)(Kx−ct αα ) K2(1+γ))+3ξ. | (3.72) |
Case 3.4
Substituting
u(z)=−√2αeαzK√β(eαz−ξ)+3K2√2α+2K√βγ+2K√β+√2λ6K√β | (3.73) |
into Eq (3.3), we have
−(K4α2−2β(γ2−γ+1)K23+λ23)α√2eαz2√β(eαz−ξ)K=0. | (3.74) |
It follows that
β=3K4α2+λ22K2(γ2−γ+1). | (3.75) |
Substituting (3.73) with (3.75) into Eq (3.3), Eq (3.3) reduces to an algebraic equation:
(γ−12)(1+γ)(γ−2)(K4α2+λ23)K√3K4α2+λ2K2−3λ(γ2−γ+1)32(K2α−λ3)(K2α+λ3)9√3K4α2+λ2K2(γ2−γ+1)K3=0. | (3.76) |
By solving Eq (3.76), we have
α=±λK2(2γ−1),±γλK2(γ−2),±λ(γ−1)K2(γ+1). | (3.77) |
Case 3.4.1
Substituting (3.73) with (3.75) and α=λK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=(−2γ+1)eλzK2(2γ−1)+2ξ(1+γ)−3eλzK2(2γ−1)+3ξ. | (3.78) |
Solution (3.78) can be converted to the following form:
u(z)=(−2γ+1)(cosh(λzK2(2γ−1))+sinh(λzK2(2γ−1)))+2ξ(1+γ)−3cosh(λzK2(2γ−1))−3sinh(λzK2(2γ−1))+3ξ. | (3.79) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.78) and (3.79), we get the following exact solutions for Eq (3.1):
u(x,t)=(−2γ+1)eλ(Kx−ct αα )K2(2γ−1)+2ξ(1+γ)−3eλ(Kx−ct αα )K2(2γ−1)+3ξ, | (3.80) |
u(x,t)=(−2γ+1)(cosh(λ(Kx−ct αα )K2(2γ−1))+sinh(λ(Kx−ct αα )K2(2γ−1)))+2ξ(1+γ)−3cosh(λ(Kx−ct αα )K2(2γ−1))−3sinh(λ(Kx−ct αα )K2(2γ−1))+3ξ. | (3.81) |
Case 3.4.2
Substituting (3.73) with (3.75) and α=−λK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=2e−λzK2(2γ−1)γ−2ξγ+2e−λzK2(2γ−1)+ξ3e−λzK2(2γ−1)−3ξ. | (3.82) |
Solution (3.82) can be converted to the following form:
u(z)=(2γ+2)sinh(λzK2(2γ−1))+(−2γ−2)cosh(λzK2(2γ−1))+2ξγ−ξ3sinh(λzK2(2γ−1))−3cosh(λzK2(2γ−1))+3ξ. | (3.83) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.82) and (3.83), we get the following exact solutions for Eq (3.1):
u(x,t)=2e−λ(Kx−ct αα ) K2(2γ−1)γ−2ξγ+2e−λ(Kx−ct αα ) K2(2γ−1)+ξ3e−λ(Kx−ct αα ) K2(2γ−1)−3ξ, | (3.84) |
u(x,t)=(2γ+2)sinh(λ(Kx−ct αα ) K2(2γ−1))+(−2γ−2)cosh(λ(Kx−ct αα ) K2(2γ−1))+2ξγ−ξ3sinh(λ(Kx−ct αα ) K2(2γ−1))−3cosh(λ(Kx−ct αα ) K2(2γ−1))+3ξ. | (3.85) |
Case 3.4.3
Substituting (3.73) with (3.75) and α=γλK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=(−2γ−2)eγλzK2(γ−2)−ξ(γ−2)−3eγλzK2(γ−2)+3ξ, | (3.86) |
provided that 2(K√λ2K2+λ)(2γ−1)λ2(1+γ)=0.
