In this paper, we consider the three-dimensional non-autonomous micropolar equations with damping term in periodic domain $ \mathbb{T}^{3} $. By assuming external forces satisfy certain condtions, the existence of pullback $ \mathcal{D} $-attractors for the three-dimensional non-autonomous micropolar equations with damping term is proved in $ V_{1}\times V_{2} $ and $ H^{2}\times H^{2} $ with $ 3 < \beta < 5 $.
Citation: Xiaojie Yang, Hui Liu, Haiyun Deng, Chengfeng Sun. Pullback $ \mathcal{D} $-attractors of the three-dimensional non-autonomous micropolar equations with damping[J]. Electronic Research Archive, 2022, 30(1): 314-334. doi: 10.3934/era.2022017
In this paper, we consider the three-dimensional non-autonomous micropolar equations with damping term in periodic domain $ \mathbb{T}^{3} $. By assuming external forces satisfy certain condtions, the existence of pullback $ \mathcal{D} $-attractors for the three-dimensional non-autonomous micropolar equations with damping term is proved in $ V_{1}\times V_{2} $ and $ H^{2}\times H^{2} $ with $ 3 < \beta < 5 $.
[1] | X. Cai, Q. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799–809. https://doi.org/10.1016/j.jmaa.2008.01.041 doi: 10.1016/j.jmaa.2008.01.041 |
[2] | T. Caraballo, G. Lukasiewicz, J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484–498. https://doi.org/10.1016/j.na.2005.03.111 doi: 10.1016/j.na.2005.03.111 |
[3] | A. Cheskidov, S. S. Lu, Uniform global attractors for the nonautonomous 3D Navier-Stokes equations, preprint, arXiv: 1212.4193. |
[4] | A. C. Eringen, Simple microfluids, Internat. J. Engrg. Sci., 2 (1964), 205–217. https://doi.org/10.1016/0020-7225(64)90005-9 doi: 10.1016/0020-7225(64)90005-9 |
[5] | A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18. https://doi.org/10.1512/iumj.1967.16.16001 doi: 10.1512/iumj.1967.16.16001 |
[6] | G. P. Galdi, S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci., 15 (1977), 105–108. https://doi.org/10.1016/0020-7225(77)90025-8 doi: 10.1016/0020-7225(77)90025-8 |
[7] | Y. J. Li, C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput., 190 (2007), 1020–1029. https://doi.org/10.1016/j.amc.2006.11.187 doi: 10.1016/j.amc.2006.11.187 |
[8] | H. Liu, H. Gao, Decay of solutions for the 3D Navier-Stokes equations with damping, Appl. Math. Lett., 68 (2017), 48–54. https://doi.org/10.1016/j.aml.2016.11.013 doi: 10.1016/j.aml.2016.11.013 |
[9] | H. Liu, C. Sun, F. Meng, Global well-posedness of the 3D magneto-micropolar equations with damping, Appl. Math. Lett., 94 (2019), 38–43. https://doi.org/10.1016/j.aml.2019.02.026 doi: 10.1016/j.aml.2019.02.026 |
[10] | H. Liu, C. Sun, J. Xin, Attractors of the 3D magnetohydrodynamics equations with damping, Bull. Malays. Math. Sci. Soc., 44 (2021), 337–351. https://doi.org/10.1007/s40840-020-00949-0 doi: 10.1007/s40840-020-00949-0 |
[11] | H. Liu, C. F. Sun, J. Xin, Well-posedness for the hyperviscous magneto-micropolar equations, Appl. Math. Lett., 107 (2020), 106403. https://doi.org/10.1016/j.aml.2020.106403 doi: 10.1016/j.aml.2020.106403 |
[12] | G. Lukaszewicz, Micropolar fluids. Theory and applications, in: Modeling and Simulation in Science, Engineering and Technology, Birkhauser Boston, Inc., Boston, MA, 1999. |
[13] | H. B. de Oliveira, Existence of weak solutions for the generalized Navier-Stokes equations with damping, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 797–824. https://doi.org/10.1007/s00030-012-0180-3 doi: 10.1007/s00030-012-0180-3 |
[14] | J. C. Robinson, J. L. Rodrigo, W. Sadowski, The Three-Dimensional Navier-Stokes Equations., 2016. |
[15] | M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301–319. https://doi.org/10.1002/mana.19971880116 doi: 10.1002/mana.19971880116 |
[16] | X. L. Song, Y.R. Hou, Attractors for the three-diemensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239–252. https://doi.org/10.3934/dcds.2011.31.239 doi: 10.3934/dcds.2011.31.239 |
[17] | X. L. Song, F. Liang, J. H. Wu, Pullback $\mathcal{D}$-attractors for three-dimensional Navier-Stokes equations with nonlinear damping, Boundary Value Problems, 2016.1 (2016), 145. https://doi.org/10.1186/s13661-016-0654-z doi: 10.1186/s13661-016-0654-z |
[18] | B. Straughan, The Energy Method, Stability, and Nonlinear Convection, second edition, in: Applied Mathematical Sciences, vol. 91, Springer-Verlag, New York, 2004. |
[19] | W. L. Sun, Y. P. Li, Pullback exponential attractors for the non-autonomous micropolar fluid flows, Acta Mathematica Scientia, 38.4 (2018), 1370–1392. https://doi.org/10.1016/S0252-9602(18)30820-8 doi: 10.1016/S0252-9602(18)30820-8 |
[20] | E. S. Titi, S. Trabelsi, Global well-posedness of a 3D MHD model in porous media, J. Geom. Mech., 11 (2019), 621–637. https://doi.org/10.3934/jgm.2019031 doi: 10.3934/jgm.2019031 |
[21] | L. Yang, M. H. Yang, P. Kloeden, Pullback attractors for non-autonomous quasilinear parabolic equations with a dynamical boundary condition, Discrete Contin. Dyn. Syst., Ser. B, 17 (2012), 2635–2651. https://doi.org/10.3934/dcdsb.2012.17.2635 doi: 10.3934/dcdsb.2012.17.2635 |
[22] | X. J. Yang, H. Liu, C. F. Sun, Global attractors of the 3D micropolar equations with damping term, Mathematical Foundations of Computing, 4.2 (2021), 117–130. https://doi.org/10.3934/mfc.2021007 doi: 10.3934/mfc.2021007 |
[23] | X. J. Yang, H. Liu, C. F. Sun, Pullback attractor of a non-autonomous order-2$\gamma$ parabolic equation for an epitaxial thin film growth model, Boundary Value Problems, 2020.1 (2020), 79. https://doi.org/10.1186/s13661-020-01375-8 doi: 10.1186/s13661-020-01375-8 |
[24] | Z. Ye, Global existence of solution to the 3D micropolar equations with a damping term, Appl. Math. Lett., 83 (2018), 188–193. https://doi.org/10.1016/j.aml.2018.04.002 doi: 10.1016/j.aml.2018.04.002 |
[25] | Y. Zhou, Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Lett., 25 (2012), 1822–1825. https://doi.org/10.1016/j.aml.2012.02.029 doi: 10.1016/j.aml.2012.02.029 |