In this paper, we consider a reaction-diffusion epidemic model with nonlocal diffusion and free boundaries, which generalises the free-boundary epidemic model by Zhao et al. [
Citation: Ting-Ying Chang, Yihong Du. Long-time dynamics of an epidemic model with nonlocal diffusion and free boundaries[J]. Electronic Research Archive, 2022, 30(1): 289-313. doi: 10.3934/era.2022016
In this paper, we consider a reaction-diffusion epidemic model with nonlocal diffusion and free boundaries, which generalises the free-boundary epidemic model by Zhao et al. [
[1] | M. Zhao, Y. Zhang, W.-T. Li, Y. Du, The dynamics of a degenerate epidemic model with nonlocal diffusion and free boundaries, J. Diff. Equ., 269 (2020), 3347–3386. https://doi.org/10.1016/j.jde.2020.02.029 doi: 10.1016/j.jde.2020.02.029 |
[2] | Y. Du, W. Ni, Semi-wave, traveling wave and spreading speed for monostable cooperative systems with nonlocal diffusion and free boundaries, (2020), arXiv: 2010.01244. |
[3] | V. Capasso, S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Revue d'epidemiologie et de sante publique, 27 (1979), 121–132. |
[4] | V. Capasso, L. Maddalena, Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 13 (1981/82), 173–184. https://doi.org/10.1007/BF00275212 |
[5] | I. Ahn, S. Baek, Z. Lin, The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Model., 40 (2016), 7082–7101. https://doi.org/10.1016/j.apm.2016.02.038 doi: 10.1016/j.apm.2016.02.038 |
[6] | L. I. Rubinšteĭn, The Stefan Problem, American Mathematical Soc., Providence, RI, 1971. |
[7] | Y. Du, Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377–405. https://doi.org/10.1137/090771089 doi: 10.1137/090771089 |
[8] | M. Zhao, W.-T. Li, W. Ni, Spreading speed of a degenerate and cooperative epidemic model with free boundaries, Discrete Contin. Dyn. Syst. B, 25 (2020), 981–999. https://doi.org/10.3934/dcdsb.2019199 doi: 10.3934/dcdsb.2019199 |
[9] | J.F. Cao, Y. Du, F. Li, W.T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772–2814. https://doi.org/10.1016/j.jfa.2019.02.013 doi: 10.1016/j.jfa.2019.02.013 |
[10] | R. Wang, Y. Du, Long-time dynamics of a diffusive epidemic model with free boundaries, Discrete Contin. Dyn. Syst.Ser. B, 26 (2021), 2201–2238. https://doi.org/10.3934/dcdsb.2020360 doi: 10.3934/dcdsb.2020360 |
[11] | W.B. Xu, W.-T. Li, S. Ruan, Spatial propagation in an epidemic model with nonlocal diffusion: The influences of initial data and dispersals, Sci. China Math., 63 (2020), no. 11, 2177–2206. https://doi.org/10.1007/s11425-020-1740-1 doi: 10.1007/s11425-020-1740-1 |
[12] | C. Hu, Y. Kuang, B. Li, H. Liu, Spreading speeds and traveling wave solutions in cooperative integral-differential systems, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1663–1684. https://doi.org/10.3934/dcdsb.2015.20.1663 doi: 10.3934/dcdsb.2015.20.1663 |
[13] | J. Fang, X-Q. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems, J. Dyn. Differ. Equ., 21 (2009), 663–680. https://doi.org/10.1007/s10884-009-9152-7 doi: 10.1007/s10884-009-9152-7 |
[14] | B. Li, H. F. Weinberger, M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82–98. https://doi.org/10.1016/j.mbs.2005.03.008 doi: 10.1016/j.mbs.2005.03.008 |
[15] | X.-Q. Zhao, W. Wang, Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1117–1128. https://doi.org/10.3934/dcdsb.2004.4.1117 doi: 10.3934/dcdsb.2004.4.1117 |
[16] | Y. Du, W. Ni, Analysis of a West Nile virus model with nonlocal diffusion and free boundaries, Nonlinearity, 33 (2020), 4407–4448. https://doi.org/10.1088/1361-6544/ab8bb2 doi: 10.1088/1361-6544/ab8bb2 |
[17] | X. X. Bao, W. Shen, Criteria for the existence of principal eigenvalues of time periodic cooperative linear systems with nonlocal dispersal, Proc. Amer. Math. Soc., 145 (2017), 2881–2894. https://doi.org/10.1090/proc/13602 doi: 10.1090/proc/13602 |
[18] | Y. Du, F. Li, M. Zhou, Semi-wave and spreading speed of the nonlocal Fisher-KPP equation with free boundaries, J. Math. Pure Appl., 154 (2021), 30–66. https://doi.org/10.1016/j.matpur.2021.08.008 doi: 10.1016/j.matpur.2021.08.008 |