Solution (3.86) can be converted to the following form:
u(z)=(−2γ−2)(cosh(γλzK2(γ−2))+sinh(γλzK2(γ−2)))−ξ(γ−2)−3cosh(γλzK2(γ−2))−3sinh(γλzK2(γ−2))+3ξ. | (3.87) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.86) and (3.87), we get the following exact solutions for Eq (3.1):
u(x,t)=(−2γ−2)eγλ(Kx−ct αα )K2(γ−2)−ξ(γ−2)−3eγλ(Kx−ct αα )K2(γ−2)+3ξ, | (3.88) |
u(x,t)=(−2γ−2)(cosh(γλ(Kx−ct αα )K2(γ−2))+sinh(γλ(Kx−ct αα )K2(γ−2)))−ξ(γ−2)−3cosh(γλ(Kx−ct αα )K2(γ−2))−3sinh(γλ(Kx−ct αα )K2(γ−2))+3ξ. | (3.89) |
Case 3.4.4
Substituting (3.73) with (3.75) and α=−λ(γ−1)K2(γ+1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=(γ−2)e−γλzK2(γ−2)+2ξ(1+γ)−3e−γλzK2(γ−2)+3ξ, | (3.90) |
provided that 2λ2(2γ−1)(K√λ2K2+λ)(1+γ)=0.
Solution (3.90) can be converted to the following form:
u(z)=(γ−2)(cosh(γλzK2(γ−2))−sinh(γλzK2(γ−2)))+2ξ(1+γ)−3cosh(γλzK2(γ−2))+3sinh(γλzK2(γ−2))+3ξ. | (3.91) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.90) and (3.91), we get the following exact solutions for Eq (3.1):
u(x,t)=(γ−2)e−γλ(Kx−ct αα )K2(γ−2)+2ξ(1+γ)−3e−γλ(Kx−ct αα )K2(γ−2)+3ξ, | (3.92) |
u(x,t)=(γ−2)(cosh(γλ(Kx−ct αα )K2(γ−2))−sinh(γλ(Kx−ct αα )K2(γ−2)))+2ξ(1+γ)−3cosh(γλ(Kx−ct αα )K2(γ−2))+3sinh(γλ(Kx−ct αα )K2(γ−2))+3ξ. | (3.93) |
Case 3.4.5
Substituting (3.73) with (3.75) and α=λ(γ−1)K2(γ+1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=ξγ−eλ(γ−1) z K2(1+γ)−eλ(γ−1) z K2(1+γ)+ξ, | (3.94) |
provided that 2(2γ−1)λ2(K√λ2K2−λ)(γ−2)=0.
Solution (3.94) can be converted to the following form:
u(z)=ξγ−cosh(λ(γ−1) z K2(1+γ))−sinh(λ(γ−1) z K2(1+γ))−cosh(λ(γ−1) z K2(1+γ))−sinh(λ(γ−1) z K2(1+γ))+ξ. | (3.95) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.94) and (3.95), we get the following exact solutions for Eq (3.1):
u(x,t)=ξγ−eλ(γ−1)(Kx−ct αα ) K2(1+γ)−eλ(γ−1)(Kx−ct αα ) K2(1+γ)+ξ, | (3.96) |
u(x,t)=ξγ−cosh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−sinh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−cosh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−sinh(λ(γ−1)(Kx−ct αα ) K2(1+γ))+ξ. | (3.97) |
Case 3.4.6
Substituting (3.73) with (3.75) and α=−λ(γ−1)K2(γ+1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=e−λ(γ−1) z K2(1+γ) γ−ξe−λ(γ−1) z K2(1+γ)−ξ, | (3.98) |
provided that 2λ2(2γ−1)(K√λ2K2−λ)(γ−2)=0.
Solution (3.98) can be converted to the following form:
u(z)=(cosh(λ(γ−1) z K2(1+γ))−sinh(λ(γ−1) z K2(1+γ)))γ−ξcosh(λ(γ−1) z K2(1+γ))−sinh(λ(γ−1) z K2(1+γ))−ξ. | (3.99) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.98) and (3.99), we get the following exact solutions for Eq (3.1):
u(x,t)=e−λ(γ−1)(Kx−ct αα ) K2(1+γ)γ−ξe−λ(γ−1)(Kx−ct αα ) K2(1+γ)−ξ, | (3.100) |
u(x,t)=(cosh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−sinh(λ(γ−1)(Kx−ct αα ) K2(1+γ)))γ−ξcosh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−sinh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−ξ. | (3.101) |
The traveling wave solutions (3.12), (3.13), (3.21), (3.22), (3.25), (3.36), (3.43), (3.51), (3.52), (3.55), (3.56), (3.59), (3.60) (3.63), (3.64), (3.67), (3.68), (3.71), (3.72), (3.80), (3.81), (3.84), (3.85), (3.88), (3.89), (3.92), (3.93), (3.96), (3.97), (3.100), (3.101) appear to be new, comparing the results in [22] and other open literature.
