Motivated by a work of Li, we study nonlocal vertex algebras and their smash products over fields of positive characteristic. Through smash products, modular vertex algebras associated with positive definite even lattices are reconstructed. This gives a different construction of the modular vertex algebras obtained from integral forms introduced by Dong and Griess in lattice vertex operator algebras over a field of characteristic zero.
Citation: Qiang Mu. Smash product construction of modular lattice vertex algebras[J]. Electronic Research Archive, 2022, 30(1): 204-220. doi: 10.3934/era.2022011
Motivated by a work of Li, we study nonlocal vertex algebras and their smash products over fields of positive characteristic. Through smash products, modular vertex algebras associated with positive definite even lattices are reconstructed. This gives a different construction of the modular vertex algebras obtained from integral forms introduced by Dong and Griess in lattice vertex operator algebras over a field of characteristic zero.
[1] | I. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math., 134. Academic Press, Inc., Boston, MA, 1988. https://doi.org/10.1142/9789812798411_0010 |
[2] | C. Dong, L. Ren, Representations of vertex operator algebras over an arbitrary field, J. Algebra, 403 (2014), 497–516. https://doi.org/10.1016/j.jalgebra.2014.01.007 doi: 10.1016/j.jalgebra.2014.01.007 |
[3] | L. Ren, Modular $A_n(V)$ theory, J. Algebra, 485 (2017), 254–268. https://doi.org/10.1016/j.jalgebra.2017.04.027 |
[4] | C. Dong, L. Ren, Vertex operator algebras associated to the Virasoro algebra over an arbitrary field, Trans. Amer. Math. Soc., 368 (2016), 5177–5196. https://doi.org/10.1090/tran/6529 doi: 10.1090/tran/6529 |
[5] | C. Dong, C. H. Lam, L. Ren, Modular framed vertex operator algebras, preprint, arXiv: 1709.04167 |
[6] | R. E. Borcherds, Modular moonshine III, Duke Math. J., 93 (1998), 129–154. https://doi.org/10.1215/S0012-7094-98-09305-X |
[7] | R. E. Borcherds, A. Ryba, Modular moonshine II, Duke Math. J., 83 (1996), 435–459. https://doi.org/10.1215/S0012-7094-96-08315-5 |
[8] | R. L. Griess Jr, C. H. Lam, Groups of Lie type, vertex algebras, and modular moonshine, Int. Math. Res. Not. IMRN, 2015 (2015), 10716–10755. https://doi.org/10.1093/imrn/rnv003 |
[9] | C. Dong, R. L. Griess Jr, Integral forms in vertex operator algebras which are invariant under finite groups, J. Algebra, 365 (2012), 184–198. https://doi.org/10.1016/j.jalgebra.2012.05.006 doi: 10.1016/j.jalgebra.2012.05.006 |
[10] | Q. Mu, Lattice vertex algebras over fields of prime characteristic, J. Algebra, 417 (2014), 39–51. https://doi.org/10.1016/j.jalgebra.2014.06.027 doi: 10.1016/j.jalgebra.2014.06.027 |
[11] | H.-S. Li, Axiomatic $G_1$-vertex algebras, Commun. Contemp. Math., 5 (2003), 281–327. https://doi.org/10.1142/S0219199703000987 doi: 10.1142/S0219199703000987 |
[12] | H.-S. Li, Nonlocal vertex algebras generated by formal vertex operators, Selecta Math. (N.S.), 11 (2005), 349–397. https://doi.org/10.1007/s00029-006-0017-1 doi: 10.1007/s00029-006-0017-1 |
[13] | H.-S. Li, A smash product construction of nonlocal vertex algebras, Commun. Contemp. Math., 9 (2007), 605–637. https://doi.org/10.1142/S0219199707002605 doi: 10.1142/S0219199707002605 |
[14] | J. Lepowsky, H.-S. Li, Introduction to Vertex Operator Algebras and Their Representations, Progr. Math., 227. Birkhäuser Boston, Inc., Boston, MA, 2004. https://doi.org/10.1007/978-0-8176-8186-9 |
[15] | H.-S. Li, Q. Mu, Heisenberg VOAs over fields of prime characteristic and their representations, Trans. Amer. Math. Soc., 370 (2018), 1159–1184. https://doi.org/10.1090/tran/7094 doi: 10.1090/tran/7094 |