We find a new shape of exponential function solution for Eq (2.12) in the shape of (3.28), where A(z) is an undetermined function, which is not of the shape of (2.15). This has resulted in an important extension to the complex method to build new exponential function solutions for PDEs, since the new shape of the exponential function solution cannot be degenerated by the elliptic function solution.
By traveling wave transformation, the conformable Huxley equation is reduced to an ordinary differential equation. Then, by using the complex method and the extended form of exponential solutions u(z)=A(z)eαz−ξ+const, where A(z) is an undetermined function, we can build some new exact exponential solutions and hyperbolic solutions. Therefore, by using the complex method and the extended form of exponential solutions, more exact solutions can be built for partial differential equations.
The authors are thankful to the referees for their invaluable comments and suggestions, which put the article in its present shape.
The authors declare there are no conflicts of interest.
[1] | C. Rogers, W. F. Shadwick, Bäcklund Transformations and Their Applications, Academic Press, New York, 1982. |
[2] | M. A. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511623998 |
[3] | C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511606359 |
[4] |
S. T. R. Rizvi, M. Younis, D. Baleanu, H. Iqbal, Lump and rogue wave solutions for the Broer-Kaup-Kupershmidt system, Chin. J. Phys., 68 (2020), 19–27. https://doi.org/10.1016/j.cjph.2020.09.004 doi: 10.1016/j.cjph.2020.09.004
![]() |
[5] |
W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60 (1992), 650–654. https://doi.org/10.1119/1.17120 doi: 10.1119/1.17120
![]() |
[6] | S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, New York, 2004. https://doi.org/10.1201/9780203491164 |
[7] |
V. E. Tarasov, No nonlocality. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 157–163. https://doi.org/10.1016/j.cnsns.2018.02.019 doi: 10.1016/j.cnsns.2018.02.019
![]() |
[8] |
A. A. Abdelhakim, J. A. T. Machado, A critical analysis of the conformable derivative, Nonlinear Dyn., 95 (2019), 3063–3073. https://doi.org/10.1007/s11071-018-04741-5 doi: 10.1007/s11071-018-04741-5
![]() |
[9] |
A. A. Hyder, A. H. Soliman, A new generalized θ-conformable calculus and its applications in mathematical physics, Phys. Scr., 96 (2021), 015208. https://doi.org/10.1088/1402-4896/abc6d9 doi: 10.1088/1402-4896/abc6d9
![]() |
[10] |
A. A. Hyder, A. H. Soliman, Analytical manner for abundant stochastic wave solutions of extended KdV equation with conformable differential operators, Math. Methods Appl. Sci., 45 (2022), 8600–8612. https://doi.org/10.1002/mma.7317 doi: 10.1002/mma.7317
![]() |
[11] |
A. A. Hyder, M. A. Barakat, A. H. Soliman, A. A. Almoneef, C. Cesarano, New analytical solutions for coupled stochastic Korteweg-de Vries equations via generalized derivatives, Symmetry, 14 (2022), 1770. https://doi.org/10.3390/sym14091770 doi: 10.3390/sym14091770
![]() |
[12] |
A. A. Hyder, A. H. Soliman, C. Cesarano, M. A. Barakat, Solving the Schrödinger-Hirota equation in a stochastic environment and utilizing generalized derivatives of the conformable type, Mathematics, 9 (2021), 2760. https://doi.org/10.3390/math9212760 doi: 10.3390/math9212760
![]() |
[13] |
W. J. Yuan, Y. H. Wu, Q. H. Chen, Y. Huang, All meromorphic solutions for two forms of odd order algebraic differential equations and its applications, Appl. Math. Comput., 240 (2014), 240–251. https://doi.org/10.1016/j.amc.2014.04.099 doi: 10.1016/j.amc.2014.04.099
![]() |
[14] |
W. J. Yuan, Y. Z. Li, J. M. Lin, Meromorphic solutions of an auxiliary ordinary differential equation using complex method, Math. Meth. Appl. Sci., 36 (2013), 1776–1782. https://doi.org/10.1002/mma.2723 doi: 10.1002/mma.2723
![]() |
[15] |
W. J. Yuan, Y. D. Shang, Y. Huang, H. Wang, The representation of meromorphic solutions of certain ordinary differential equations and its applications, Sci. Sin. Math., 43 (2013), 563–575. https://doi.org/10.1360/012012-159 doi: 10.1360/012012-159
![]() |
[16] |
G. Dang, Meromorphic solutions of the seventh-order KdV equation by using an extended complex method and Painlevé analysis, ScienceAsia, 49 (2023), 108–115. https://doi.org/10.2306/scienceasia1513-1874.2022.133 doi: 10.2306/scienceasia1513-1874.2022.133
![]() |
[17] |
G. Dang, New exact solutions of the sixth-order thin-film equation with complex method, Partial Differ. Equations Appl. Math., 4 (2021), 100116. https://doi.org/10.1016/j.padiff.2021.100116 doi: 10.1016/j.padiff.2021.100116
![]() |
[18] |
G. Dang, Meromorphic solutions of the (2+1)- and the (3+1)- dimensional BLMP equations and the (2+1)- dimensional KMN equation, Demonstr. Math., 54 (2021), 129–139. https://doi.org/10.1515/dema-2021-0009 doi: 10.1515/dema-2021-0009
![]() |
[19] |
G. I. Dolgikh, D. P. Kovalev, P. D. Kovalev, Excitation of under-ice seiches of a sea port of the sea of Okhotsk, Dokl. Earth Sci., 486 (2019), 651–653. https://doi.org/10.1134/S1028334X19060011 doi: 10.1134/S1028334X19060011
![]() |
[20] |
W. X. Ma, Complexiton solutions to the Korteweg-de Vries equation, Phys. Lett. A, 301 (2002), 35–44. https://doi.org/10.1016/S0375-9601(02)00971-4 doi: 10.1016/S0375-9601(02)00971-4
![]() |
[21] | I. Kovacic, M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and their behavior, John Wiley and Sons, London, 2011. http://dx.doi.org/10.1002/9780470977859 |
[22] | A. C. Cevikel, A. Bekir, E. H. M. Zahran, Novel exact and solitary solutions of conformable Huxley equation with three effective methods, J. Ocean Eng. Sci., 2022 (2022). https://doi.org/10.1016/j.joes.2022.06.010 |
[23] |
R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[24] | S. Lang, Elliptic Functions, 2nd edition, Springer Verlag, New York, 1987. https://doi.org/10.1007/978-1-4612-4752-4 |
[25] | A. Eremenko, Meromorphic traveling wave solutions of the Kuramoto-Sivashinsky equation, arXiv preprint, (2006), arXiv: nlin/0504053. https://doi.org/10.48550/arXiv.nlin/0504053 |
[26] | W. J. Yuan, Z. F. Huang, M. Z. Fu, J. C. Lai, The general solutions of an auxiliary ordinary differential equation using complex method and its applications, Adv. Differ. Equations, 2014 (2014). https://doi.org/10.1186/1687-1847-2014-147 |
[27] |
R. Conte, T. W. Ng, C. F. Wu, Hayman's classical conjecture on some nonlinear second-order algebraic ODEs, Complex Var. Elliptic Equations, 60 (2015), 1539–1552. https://doi.org/10.1080/17476933.2015.1033414 doi: 10.1080/17476933.2015.1033414
![]() |
1. | Bo Liu, Zhou-Bo Duan, Li-Fang Niu, Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method, 2024, 98, 0973-7111, 10.1007/s12043-024-02791-6 | |
2. | Guoqiang Dang, Yufeng Guo, Kai Li, How to Pose Problems on Periodicity and Teaching with Problem Posing, 2023, 15, 2073-8994, 1716, 10.3390/sym15091716 | |
3. | Guoqiang Dang, Elliptic and multiple-valued solutions of some higher order ordinary differential equations, 2023, 31, 2688-1594, 5946, 10.3934/era.2023302 | |
4. | Guoqiang Dang, On the equation f n + (f″)m ≡ 1, 2023, 56, 2391-4661, 10.1515/dema-2023-0103 | |
5. | Feng Ye, Xiaoting Zhang, Chunling Jiang, Bo Zeng, Comment on: "Solving the conformable Huxley equation using the complex method" [Electron. Res. Arch., 31 (2023), 1303–1322], 2025, 33, 2688-1594, 255, 10.3934/era.2025013 |